surface and exo-atmospheric solar measurements · rmib pmod pmod 0.990 0.995 1.000 1.005 1.010 st...

40
Surface and Exo-Atmospheric Solar Measurements Alex Farrell, Mitch Furst, Ed Hagley, Tom Lucatorto, Leonard Hanssen, Joseph Rice, Carol Johnson, Toni Litorja, Eric Shirley, Steve Brown, Keith Lykke, Howard Yoon Behrang Hamadani, Brian Dougherty, Matt Boyd (EL)

Upload: lytruc

Post on 06-Mar-2019

242 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Surface and Exo-Atmospheric Solar Measurements

Alex Farrell, Mitch Furst, Ed Hagley, Tom Lucatorto,

Leonard Hanssen, Joseph Rice, Carol Johnson,

Toni Litorja, Eric Shirley, Steve Brown, Keith Lykke, Howard Yoon

Behrang Hamadani, Brian Dougherty, Matt Boyd (EL)

Page 2: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Subject of talk (devices viewing the Sun)

1. Total and spectral solar irradiance (TSI and SSI)

4. Solar EUV and UV measurements from space

2. Broad-band solar measurements

3. Solar Energy

Page 3: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

1. Exo-atmospheric Total solar irradiance (TSI) and spectral solar

irradiance (SSI)

Page 4: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

There is an unexplained 0.37% difference between TIM and VIRGO or ACRIM

Exo-atmospheric Total Solar Irradiance (TSI) Measurements

NIST is asked to resolve this problem by NASA

Page 5: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

How do you measure the total solar irradiance (TSI)?

Precision Aperture

Electrical substitution cavity

Reference Cavity

Reference Blackbody

Shutter

Using calorimetry, the temperature rise using the thermopile in the measuring cavity is determined. The shutter is closed and the electrical power is applied to get the matching rise in temperature.

Page 6: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Discrepancies of the TSI of > 0.5 % are due to?

1. Aperture Areas? (Toni Litorja, Carol Johnson)

2. Absolute Power? (Joe Rice)

3. Cavity Absorptance? (Leonard Hanssen)

4. Diffraction? (Eric Shirley)

Page 7: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Aperture area measurements at NIST

0 5 10 15 20 25

0.9985

0.9990

0.9995

1.0000

1.0005

1.0010

1.0015

(RM

IB, P

MO

D/W

RC

)/N

IST

Comparison Designation

RMIB

PMOD

PMOD

0.990

0.995

1.000

1.005

1.010

(L

aR

C, JP

L)/

NIS

T

LaRC

JPL

Page 8: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the NIST Primary Optical Watt Radiometer (POWR)

BeamFrom

532 nmLaser

TranslationStage

TRF RadiometerBrewster Window

POWRBrewster Window

Beamsplitter 1

Beamsplitter 2

Polarizer

Shutters½ Wave Plate

TrapPhotodiode 2

TrapPhotodiode 1

Intensity Stabilizer

SpatialFilter

2 mW

TRF Radiometer

POWR

Page 9: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Scattering and Cavity Reflectance

TIM has a reversed order of the defining aperture and the view limiting aperture. compared to other TSI sensors. Scattering is very difficult to model and therefore to calculate the exact contributions.

ERBE, DIARAD, PMO6, ACRIM

TIM

Page 10: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Instrument

Calculation ACRIM TIM

NIST 1595 -452

NRL 1548 -314

Average 1571(24) -383(75)

Diffraction effect for radiometers:

excess (deficit in negative case) flux, ppm

Diffraction had important and oppositely signed effects

on 2 NASA instruments; (a) ACRIM and (b) TIM.

Diffraction corrections

Page 11: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

TSI issue is resolved

DoC Gold Medal in 2012 to the team

Page 12: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Latest comparison of TCTE/TIM and SORCE/TIM

TCTE/TIM measurements are traceable to 1. NIST Apertures2. NIST POWR scale

Page 13: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Solar Irradiance Monitor Electrical Substitution Radiometer Efficiency Calibration Results from SIRCUS

13

Net result was that the radiometric response of the SIM instrumentneeds to be increased by a factor of 1.013 across the 258 nm to 1350 nm regime.

J. W. Harder, G. Thuillier, E. C Richard, et al., “The SORCE SIM Solar SpectrumComparison with recent observations,” Solar Phys. 263, 3-24 (2010).

Steve Brown, Keith Lykke

Solar Spectral Irradiance (SSI) is only known to about 2.0 % (k=2)

Page 14: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

2. Surface broad-band solar measurements

Page 15: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

How is the scale maintained now and what is the problem?

The World Radiometric Reference (WRR) is defined as the mean of the World Standard Group of pyrheliometer at Davos, Switzerland which began as a group of 17 of which 6 are used for the latest scale.The outliers from the mean are discarded. The difference from SI is estimated to be 0.3 % (k=1).

