surface deformation and tectonic setting of taiwan ... · surface deformation and tectonic setting...

30
Chapter 3 Surface def ormation and tectonic setting of T aiwan inferr ed fr om a GPS v elocity field. 3.1 Introduction The island of Taiwan is a zone of active continental deformation located in an excep- tional tectonic setting within the plate boundary zone between the Eurasian Plate (EUP) and the Phillipine Sea Plate (PSP) (figure 3.1). At Taiwan the PSP is moving toward the EUP at a rate of 70-80 mm/yr in the direction N306 E (Seno et al., 1993, inset of figure 3.1). The complexity of Taiwan’s tectonic setting arises from the fact that at the Ryukyu Trench the PSP subducts northnorthwestward underneath the EUP, whereas at the Manila Trench the PSP overrides the EUP in a westward direction. Taiwan is located at the transfer zone between subduction and overriding of the PSP. The 150 km long, NNE-trending Longitudinal Valley Fault (LVF) on the island of Taiwan is generally considered as the suture zone between the two plates (Barrier and Angelier, 1986; Biq, 1972) accounting for 25-30 % of the total plate convergence (Angelier et al., 2000). The still ongoing collision between the Luzon volcanic arc and the Chinese conti- nental margin started at least 8Myr ago (Ho, 1988; Kao et al., 1998; Lallemand et al., 2001; Teng, 1990) thereby creating and building the Taiwan orogen. Due to the oblique orientation of the strike of the arc relative to the strike of the passive margin, the colli- sion at Taiwan has migrated southward, incorporating ever new portions of the Luzon arc (Lewis and Hayes, 1983; Suppe, 1981). Details of the geodynamic evolution and present-day tectonic setting of Taiwan are by no means resolved. This becomes evi- This chapter is in press for publication in J. Geoph. Res. as: A.G. Bos, W. Spakman and M.C.J. Nyst, Surface deformation and tectonic setting of Taiwan inferred from a GPS velocity field. 47

Upload: others

Post on 23-May-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Chapter 3

Surfacedeformation and tectonicsettingof Taiwan inferr ed fr om aGPSvelocity field.

3.1�

Intr oduction

The�

islandof Taiwan is a zoneof active continentaldeformationlocatedin anexcep-tional�

tectonicsettingwithin theplateboundaryzonebetweentheEurasianPlate(EUP)and� the Phillipine SeaPlate(PSP)(figure3.1). At Taiwan thePSPis moving towardthe�

EUPat a rateof 70-80mm/yr in thedirectionN306� E (Senoet al., 1993,insetoffigure�

3.1). Thecomplexity of Taiwan’s tectonicsettingarisesfrom thefactthatat theRyuk�

yu Trenchthe PSPsubductsnorthnorthwestward underneaththe EUP, whereasat� the Manila Trenchthe PSPoverridesthe EUP in a westward direction. Taiwan islocatedat the transferzonebetweensubductionandoverriding of the PSP. The 150km�

long, NNE-trendingLongitudinalValley Fault (LVF) on the islandof Taiwan isgenerally� consideredasthesuturezonebetweenthetwo plates(BarrierandAngelier,1986;Biq, 1972)accountingfor 25-30% of thetotalplateconvergence(Angelieretal.,2000).

The�

still ongoingcollision betweentheLuzonvolcanicarcandtheChineseconti-nental margin startedat least8Myr ago(Ho, 1988;Kao et al., 1998;Lallemandet al.,2001;Teng,1990)therebycreatingandbuilding theTaiwanorogen.Dueto theobliqueorientation� of thestrike of thearcrelative to thestrike of thepassive margin, thecolli-sion� at Taiwanhasmigratedsouthward,incorporatingever new portionsof theLuzonarc� (Lewis andHayes,1983;Suppe,1981). Detailsof thegeodynamicevolution andpresent-day tectonicsettingof Taiwan areby no meansresolved. This becomesevi-

Thischapteris in pressfor publicationin J�. Geoph.Res.as:A.G. Bos,W. SpakmanandM.C.J.Nyst,

Surfacedeformationandtectonicsettingof Taiwaninferredfrom aGPSvelocity field.

47

48 Chapter3

dent�

from thevarietyof contradictingmodelsproposedin theliterature(Angelieretal.,1990;Chemendaetal., 1997;Lu andMalavieille, 1994;Suppe,1981;Teng,1990;Wuet� al., 1997).Suppe,1981;Teng,1990;Wu etal., 1997].

These�

modelsfocuson two closelyrelatedprocesses:thegeometryanddynamicsof� thetransitionbetweenthetwo subductionzonesandtheevolutionof theTaiwanoro-gen.� Thehypothesisof the”thin-skinned”or ”critical taper”model(Barr andDahlen,1990;Dahlen,1990)for actively deformingfold-and-thrustbeltshasbeenchallengedby�

modelsincluding thebasementof thecrustin themountainbuilding process(Ell-w� ood et al., 1996;HwangandWang,1993;Wu et al., 1997). In the ”thin-skinned”models� activedeformationis confinedto a trapezoidalsegmentof awedgeoverlyingaplanar decollementfault,whereasthe”basementinvolved” modelsrequirethediscreteincorporationof autochthonousbasementmaterialinto theshallow partsof theorogen.A modelof crustalsubductionfollowed by exhumation(Chemendaet al., 2001;Lin,1998;Lin et al., 1998)hasalsobeenproposedto explain therapiduplift andhigh heatflo�

w in the CentralRangeof Taiwan (figure 3.1). Lallemandet al. (1997,2001)andTengetal. (2000)proposedetachmentof theEurasianslabbeneathTaiwanasamecha-nismto createspacefor thesubductionof thePSPslabalongthewestwardpropagatingRyuk�

yu trench. Analoguemodelinghasshown the possibility of subductionreversalalong� aboundarycomparableto theLVF of Taiwanin asimilarsettingof two contrarysubduction� zones,aswell asprovidedinsight in themechanismsbehindtheprocessesof� exhumationandlateralextrusion(Chemendaetal., 1997,2001;Lu andMalavieille,1994).Theseandothermodelsstill requirefurthertestingagainstavailablegeological,geophysical� and,in particular, geodeticdataacquiredin thepastdecade.

In 1989the”TaiwanGPSNetwork” wasestablishedby theInstituteof EarthSci-ences,� AcademicaSinica(IESAS).Basedon the 1990-1995dataof the network, Yuet� al. (1997)derivedthepresent-dayvelocity field of theTaiwanarea.Sucha velocityfield providessignificantinformationon the kinematicsof the crustaldeformation.Iapply� theinversionmethodof SpakmanandNyst(2002)to theGPSvelocityfield of Yuet� al. (1997)in orderto determinethekinematicpropertiesof thesurfacedeformation.This methodsolvessimultaneouslyfor the velocity gradientfield andfault slip rate.TheSpakmanandNyst (2002)methodutilizesaphysicalrelationbetweenthevelocitygradient� field, faultmotionandtherelativevelocitydatawhichis significantlydifferentfrom�

similarstudiesoncomplicatedregionswhicharebasedonspatialinterpolationofthe�

data(e.g.Beavan andHaines,2001;Wdowinski et al., 2001). The incorporationof� fault motion in a joint inversionwith the velocity gradientfield is a uniquechar-acteristic� of the method. In contrastto for instanceelasticdislocationmodeling(e.g.Bennett�

et al., 1996),my methodrequiresno assumptionson crustalor fault dynam-ics (seeSpakmanandNyst (2002)for furtherdiscussion).Fromthevelocity gradienttensor�

I easilyobtainthestrainrateandrotationratetensorfields. In conjunctionwithgeological� observationsin thearea,I interprettheobtainedsurfacedeformationmodelin termsof thekinematicsof crustalprocesses.By combiningthesurfacedeformation

3.1�

Introduction 49

Figure�

3.1: T�ectonicsettingof Taiwan showingmajor faults as usedin this study: LVF =

LongitudinalValley Fault; LF = LishanFault; CF = Chuchin Fault; CHF = Chaochou-ChishanFault; CKF = Chukou Fault; DF = DeformationFront, and themaingeological provinces: I= CoastalPlain; II = WesternFoothills (WF); IIIa = westernCentral Range (WCR); IIIb =eastern� Central Range(ECR);IV = CoastalRange (CoR);IJ = Ishigaki-Jima;IP = Ilan Plainand� COB= ContinentalOceanBoundary.

50�

Chapter3

modelwith seismicitydataandseismictomographyI am ableto proposea coherentmodelfor thepresent-daytectonicactivity at theislandof Taiwan.

3.2�

Geologicsetting

Geologically�

, Taiwancanbedividedinto four N-NE trendingprovinceswhicharesep-arated� by active faults(figure3.1). Theprovincescomposea west-vergentcollisionalprism involving both theChinesecontinentalmargin andtheLuzonArc. In theeast-ern� CentralRange(ECR) Pre-Tertiary high-grademetamorphicrocksof the Chinesemargin areexposed,while theCoastalRange(CoR)is composedof Neogeneandesiticv� olcanicunitsof thenorthernLuzonArc (Yu etal., 1997;Hu etal., 1996).

The generalstructuraltrendsof the Taiwan mountainbelt show an elongatedS-shape� (figure 3.1). SouthernTaiwan is dominatedby the on-shoreextensionof theManila�

accretionarywedge,representinga particularzoneof weaknessrelatedto thenorthern part of the Manila subductionsystem. To the north of this region, the ac-cretionary wedgeis terminatedby the ChishanTransferFault zone(CTFZ), whichappears� asa majorstructural,seismologicalandkinematicboundarytrendingN130� E(Lacombe!

et al., 2001). Another major wrenchfault zonecutting acrossTaiwan isthe�

Sanyi-PakuaTransferFaultZone(S-PTFZ).ThisN140� E" trendingleft-lateralfaultzoneis alsoaccompaniedby highseismicityandoffsetsseveralmajorstructures(Def-fontaines�

etal.,1997).TheprominentPeikangandKuanyin High representtheshallowpre-Cretaceous Chinesecontinentalbasement.They areaccompaniedby significantBougueranomalies(HsiehandHu, 1972)andarecharacterizedby tectonicstability.Thedeformationfront (DF) is locatedalongthewesternedgeof theaccretionarywedgein#

thesouthandprogressesnorththroughtheCoastalPlain(CP)alongtheeasternedgesof� thebasementhighs.Generally, all deformationrelatedto theconvergenceof thePSPand� EUPis consideredto beaccommodatedeastof theDF (figure3.1).

3.3�

GPSdata

I$

usethedatasetof GPSmotionvectorspublishedby Yu etal. (1997).Thesevectorsaredetermined�

for 131stationsof the”TaiwanGPSNetwork” thatweresurveyed4-6timesbetween�

1990and1995,four continuouslyrecordingstationsandfivesemi-permanentstations� (figure3.2). In thecalculationof thestationvelocities,Yu et al. (1997)chosethe�

Paishastation(S01R),situatedat therelatively stableChinesecontinentalmargin,as� thefixedreferencestationandfixedtheazimuthfrom Paishato Taipei (at 52.1� )% toresolve thetranslationalandrotationalambiguitiesof thewholenetwork in theestima-tion.�

I adoptthis referencestationfor plotting purposes,but notethat my analysisisindependentof referenceframe.

3.4�

TheSpakman-Nystmethod 51

Figure�

3.2: GPS&

velocityvectors of Taiwan [Yu et al., 1997] asusedin this studywith their95%'

confidenceerror ellipses.

Se(

veralearthquakeswith magnitude5.0or moreoccurredin or neartheareaof ob-serv� ationduringthetimeof observation.However, sincethey did nothaveasignificantef� fecton thelengthchangesof thebaselines,steadystatemotionis assumedduringtheperiod of observation(Yu etal., 1997).

3.4�

The Spakman-Nystmethod

I usetheinversionmethodof SpakmanandNyst (2002)to determinethesurfacedefor-mationof Taiwanin termsof discretemovementsalongfaults(creep/slip)andcontin-uous) deformationin crustalblocksfrom relative motion data. The kinematicmethoddoes�

not requireany assumptionsaboutthe dynamicscausingthe deformationor the

52�

Chapter3

rheologyof thecrust. For stationarydeformationthemethodrelatestheobservedrel-ati� ve motion( *,+.-0/ )% betweenstation1 and� station2 to

�thevelocity gradientfield ( 34+ )

%and� fault slip rate( 576 )% on fault segment 8 (figure

!3.3):

*,+9-0/;:<>=@?ACB ? D9EFHG 3I+KJMLON@PRQSLUT

<6 B ?WV 6X576YJ[Z

6-0/ N (3.1)!

where� \ A-0/ is theintegrationpathconnectingstations1 and� 2 . ] denotes�

thenumberofcrossed fault segments,V 6^:`_,a depends

�on the fault orientationwith respectto the

direction�

of integrationalongpath \ A-0/ , 576 is#

theslip rateon fault 8 at� the intersectionZ 6-0/ between� \ A-0/ and� thefault and 34+KJbLON is thevelocitygradienttensor.The�

first part of the right handside of equation3.1 denotesthe contribution ofcontinuous deformationto the relative motion betweenthe two stations. The inte-gration� over the 34+ is donein parts,sincethe 3I+ can be discontinuousacrossslip-ping/creeping faults.Thesymmetricpartof thevelocitygradienttensorconstitutesthestrain� ratefield, wherethe antisymmetricpart constitutesthe rotationratefield. Thesecond� part representsthemotiondueto fault slip on ] faultscrossedby a path \ A-0/ .Equation"

3.1 is purely linear in the unknown quantities3I+ and� 576 and� offers a com-plete descriptionof the relative crustalmotion *;cR-0/ resultingd from stationarycrustaldeformation.�

A setof e geodetic� relative motionobservationsyield at least efJgeihjaRNgkml v� ec-tor�

equations3.1coupledthrough 34+ and� 576 . I divide thefaultsinto segmentsandforeach� segmentthe relative fault slip rate 5 6 is parameterizedasa (segmentdependent)constant rate.Thestudyregion is subdividedinto a network of n nodesconnectedbytriangulation�

with therestrictionthattrianglescannotintersectwith faults.I adoptalin-ear� behavior of thevelocitygradient(quadraticdisplacement)onthespatialcoordinates

Figure3.3: Theforward problemof relatingrelativevelocityto thevelocitygradientfieldandfaulto

slip. Thecurvedpath p9qsr connectst two observationsites u and� v withw relativemotionxzy q0r .{

3.4�

TheSpakman-Nystmethod 53

in eachtriangle(SpakmanandNyst, 2002). This modelparameterizationis basicallythe�

only assumptionenteringthe observation equation(3.1) andis usedto arrive at alinear|

matrix systemof equations.Thedensityof thestationdistribution in themodelarea� is usedasa guidefor local densificationof thegrid. I includethesurfacetracesof� ”major”, active faults.The”minor” faultsareimplicitly representedby thevelocitygradient� field. I do not attemptto incorporateall known faults,sincethecurrentdatadensity�

is insufficient to independentlyresolvethevelocitygradientfield andslip/creepratesd onnumerous”minor” faultsin suchamoredetailedparameterization.