Page 16: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

How is the broad-band total irradiance scale (World Radiometric Reference (WRR))

disseminated?

• Every 5 years the International Pyrheliometer Comparisons are held.

• The Eleventh IPC (IPC-XI) took place at PMOD/WRC (Davos, Switzerland) from September 27 to October 15, 2010.

• Eighty-seven participants came from 40 countries to calibrate 99 pyrheliometers.

Page 17: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Problems with the WRRChanges in the WRR can be measured using NREL pyrheliometers

Page 18: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

NIST Purchased 3 Eppley AHF pyrheliometers

Recommended by NREL who has provide the custom software to run this unit.

Page 19: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Design of the Eppley AHF

Page 20: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

NIST Eppley AHF taken apart

Apertures measuredCavity Reflectance measured Baffle scatter

measured

Page 21: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Complete Hemispherical Infrared Laser-based Reflectometer

• Can measure reflectance down to approx. 10-5 (equivalent to emissivity 0.99999)

• Reflectance expanded uncertainties currently 15 - 20% for 10-3 to 10-5 range

Front View of SphereRear View w/ Water Bath Cavity

Page 22: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Calibration of Field Instruments

Commercial Pyrheliometer

Pyranometer

Absolute Cavity Pyrheliometer

Page 23: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Measurements on the Rooftop Meteorological Station (EL)

Solar Irradiance Global Horizontal Beam Diffuse Horizontal

UV and Long-wave Radiation

Spectral Irradiance – Global Horizontal

All Sky Camera

Wind Speed & Direction

Air Temperature, Pressure, Rel. Humidity

Rain & Snow Accumulations

Page 24: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

3. Solar Energy

Page 25: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Cryogenic Electrical Substitution Radiometer

Filter Radiometer Si Working Standards

HTBB

Spectral Irradiance Lamps

Spectroradiometer

Solar Cells, ModulesI(OUT)

Outdoor Relative Solar Spectral Irradiance, ER,OUT

Relative SpectralResponsivity, sR,

World Photovoltaic Scale (WPVS) 1.7 % (k=2)

World Radiometric Reference (WRR)

0.6 % (k=2)

Si Trap Detector Si Trap Detector

Cavity Radiometer, ETOT

AM1.5 , EAM1.5G

1. Global Sunlight Method (NREL)

OUTRR,λ

OUTR

GAM

GAMR,λ

Es

E

E

EsMMF

,

,

5.1

5.1

MMFE

m

W

OUTIGAMITOT

STC 2

1000

5.1

NIST SSD Standards

Page 26: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Cryogenic Electrical Substitution Radiometer

Filter Radiometer Si Working Standards

HTBB

Spectral Irradiance Lamps

Spectroradiometer

Solar Cells, Modules

RelativeSpectral Irradiance

Absolute SpectralResponsivity, sA,

1.0 % (k=2)

World Photovoltaic Scale (WPVS) 1.7 % (k=2)

Si Trap Detector Si Trap Detector

AM1.5 , EAM1.5G

2. Differential Absolute Responsivity (DSR) NIST Method

GAMASTC EsGAMI 5.1,5.1

Page 27: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Differential Irradiance Spectral Responsivity (DSR) measurement facility, NIST EL

Monochromator-based DSR system combined with LED-based integrating sphere systemSuitable for relatively large device areas

Behrang Hamadani, Brian Dougherty, EL

Monochromator-based system:• Dual (Xe and QTH) light source• Calibration range: 300 nm – 2500 nm• Custom current preamp capable of separating dc

and ac components.• Light bias currents up to 1.6 A• 2 lock-in amplifiers for simultaneous

measurement of cell and monitor detector response

LED-based integrating sphere system:• 33 unique monochromatic LEDs covering the wavelength

range 360 nm – 1200 nm• LEDs are pulse modulated sequentially.• White and IR LEDs operated in DC for light bias• Output port diameter of 22.9 cm• Si and Ge monitor detectors.• Lock-in based measurement

Page 28: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

NIST EL DSR system images

electronics control

• Currently under final testing and evaluation

• Preliminary measurements have demonstrated excellent performance

• The LED sphere-based system used for determining the irradiance scale.

• Intercomparisons with international NMIs ongoing.