Substitution(

of theparameterizationin 3.1yieldsanordinarysetof coupledequa-tions,�

which canbeassembledin a matrix-vectorform (seeSpakmanandNyst (2002)for details). Sincethe relative motion between2 points is independentof the choiceof� \ A-0/ , the matrix systemcanbe extendedwith moredataequationsusing the sameobserv� ation set *Ucm-0/ . Closedintegrationpaths( \ A-0/ h \ A/b- )% betweenstations1 and� 2will� alwaysrenderzerorelative motion, therefore,the closedpathswhich only sam-ple continuouslydeformingcrustareeffectively replacedby the local constraintthat3~}�34+�:�� . Additional paths \ A-0/ may� be requiredacrossfaultsto ensureinternalconsistenc y betweenfaultslip rateandthevelocitygradientfield. Thiseffectively leadsto�

anextendedsetof dataequations.Dataerrors,non-uniquenessandill-conditioningof� the observation matrix causemy matrix-vectorsystemto be an inconsistentsetofequations.� To dealwith problemsassociatedwith this, I adoptan inversionschemewhich� selectsa solutionthatfits thedatain a leastsquaressenseandat thesametimeminimizessomemodel norm. Basedon the characteristicsof the model area(e.g.station� density)I adopta combinationof amplitudedampingon the boundaryof themodelingareaand,in themodelinterior, amplitudedampingcombinedwith spatiallyv� aryingfirst derivative regularization.Themodelminimizing thedataresidualandtheadopted� model norm (definedby the regularization)is given by Spakmanand Nyst(2002):!

� :�JM������� ?� ��T V������ T V

� ? ��� T V���� � ? � ? N � ? ������� ?���� (3.2)

!with� a posteriorimodelcovariancegiven by �i:�JM� � � � ?� ��T V

�� � � T V� ?���� T

V�� � � ?�� ? N � ? and� modelresolutionkernel ��:`� � � ��� ?� � . HereA representsthe

coef ficient matrix, �� is#

theobservedvelocity datavectorincluding the 3¡}¢34+£:¤�constraints, and� � denotes

�thedatacovariancematrix. Sincemy datavector �� consists

of� all efJge¥h�aRNgkml relative velocities,my datacovariancematrix � � w� ould obtaindimensions� efJge¦h§aRNgkml by

� e¨Jge¦h�aRN�kml . Inversionof this matrix would be veryinpractible,#

if not impossible. ThereforeI only utilize the datastandarddeviations,which� throughstandarderror propagationresultsin the standarddeviation vectorforthe�

datavector �� . ��� and� ��� are� identitymatricesfor theboundaryandgeneraldamping,respectid vely, and � ? stands� for the first derivative operator. V � , V ? and� V � are� theweighting� factorsof theamplitudedampingandfirst derivativeregularizationequations

54�

Chapter3

and� control the trade-off betweenfitting thedataandminimizing theweightedmodelnorm. Theinversiondependson four tuningparameters:theweight ( V9© )

%attributedto

the�

surfaceconstraint3~}�3I+f:`� , the weight V � for�

the boundarynodedamping,the�

weight V ? for�

the amplitudedampingin the interior of the modelandthe weight

V � attrib� utedto thefirst derivative operator. I investigatea rangeof solutionsobtainedwith� differentcombinationsof thetuningparameters.

For theanalysisof theinversionresultsI definethemodelnormalizedª � per degreeof� freedom:

ª � « : ac¬- B ?

­ � -® �- (3.3)!

where� n are� thenumberof dataequations,e the�

numberof modelparameters,c¢:n�h¯e the�

degreesof freedomof themodel, ­ -°:¤Q²± �7³- hjQ²´µ©·¶- is#

thepredictionerrorof� themodeland ® �- is the a ® data

�variance.For modelswith ahighdegreeof freedom

a� properdatafit will result in a ª � of� aroundone. A ª ��¸>¸ a indicatesthat I amunable) to fit thedatawith thecurrentmodel,whereasa ª �º¹>¹ a identifies

#anattempt

to�

modelthedataerror, andmay imply moremodeldetail thansupportedby thedatasignal.� The ª � determination

�is, however, completelydependenton thedataerror: An

o� verestimationof suchanerrormayresultin a ª � which� is significantlysmallerthan1 andvice versa.Further, I use »®m¼ : ?½ ½- B ?.¾ ¿ -0- as� an averageindicationof themodelerror.

3.5�

Inversions

TheSpakmanandNyst (2002)methodprovidesthepossibility to solve for threedif-ferent�

typesof modelsfor surfacedeformation. The first application(I) only solvesfor�

the fault slip ratevectors,henceassumingthecrustaldeformationfield to beonlycontrolled by motion/creepon unlocked,freely slippingfaults;this correspondsto as-suming� rigid motionof largecrustalblocks.Thesecondapplication(II) solvesfor thev� elocitygradienttensoronly andthusignoresfault contributionsto therelativemotionfield i.e. assumesthatall faultshave beenlockedat thesurfaceduringtheobservationperiod. Finally, thethird (III) is thejoint approachwhich solvesfor bothfault slip rateand� thevelocitygradientfield. I invert for all threemodeltypesandprovideananalysisof� theresultsfor comparison.

The�

densityof my datasetandmy aim to modeltheregionaldeformationfield re-strict� theestimationof thevelocity gradientandfault slip rateto relatively substantialareas� andfault segments,respectively. Around the LVF the stationdensityallows asignificantly� denserparameterizationcomparedto therestof themodelarea.I includethe�

surfacetracesof the six major geologicalfaults(Hu et al., 1996,1997;Yu et al.,1997)in my parameterization.Thelocationof thefault traceshavebeendigitizedfrom

3.5�

Inversions 55

Figure�

3.4: FÀ

inal parameterizationof the modelsof Taiwan. Thick lines indicatefault seg-mentation,Á black dotsare the triangle nodesandgrey dotsare thesitepositions.Notethat inmyÁ choicefor the triangle nodesI are not restrictedto the locationsof the observationsites.T�rianglesdo not intersectfaults. Nodesat thefault are doubledto allow thevelocitygradient

fieldÂ

to bediscontinuousacrossfaults.

u et al. (1997) to insurethe station-to-fault relative positions. This approachleadsto�

a total of 290 triangles,spannedby 192 nodesand57 fault segmentswith 57 slipratevectors(figure3.4). Thoughfault slip rateparameterdampingis possible,inver-sion� I provedto beoverdeterminedwith acceptablemodelcovarianceandrequirednodamping.�

For inversionsII andIII I aim for asolutionwith minimal regularization,ac-ceptable covarianceandresolutionanda ª �IÄ aXÅ Æ . However, a larger ª � (2.89

!for my

preferred model)andslightly reducedspatialresolutionareacceptedto avoid spuriousv� aluestypicalof anunderdampedsolution.NotethatI implementthe a ® standard� devi-ations� in my inversionprocedure.Utilizing a Ç ® standard� deviationwouldresultin a ª �of� 0.48.Thefirst derivativeregularizationis allowedto varyspatiallydependingonthenumberof integrationpathscrossingeachtriangle(hitcountof thetriangle):Triangleswith� lesshits than aXkmaRl of� the maximumhitcountobtainan increasedregularizationweight� ( V �ÉÈ and� V ��Ê , respectively). Thefinal tuningparametersobtainedfor bothinver-sion� II andIII were: V9© :ËÇÌÅ ÆÍP·a�ÆRÎ (or

!astandarddeviationof ® © :�aXÅ ÏÐPÑa�Æ �ÓÒ JÕÔ�ÖOZÌN �

?)%

for thecurl constraintsand V � :�aRŠƺPYa�ÆR× for theboundarydamping,V ? :£ÏÌÅ ÆØPYa�ÆÚÙfor�

theamplitudedampingand, V � È :�ÛRÅ Æ4Pma�Æ? �

and� V � Ê :�lXÅ Æ4Pma�Æ?�?

for�

thespatiallydependent�

first derivative operatoron high hitcount (¸ ?? ��Ü ÔÞÝÉß )

%and low hitcount

56�

Chapter3

1 à@á à@â ] ª � »Z ¼ »®�ã¼ »®�ä¼? �SåRæç ©¼è¼ç ©

I - - 114 24.4 1.0 - 0.13é

II$

155 290

- 4.96ê

0.65é

1.25 -III 192 290 114 2.89 0.62

é1.46 0.22

éT�able3.1: Aspects

ëof theinversionparameterizationandaverageresultsfor inversionsI, II and

III.ì

Key: u ,í inversion; îÚï ,í numberof modelnodes;îÚð ,í numberof triangles; ñ ,í numberof faultseò gments; óôÉõ�ö ÷ø øqCù ÷Yú qsq ,í the average resolution,with ú q0q theû diagonal elementsof the

resolutionmatrixand ü theû

numberof modelparameters; óýmþõ ö ÷øUÿ øUÿq ù ÷ � � qsq ,í theaveragestandarò d deviation for the componentsof ��� ,í with ü þ ö�� î ï theû numberof componentsof��� ;� óýõ ö ÷ø�� ø��qCù ÷ � � q0q ,í the average standard deviation for the componentsof �� ,í withü ö�� ñ theû numberof slip components.

(! ¹ ?? � Ü ÔÞÝÉß )

%regions,respectively. The fault slip ratevectorsin inversionsI andIII

were� never subjectedto damping.Table3.1 providesanoverview of someaspectsofthe�

inversionparameterizationandaverageresultsfor inversionsI, II andIII.

3.5.1�

I: Inversion for fault slip rate only

In$

an attemptto fit the databy purefault motion, i.e. assumingrigid crustalblocks,I$

only considerthe 6 major geologicalfaultson Taiwan. In the model the faultsarerepresentedby 57slip ratevectors,eachconsistingof afaultnormalandafaultparallelcomponent, resultingin a total of 114modelparameters.The inverseproblemprovesto�

be over-determined(perfectresolution)but the solution,with small modelcovari-ance,� shows largedatamisfitswhichcannotbeaccommodatedby the95%confidenceerror� ellipses(ª � :�l�ÏÌÅ Ï ; figure3.5a).Usingamoredetailedfault parameterizationofallo� wing twice theamountof slip modelparametersperfault doesnot leadto a signif-icant#

reductionof thedatamisfit nor rendersa significantlydifferentslip ratesolution.A comparisonwith neotectonicobservationsof fault slip ratesalsofails the test. Forinstance,thesolutionfor slip rateon theLongitudinalValley fault comprisesa combi-nation of thrustandleft-lateralmotion,consistentwith geologicalobservations(figure3.5b).�

However, themagnitudeof theslip rateis significantlylargerthantheobservedslip� ratesdeterminedfrom geologicalandcreepmetermeasurements(Angelier et al.,1997;Lee et al., 2001). The Lishanfault accommodatessignificantthrustmovementon� its northernsegments,wheregeologicalevidenceshows left-lateralmovementinthe�

northwith increasingthrustmovementtowardsthesouth(Leeet al., 1997).Whilethe�

modeledleft-lateralmotion on the Chaochou-Chishan-Chuchinfault is supportedby�

geologicalobservations,noevidenceof thenormalcomponenthasbeenfound(La-combe et al., 2001).Therelative increasein thrustmovementon theChukou complieswith� geologicalobservations(Yu etal., 1997).

3.5�

Inversions 57

Figure3.5: Solving�

for fault slip rate only: a) Data misfits: Sincemy data are the relativevelocities� betweenevery pair of stations,I determinethe misfit at each stationby taking thedif�

ferencebetweenthe predictedvelocityand the data velocity for each path connectingthisstationò and determinethe average. I compare it with the average error ellipseof the station,whicw h is alsodeterminedfromtheerror ellipsesof all thesepaths.b) Fault slip ratesolution.

Since(

I have only parameterizedthesix majoractive faultsin theTaiwanregion, Iackno� wledgethepossibilityof animproveddatafit should”minor” faultsystemsbein-cluded. Here,I only testwhetherrigid motionof largecrustalblocks(implicitly definedby�

adoptingthemajorfault systems)canfit thedata.In inversionIII the”minor” faultsand� elasticloadingareimplicitly representedby thevelocitygradientfield. Onaccountof� the poor datafit andthe poor comparisonto neotectonicobservations,I concludethat�

thehypothesisof purerigid blockmotioncannotexplain theGPSdata.

3.5.2�

II: Inversion for continuousdeformation only

In this applicationI do not solve for fault motion contributions to the velocity field.The parameterizationconsistsof 290 triangles,spannedby 155 modelnodes. Eachnode generates4 componentsof thevelocitygradienttensor, which resultsin a totalof620�

modelparameters.Thedatamisfit (ª � : ÏÌÅ���� ; figure3.6b)is significantlybetter

58�

Chapter3

than�

obtainedfor modelI. Largestmisfitsarefoundin theLongitudinalValley region,where� many GPSstationsarecloseto eithersideof theLVF (figure3.6b).Fromfigure3.2�

I infer thattheGPSvelocitychangesstronglywhencrossingthefault asa resultoff�aultmotionnotmodeledin this inversion.

Most�

of the convergencebetweenthe EUP andthe PSPis absorbedin the Lon-gitudinal� Valley region. Extensionis found in the southernCentralRange(CR) andthe�

Ilan Plain (IP). Large contractioncan also be seenjust eastof the DeformationFront (figure 3.6a). Lee andAngelier (1993)determinedthe strainratesfor the cen-tral�

part of the Longitudinal Valley from trilaterationdataassumingthat the crustaldeformation�

shouldbe modeledby continuouscrustalflow. They show contractionratesat Juisui,Yuli andChihshangof (all expressedin ÖÓZ � ? )% lXÅ Ç }Þa�Æ �ÓÒ , ÇÌÅ aº}Þa�Æ �ÓÒand� lXÅ a } a�Æ �ÓÒ , respectively, with a consistentN132± E trend. I find strain ratesofaRÅ Ï��U_�ÆÌÅ ÆÚlØ}�a�Æ �ÓÒ in

#N140± E" at Juisui, ÆÌÅ����;_�ÆÌÅ ÆÚl }¢a�Æ �YÒ in

#N137± E" at Yuli andaRÅ ÇÚÛÚ_4ÆÌÅ ÆÚlÍ}Ia�Æ �ÓÒ in N133± E atChihshang,whichareconsistentlysmaller. Thiscould

Figure�

3.6: Solving�

for continuousdeformationonly: a) Data misfits,b) Strain ratefield. Thecontouringt denotestheeffectivestrain rate(= � �"! �$# q0r # qsr&% ÷(' ) % .{ Thearrowsdenotetheprincipalstrò ain rates: contraction (black) and extension(white). For a color version of this figure seefigurÂ

eC.7of appendixC.1.