Page 29: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Spectral responsivity

Solar cell spectral responsivity R(): The measurement of the wavelength dependence of the photocurrent relative to the # of incident photons. R() = Iph()/P()

Spectral responsivity of some PV technologies

Cell ID Isc [NIST measurement] Certification Laboratory [21]

Isc [Certification Laboratory]

Percent Difference

VLSI10510-0193 125.03 ± 0.92 mA VLSI Standards 125.6 ± 1.8 mA 0.45 %

VLSI10540-0144 134.2 ± 1.02 mA VLSI Standards 134.3 ± 1.9 mA 0.074 %

US1 10.02 ± 0.076 mA NREL 9.9985 ± 0.09099 mA 0.21 %

Page 30: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

NIST Solar simulator (EL) for solar module testing1. IEC Standard 60904-9 Class AAA

Simulator

A. Spectral match: 0.75-1.25 for 6 wavelength-intervals

B. Irradiance non-uniformity: ±2 %

C. Irradiance temporal instability: ±2 %

2. Flash Plateau: 36 ms

A. IV scan interval: 1 ms

B. Variable scan delay : 1 – 12 ms

3. Irradiance Range: ~ 500 – 1100 W/m2

4. Maximum irradiated area: 2.4 m diagonal

5. Spectral composition filter

Page 31: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Measurements at Campus Solar Arrays

Page 32: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

4. Exo-atmospheric solar EUV and UV measurements

Page 33: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Calibrating the CosmosGoal: Advance and disseminate infrared and optical radiation measurement science and standards to support remote sensing of the Earth, Sun, Moon, and stars for applications that include climate science, weather forecasting, astronomy, & fundamental physics.

Major Facilities:

• Facility for Spectral Irradiance and Radiance Calibrations using Uniform Sources (SIRCUS)

• Synchrotron Ultraviolet Radiation Facility (SURF III)

• Low Background Infrared Facility (LBIR)

• Remote Sensing Laboratory (RSL)

Recent Accomplishments:

• Performed a system-level calibration of the VIIRS sensor

• Provided measurement calibration, standards, and assurance for LDCM, GOES-R, OCO-II, JPSS, EVE, …

• Led resolution of discrepancies in solar constant (DOC Gold Medal)

• Demonstrated new approach to calibrate the Moon

• Provided system level calibration of astronomical observatories and CIBER

33

The Sun in the UV/EUV

All of NASA’s and NOAA’s UV/EUV instruments now calibrated at NIST

Mitch Furst, Ed Hagley, Alex Farrell, Members of the Laboratory of Atmospheric and Space Physics (LASP)

Page 34: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

• Top-down heating of the earth’s surface & ozone production: Radiation from 120 – 200 nm absorbed in mesosphere layer; radiation from 200 – 320 absorbed in stratosphere layer.

Image courtesy J. Lean

UV/EUV and Earth Climate

• Sensitive measure of Solar variability: UV/EUV accounts

for <0.1% of TSI but ≈ 1/3 of TSI variation.

• Historical record of Solar variability: Data on Mg II line at 280 nm recorded since 1978.

• Accurate time sequence of Solar variability of TSI

important for separating out impact of Solar variation

(from GHG & other forcings) on surface temperature in

climate model.

Page 35: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

EUV monitoring of the Sun’s Dynamics

• Best observed by monitoring in EUV (2 – 120 nm)

• Important in modelling Sun Climate

• Important in the “nowcasting” and forecasting of space weather

Page 36: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

36

Impacts of Space Weather

• Space Weather Effects:– Satellite tracking

– Satellite operations

– Navigation

– GPS location

– Ground-space communications

– Ground-ground communications

– Total Electron Content

• Some specific users:– NASA

– Military (all branches, but specifically AFWA, NORAD)

– Shipping industry

– Airlines

– Commercial satellite industry

– Power companies

– Emergency responders

– Space weather research community

Page 37: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

37

Synchrotron Ultraviolet Radiation Facility (SURF III)

BL-1

BL-2

BL-3 BL-4

BL-5

0 100

1 1014

2 1014

3 1014

4 1014

5 1014

6 1014

100 101 102 103 104 105

380 MeV331 MeV284 MeV235 MeV184 MeV131 MeV78 MeV38 MeV3000 K Blackbody

10-1100101102103P

hoto

n F

lux

(s-1

at

= 4

°; 1

00 m

A;

1%

ban

dw

idth

)

Wavelength (nm)V

isib

le

DUVL (193 nm)EUVL (13.4 nm)

Photon Energy (eV)

Page 38: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

BL-2: Large chamber and clean room

Page 39: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Recent UV/EUV Calibrations at SURF III: Missions and Collaborators

Collaborators: NOAA; NASA Goddard Space Flight Center; Laboratory for Atmospheric & Space Physics; Naval Research Lab; USC Space Flight Center; Jet Propulsion Laboratory.

Page 40: Surface and Exo-Atmospheric Solar Measurements · RMIB PMOD PMOD 0.990 0.995 1.000 1.005 1.010 ST LaRC JPL. Calibration of LASP TSI Radiometer Facility Radiometer (TRF) using the

Summary

1. NIST has resolved and is working to resolve long-standing calibration issues in exo-atmospheric and surface solar measurements.

2. Continuing support for Climate Science Measurements at NIST is critical in understanding and mitigating issues due to climate change.