3.5�

Inversions 59

be�

dueto the differencesin scalebetweentheir densetriangulationnetworks andmysparser� GPSnetwork andmy coarserparameterization(Kahleetal.,2000;Nyst,2001).YÃ

u andChen(1998)performeda studysimilar to thatof LeeandAngelier (1993)forthe�

southernpartof theChukou fault. They usedthedataof 5 yearsof GPScampaigns(1993-1997)!

to studyspatialandtemporalvariationsin crustalstrain.Their calculatedcontraction ratesof ÆÌÅ Ï��z} a�Æ �ÓÒ ÖÓZ � ? in N119± E at thecentralpartof theChukoufaultincrease#

to lXÅ Æ9aØ}Ëa�Æ �ÓÒ ÖÓZ � ? in#

N109± E" further to thesouth. HereI find an increasefrom� ÆÌÅ Ï�* _ ÆÌÅ ÆÚl } a�Æ �ÓÒ ÖÓZ � ? in

#N119± E" to aXÅ Æ�� _ ÆÌÅ ÆÚl } a�Æ �ÓÒ ÖÓZ � ? in

#N96± E.

"They

also� determinedextensionratesin thesouthof ÆÌÅ�*4} a�Æ �ÓÒ ÖÓZ � ? in N18± E. This agreesreasonablywell with my extensionratesof ÆÌÅ Û�ÆØ_¢ÆÌÅ ÆÚlØ}¢a�Æ �ÓÒ ÖÓZ � ? in N27± E in thesame� area.

Though�

this applicationclearly offers a betterdatafit thanthe inversionfor faultslip� rateonly (I), it remainsinconsistentwith neotectonicobservations. Further, thepresence of major, active faultsin this region is undisputed.

3.5.3�

III: Inversion for fault slip rate and continuousdeformation

The�

joint inversionutilizesthesametriangulargrid asinversionII. On thefault tracesduplicate�

modelnodesareusedto allow decouplingacrossthefault. Thejoint inversionis thusbasedon thesame290trianglesspannedby 192modelnodesandanadditional57�

slip ratevectors,yielding a total of 882 (768 for 34+ and� 114 for 5M6 )% modelpa-rameters.d Someof the datamisfits for this joint inversionareslightly larger thanthea� verage95% confidenceellipsesleadingto an averagedatamisfit ª � of� 2.89 (figure3.8a).�

I observe thatthefew misfit vectorsthatexceedthelimits of thedataconfidenceellipses� arestill primarily locatedin the LongitudinalValley region, wheredeforma-tion�

is strongest.Comparisonwith the data(figure 3.2) shows that the misfit vectorsdenote�

local differenceswithin the trendof thedata.Our adoptedparameterizationistoo�

coarseto modelthesestronglocal variationsin relativemotion.Beforeanalyzingthe fault slip rate(figure 3.8b) andthe strain-androtationrate

fields�

(figure3.9a,b)I will discussthecovarianceandresolutionof thesolution.

Co+

varianceand resolution

Fromthemodelcovariancematrix ¿ I extract thestandarddeviationsin theestimatesof� my model parameters( ® -�: ¾ ¿ -0- ).% For the velocity gradientfield I plot the ® -corresponding to a95%confidencelevel astwo contourplots:onefor the , -derivatives(longitude)!

(figure3.7a)andonefor the - -derivatives(latitude)(figure3.7b).Thelargererrors� (

Ä Û } a�Æ � ׺ÖÓZ � ? )% occur along the southwesternextent of the DeformationFront andin thenorthnorthwesternregion of themodelarea. In regionswith a smallamplitude� (

Ä a�} a�Æ � × ÖÓZ � ? )% the solutionbecomesinsignificant. The errorsof thefault slip rate parameters,plotted as 95% confidenceerror vectorsin the - - and , -

60�

Chapter3

Figure3.7: Co.

varianceandResolutionof thejoint inversionsolution.Thecovarianceis rep-r/ esentedasthemodelstandard deviations( ý õ ö � � qsq ).0 A) contourplot of the95%confidenceý q on1 � y32 ,í B) contourplot of the95%confidenceý q on1 � y34 ,í C) 95%confidenceý q on1 (5 plot-6tedû aserror vectors in the 7 -directionand 8 -direction,D) contourplot of theresolutionof � y 2 ,íE) contourplot of theresolutionof � y 4 .{

3.5�

Inversions 61

direction�

(figure3.7c),area factor10 smallerthantheaveragemagnitudeof fault sliprateobtainedin thesolution.

Figure�

3.7dand3.7eshow contourplotsfor thediagonalelementsof theresolutionk�ernelof thevelocity gradientfield. The interior of thestudyregion is relatively well

resolvedwith diagonalelementsexceeding0.75.Thedifferencebetweenresolutioninlatitudeandlongitudecanbeunderstoodby realizingthatdueto thebetterNS spreadof� observations(comparedto EW) latitudinal variationsarebetterresolved. Reducedresolutiond attheboundaryof my modelingareais dueto theinfluenceof theregulariza-tion.�

ThereducedresolutionoffshoreTaiwanin thenorthwesternpartof my modelingarea� canbe attributedto the poor datacoveragein this part of the model. In the in-terior�

of themodelthe resolutionis reduceddueto a trade-off betweenfault slip rateand� the velocity gradient. This canbe observed betweenthe DeformationFront andthe�

Chukou fault, around24± N9 betweentheChukou fault andtheChaochou-Chishanf�ault, andbetweentheChaochou-Chishanfault andsouthernLishanfault. I notethat

the�

fault slip ratethusmodeledmay representa combinationof fault creepandinter-seismic� signal,dependingon thetrade-off betweenthevelocitygradientfield andfaultmotion. This trade-off occursin caseof lack of datato seperatefault motion fromthe�

velocity gradientfield in a kinematicinversion. (Nyst, 2001;SpakmanandNyst,2002).

Thetrade-off is bestresolvedin areaswith relativemotionobservationsclosetothe�

fault zones.In areaswherethis is not thecase,aninterseismicsignaldueto blockmotion may be introducedin the slip ratesolution,whereasthe fault may in fact belock|

ed.This trade-off alsoaffectstheamplitudeof thevelocitygradientestimatein theproximity of thefault. I notethata solutionfor only continuousdeformation(solutionII of this study)implicitly reflectspureelasticloadingof locked faults. I furthernotethat�

thetrade-off problemis nota featureof theSpakmanandNyst (2002)method,butis#

a problemfor any interpretationmethodof relative motiondata.I referto Spakmanand� Nyst (2002)for a furtherdiscussionon this topic.

F:

ault slip rate contribution

In the joint solutionI find significantlyreducedfault slip ratescomparedto inversionI,$

thoughthesenseof motionis reasonablyconsistentbetweenthetwo solutions.Thef�aultslip ratecontributionof thejoint solution(figure3.8b)showsrelatively smallhor-

izontalslip ratesof theorderofÄ l mm/yr on mostfault segments.Largerhorizontal

slip� ratesareobservedon thesouthernsegmentsof theChukou faultandon theLongi-tudinal�

Valley fault. Largevertical rateshave beendeterminedon Taiwan(Lin, 1998;YÃ

u andKuo, 2001),but arenot reproducedby my modelsinceI only considerhori-zontalvelocities/rates.Slip rateson theLongitudinalValley fault vary from about19mm/yr with anazimuthof N124± E at Taitungto 25 mm/yr in N136± E at Yuli and7.8mm/yr� in N151± E" atHualien.Yu etal. (1990)showedthattheLongitudinalValley faultis averyweaklylockedor almostfreelycreepingfault. At Tapo,Angelieretal. (1997)

62�

Chapter3

Figure�

3.8: J;oint solution: a) Data misfits,b) Fault slip ratesolution.For further explanation

seeò figure3.5

determined�

present-dayratesbasedon detailedsurveys of faultedconcretestructures.Their rateof 22 mm/yr in N143± E comparesreasonablywith my valueof 26.84_ 0.22

émm/yr� in N136± E.

"The differencemight be explainedby the scaledifferencesof the

v� ery localobservationsandmy moreregionalparameterization.TheLishanfault shows left-lateralmovementat thenorthernsegmentchangingto

thrust�

movementmoreto thesouth.This variationin movementis in agreementwithgeological� observationsdoneby Lee et al. (1997). Yu et al. (1997) found a signifi-cant increasein shorteningratestowardsthe southalongthe Chukou fault, which isin supportof the increaseof thrustmovementI observe in my model. I further findthat�

the DeformationFront actsasa right-lateralthrust,which is consistentwith theobserv� ationsof Lacombeetal. (2001).

Strain<

rate contribution

The parameterizationof faults in applicationIII allows the velocity gradientfield tobe�

discontinuousacrossactive faults. The implementationof the faultssignificantlyreducesthemagnitudesof thestrainandrotationratescomparedto applicationII, es-

3.5�

Inversions 63

pecially aroundthe LongitudinalValley fault andthe Chukou fault. The magnitudesobtained� for thestrainratefield still remainamongstthelargestestimateson Earthforinterseismic#

deformation.The�

strainratefield (figure3.9a)shows a generalbehavior of NW-SEcontractionin the LongitudinalValley of easternTaiwan. In southwesternTaiwan I observe ananticlockwise� rotationof theprincipalaxisdirectionto E-W contraction.ThePeikangHigh=

is foundto haverelatively smallstrainrates.Comparingthis trendwith thestressfield�

modelingresultsof Hu et al. (1996)I find a generalagreement.However, differ-ences� betweentheirresultsandmy solutionareobserved,especiallyaroundtheIP. Thismay� bedueto ignoringtheopeningof theOkinawaTrough(OT) in theirelastic-plasticmodel,� whichcouldhaveasignificanteffecton thestrainratesin northeasternTaiwan.Anothercausefor discrepanciescanbe that stressandstraindirectionsdo not neces-sarily� align in caseof elastic-plasticrheology, which hampersa comparisonbetweentheir�

stressdirectionsandmy straindirections.Themagnitudeof thestrainratefielddecreases�

towardsthenorth.

Figure 3.9: J;oint solution: a) Strain rate field, b) Rotationrate field in degrees/Myr. The

number> s refer to local averagesof relativelystrong rotation ratesand their � ý err� ors. For acolort versionof this figureseefigureC.8of appendixC.1.

64�

Chapter3

Eastof theLongitudinalValley fault relatively largeNW-SEcontractiondominatesthe�

deformation. In contrast,the centralandsouthernCR show a dominantNE-SWto�

E-W extension.Geologically, this extensionis inferredfrom normalfaulting in theorogen� (Crespiet al., 1996;Kosugaet al., 1988),thermalobservations(Crespiet al.,1990)andnormalfault typeearthquake swarms(Lin andTsai,1981;Rau,1996).TheW?

esternFoothills (WF) aresubjectedto a WNW-ESEcontractionaccompaniedby asignificantly� southward increasingNNE-SSWextension. This trend is in agreementwith� Pleistocenepaleostresspatternsin southwesternTaiwan (Lacombeet al., 1999;Rocheret al., 1996).In theIP I find sugnificantNW-SEextension,consistentwith theinferredextensionaldirection in the Okinawa Trough(Hermanet al., 1978;Kimura,1985;Sibuetetal., 1987).

Rotation@

rate contribution

The rotation rate tensoris given by the anti-symmetricpart of the velocity gradienttensor�

(figure3.9b).Strictly speaking,theobtainedrelativerotationratesapplyto rigidrotationsd of small equidimensionalblocks. Interpretationof regional (anti) clockwiserotationscanbemadeif on averagetheobtainedrotationratesare(negative) positive.Since(

I am not able to solve for a net uniform rotation of the entire study region acomparison with paleomagneticblock rotationsis not straightforward. This is furthercomplicated by thefactthatalmostall paleomagneticobservationsareolderthan8Ma(Lee,!

1993;Miki et al., 1993),henceoccurredprior to the last collisionalphase(Ho,1988;Kao et al., 1998;Teng,1990). I noticethat many large regionswith the samesense� of rotationrateareboundedby thefaultswhich is indicativeof faultmotion.

Model III (figure3.9b)showstwo regionswith largeanticlockwiserotationratesinthe�

CoR,where,just offshorethenorthernsectionof theCoR,equallylargeclockwiserotationsd areobtained.This offshoreareaandthe areaaroundTaitungare,however,poorly resolvedandcareshouldbetakenwheninterpretingtheserotationrates.

The WF aredivided in threeblockswith opposingrotations;NorthernTaiwan isdominated�

by anticlockwiserotations,thecentralpart experiencesclockwiserotationa� veraging10.1_ 0.8

é ±�k e ÖÓZ as� the southernWF aresubjectedto 12.5_ 0.7é ±�k e ÖÓZ of�

anticlockwise� rotationonaverage.TheCRshowsasimilardivision: Thenorthernsec-tion�

undergoesaveragely14.8_ 0.8é ± k e ÖÓZ of� clockwiserotation,themiddlesectionis

subjected� to anticlockwiserotationaveraging9.2_ 0.8é ±Sk e ÖOZ , andthesouthernsection

sho� ws reducedanticlockwiserotation in the westandclockwiserotation in the east.The intersectionsof theoppositelyrotatingblockscoincidewith the two major trans-fer fault zoneson Taiwan. Only thesouthernregion of theCoastalPlainundergoesaclockwise rotationof a few Q ­BA Z ­�­DC k�Ô�ÖÓZ . TheIlan Plainis rotatingclockwisewith arateof 10.3_ 0.7

é ± k e ÖÓZ on� average.

3.6�

Geometryof thesubductionsystem 65

Comparison+

to lithospheric stressdata

I$

comparetheprincipalaxesof my strainratefield with theprincipalstressaxesfromearthquak� e focal mechanisms.Since I only model the two-dimensionalhorizontalstrain� rate tensor, I compareit to the horizontalcomponentsof the seismicmomenttensor�

. Thesefour componentswereextractedfrom the Harvard momenttensorso-lution|

of eachearthquake within themodelingareawith magnitudelarger than4 anddepth�

lessthan50 km. In my comparisonI make a distinctionbetweenshallow events(! ¹

20km) andthe deeperevents. ThoughI am awarethat the deeperseismicitymaybe�

relatedto lithosphericdeformation(subductingslab),I includethedeepereventstoallo� w for comparisonwith eventsin thecrustalrootof theorogenunderneaththeCen-tral�

Range.Theprincipalaxesof seismicmomenttensorsdonotneedto coincidewiththose�

of thesurfacestrainratessince(i) theseismicmomenttensorsreflectlocalreleaseof� stress(which doesnot necessarilycoincidewith regionalstrainratedirections)and(ii)!

thesurfacestrainratesdonotnecessarilyreflectdeformationatdepth.In$

theWesternFoothills I find a reasonableagreementin thedirectionsof theprin-cipal axesfor all events. In all otherareasa consistentmisfit exists for both shallowand� deepevents. In the southernCentralRangethe E-W compressionat depthis incomplete contrastto the E-W extensionof my model. I believe that thesedisagree-ments� shouldbe attributedmostly to the fact that thosesurfacevelocitieswhich arethe�

responseto deepercrustalprocessesnot necessarilycontainall informationon thedeformation�

occurringin the deepercrust. Therefore,a combinationwith crustalde-formation�

data(e.g. seismicity)is usefulto studycrustalprocessesdriving thesurfacedeformation.�

3.6�

Geometryof the subductionsystem

OfE

basicimportancefor understandingthe determinedstrain-and rotation ratesandfault slip rateis thegeometryof thetwo subductionsystemsin themantle.Numericalmodeling� predictsthatsubductionof acontinent-oceanboundary(COB)leadsto favor-able� conditionsfor detachmentof theoceaniclithosphere(VandeZeddeandWortel,2001;Wong A Ton andWortel, 1997). Several recentstudieshave adoptedthe hy-pothesis of detachmentof theEUPslabundernorthernandcentralTaiwanin ordertoe� xplain the ongoingsubductionof the PSPslab(Lallemandet al., 1997,2001;Tenget� al., 2000).Analoguemodels(Chemendaet al., 2001)demonstratethepossiblecon-junctionF

of EUPslabdetachmentandincipientwestwardsubductionof thePSPunderTaiwan.

The questionremainswhetherslabdetachmentis actuallyoccurring. Lallemandet� al. (2001) basetheir interpretationof slab detachmenton the global tomographicmantle� modelof Bijwaardetal. (1998),whichshowspredominantlylow P-wavespeedsin the upper100 km of the EUP subduction.However, sincethe non-subductedpart

66�

Chapter3

Figure�

3.10: LayerG

cuts from the global tomographic mantlemodelof Bijwaard and Spak-manÁ [2000]. Theleft columndisplaystheP-wavevelocityanomaliesbetween95kmand380km(depthsH

indicated) in percentages of the following referencevelocities(from top to bottom)8.047,I

8.119, 8.275, 8.482, 8.701, and 8.913 km/s. White dots denoteintermediatedepthhypocenterJ

swithin 25kmof each layerdepth.Thegrid of black linesarelongitudeandlatitudelinesK

in stepsof 2 degrees(seeupperleft panelfor 2 values).Theright columndisplaysthere-sultsò of a sensitivitytestfor estimatesof spatialresolutionin which theimagerecoveryis testedof1 a syntheticvelocitymodelconsistingof isolatedblocks(circular outlines)of 1.2 degreesinsizeò anda thicknessof about50 km. Theamplitudesare of alternatingsignandtheblocksareshiftedò in depth.Thecolors denotetherecoveryof thesyntheticmodel.Mild smearingeffectsbetweenL

thesyntheticblocksarevisibleat all depths,but thesyntheticblocksaregenerally wellrecoverable, particularly in the upper200 km underTaiwan. Belowthis depthresolutionre-duces�

gradually. I concludefromthis(andothersensitivitytests)that thetomographicimageoftheû actualEarth (left column)is interpretableat lengthscalesof 50-60km.For a color versionof1 this figureseefigureC.9fo appendixC.1.

3.7�

Model interpretation 67

of� the Chinesecontinentallithosphereis imagedwith similar low wave speeds,it isdif�

ficult to discriminatebetweenadetachedslabandsubductedcontinentallithosphereparticularly in theupper100-150km of themantle. Below this depthrangetheEUPslab� is visible in the mantletomography. Tenget al. (2000) invoke slabdetachmentas� the driving force behindthe high uplift ratesand large heatflow observed in theeastern� CentralRange.Themaximumuplift ratesandlargestheatflows arecurrentlyobserv� edbetween23± N9 and23.5± N,

9whichwouldsuggestthatthetip of thesouthward

propagating detachmenttearhasadvancedsignificantlysouthof this location(Worteland� Spakman,1992,2000).However, bothseismicity(figure3.12;cross-sectionA) andseismic� tomography(figure3.10)contradictthis suggestionby showing a continuousslab� up to 23± N.

9The�

assumptionof slabdetachmentis requiredif the northward extensionof theEUP"

slabbeneathTaiwan intersectswith the PSPslab. Figure3.10shows cutsfromthe�

tomographicmodelof BijwaardandSpakman(2000),which differs from earlierw� ork (Bijwaardet al., 1998)asa resultof 3D ray tracing to correctfor seismicraybending�

effectscausedby the3D velocity structureof themantle.For theTaiwanre-gion� this leadsto animproveddefinitionof theslabgeometry. Therelatively fast(blue)anomalies� north of 24± N9 andeastof 122± E imagethe northnorthwestward plungingPSPM

subductionzonealongtheRyukyu trench.Similarly, theeastwarddippingEUPisvisible� southof 24± N9 andat longitudescenteredaround122± E.

"For depthsabove 145

km the EUP slabis bestdelineatedby intermediateseismicity. Below this depththeslab� reaches24± N9 atmost(thelatitudeof Hualien).I assumethatthePSPslabandtheEUP"

slabareat the point of makingcontactwith eachotherat Hualien. On accountof� theseimages,slabdetachmentof the EUP below north to centralTaiwan doesnotat� presentseema strongrequirementto createspacefor thePSPto subductin a north-westw� arddirection.Theimageassociatedwith theEUPslabdoesnotshow significantlateral|

displacementwith depth,which attestsof its steepdip. This couldbeattributedto�

resistanceof theChinesecontinentalmargin to engagein thewestwardroll-backofthe�

EUPslab(viewedin aEurasianfixedreferenceframe).

3.7�

Model interpretation

3.7.1�

Southern Taiwan: southward extrusion

In southernTaiwanmy surfacedeformationmodelexhibits strainratesof almostpureE-W"

contraction,whichis consistentwith ongoingcollisionalshorteningin theorogen.The�

contractionalratesareaccompaniedby southwardincreasing,predominantlyN-Soriented� extensionalstrainrates(figure3.9a).I find right-lateralthrustmotionof

Ä a�Ïmm/yr in a N54± W? directionon theDeformationFrontandleft-lateralnormalmotionof� 6-13 mm/yr in direction N110± -130± E" (increasingsouthward) on the Chaochou-ChishanN

fault (figure 3.8b). The block boundedby thesefaultsis subjectedto an an-

68�

Chapter3

Figure�

3.11:Sc�

hematicrepresentationof thetectonicinterpretationsmadein thisstudy:Grav-itationalO

collapse(thin black arrows)andopeningof theOkinawaTrough(dark grey arrows)inO

northernTaiwan,ongoingcollision with crustal failure, accretionandexhumationof crustinO

theCentral Range of thecentral block (light grey arrows),lateral extrusionof thesedimen-taryû cover to theManila accretionarywedge in southwestTaiwan(wideblack arrows),andthede�

velopmentof a tear fault with incipientnorthwestward subductionat thetransitionbetweentheû two trench systemsat Hualien.OT denotesOkinawaTrough.

ticlockwise�

rotationrateofÄ amlXÅ Û ± /Myr

P, wherethe areason eithersideof this block

are� experiencingclockwiserotationratesor significantlysmalleranticlockwiserotationrates(southernCentralRange;figure3.9b). Thesepatternsof surfacedeformationareindicati#

veof lateralextrusiontowardstheManilaaccretionarywedgesouthof Taiwan.T�o the north the extrusion is terminatedby the ChishanTransferFault Zone (figure

3.11).�

The analoguemodelsof Lu andMalavieille (1994)alsosuggesta southwardlateralextrusionof thesedimentarycoverof thesouthernWesternFoothills in responseto�

the obliquecollision betweenthe PSPand the EUP. The southernTaiwan areaisfurther�

characterizedby low shallow seismicitywith a significantincreaseat thebaseof� the crust(figure 3.12; cross-sectionA) andthe resultsof geodeticre-triangulationwithin� theorogen(Chen,1984)demonstratethatin thisareasubsidenceprevails. Theseobserv� ationsarein supportof my interpretationof my surfacedeformationmodel insouthern� Taiwan.

3.7�

Model interpretation 69

3.7.2�

Central Taiwan: oblique collision, shorteningand exhumation

In$

thecentralsectionof theWesternFoothills andwesternCentralRange(figure3.1)the�

modelsurfacestrainratefield is dominatedby WNW-ESEcontractionandclock-wise� ratesof

Ä a�ÆÌÅ a ± /MyrP

(figure 3.9aand3.9b). I obtain right-lateralmotion withan� increasingthrustcomponentfor theDeformationFront,left-lateralthrustmotiononthe�

Chukou fault, insignificantmotionon theChaochou-Chishanfault andminor left-lateralthrustmotionontheLishanfault (figure3.8b).Thesemodelingresultsrepresentthe�

surfaceresponseto theongoingobliquecollision causingshorteningandshearingin#

theorogen.However, in theeasternCentralRange(figure3.1) I obtaina dominante� xtensionalprincipalstrainrate. Theprincipaldirectionof theextensionrotatesfromNE-SW9

in thecentral-northerneasternCentralRangeto E-W in thesouth,in agreementwith� geologicalobservationsgatheredin thearea(Crespiet al., 1996;Lu et al., 1998).The�

extensionis accompaniedby ananticlockwiserotationrateofÄ �XÅ l ± /Myr

P. Recent

reportsof levelingmeasurementsacrosstheCentralRangedescribeuplift ratesashighas� 36-42mm/yr for thepastdecade(Liu, 1995a)especiallybetween23± N9 and23.5± N9(K!

osugaet al., 1988). A feasibleexplanationof my surfacedeformationpatterns,thehighuplift rates,andthehigh-grademetamorphiccorecomplexesobservedin theeast-ern� CentralRange(section3.2)couldbetheexhumationof crustalmaterial.Regionaltomography�

of RauandWu (1995,figure3.13)shows a thickeningof thecrustunderthe�

highelevationsof theCentralRange,wherethedeepestpartis offsetto theeast.Inthe�

norththelow velocityrootextendsdown to adepthof 35km (c ´ :Q�XÅ ÆÌ8SÔÞk C ).% Thisis in agreementwith a Moho depthof 33 km inferredfrom gravity Bougueranomalymodeling� (Yenet al., 1998).In bothtomographiccross-sectionsthevelocity in thetop15km undertheCentralRangeis relatively highcomparedto thevelocitiesunderneaththe�

WesternFoothills andtheCoastalRange.This coincideswith a zoneof relativelylittle seismicityfoundunderneaththeeasternCentralRange(figure3.12). Chemendaet� al. (2001),Lin (1998)andLin et al. (1998)proposea modelof crustalsubductionfollowedby exhumationin a orogen-normaldirectionof theeasternCentralRangetoaccount� for the observations. In this model the continentalcrustof the SouthChinaSea(

is subductedto mid-crustallevelswhereit becomesdetachedfrom themantlepartof� the lithosphereandexhumes.However, in this modeltheobliquity andsouthwardpropagation of the collision is not taken into account.Sincecollision commencedinthe�

north andis progressively moving southward, the subductingcontinentalcrust inthe�

north would reachcritical conditionsneededfor its detachmentfrom the mantlewell� beforeits southernequivalent. Therefore,it is reasonableto assumea southwardpropagation of the exhumationin conjunctionwith the collision (figure 3.11). Thissouthw� ard propagationof the exhumationmay causethe anticlockwiserotation ob-serv� ed in the easternCentralRangeas well as divert the principal directionsof thee� xtensionto amoreNE-SWorientationin theregionswith maximumexhumation.

70R

Chapter3

Figure�

3.12:LocalG

seismicityascatalogedbytheCentral WeatherBureauof Taiwan,betweenMayS

1900andOctober2000.Light grey dotsin cross-sections:0 T MS T 3,

UBlack dotsin cross-

sections:ò üWV�X .{ Eventscontainedin dottedcircle correspondto the incipient subductionoutlined1 in sectionC.

3.7�

Model interpretation 71

3.7.3�

Northern Taiwan: crustal extensionand orogeniccollapse

Most�

of northernTaiwan (north of the Sanyi-PakuaTransferfault zone)is subjectedto�

relatively smallanticlockwiserotationrates(0± -5± /Myr;P

figure3.9b)andleft-lateralfault slip rates(figure3.8b).Strongclockwiserotationratesof

Ä a�ÆÌÅ Æ ± /MyrP

arefoundin#

theIlan Plain. Thestrainratefield is characterizedby relatively smallNW-SEcon-traction�

correspondingto geologicalobservationsin thearea(Crespietal.,1996;Teng,1996).Basedon my modelandthegeologicalobservations,thenorthernextentof themountainbelt is no longersubjectedto active crustalshortening.However, theexten-sional� regimedueto theopeningof theOkinawaTrough(Liu, 1995b;Yehetal., 1989)inducescrustalstretchingandgravitationalcollapse.

The back-arcextensionin the trough is relatedto the southwestward migrationand� rotationof the Ryukyu trench(Liu, 1995b;Yeh et al., 1989),which commenced2Ma

ago (Lee et al., 1991; Lee, 1993; Miki et al., 1993). The significantNW-SEe� xtensionobtainedin my modelin theIlan Plainclearlyportraystheon-landextensionof� the Okinawa Trough(figure 3.11). Shallow seismicityin northernTaiwan is low,whereas� theIlanPlainis characterizedbyhigh,verylocalizedshallow seismicityandanincreasedheatflow, which would beexpectedin a back-arcbasin.Thus,theOkinawaTrough hasacquiredthe ability to propagateinto Taiwan along a pre-existing weakzone,Y theLishanfault. In thenortherneastern-CentralRangetheWNW-ESEextensionmay� bedueto a combinationof thegravitationalcollapseandthecrustalexhumation,as� identifiedin thecentralandsoutherneasternCentralRange(figure3.11).

Figure�

3.13: ReZ

gional tomographyadaptedfrom Rauand Wu [1995]. A well resolvedhighvelocity� featurecomparableto theonefoundfor thePSPat theRyukyuTrench canbeobservedunderneath[ theCoastalRange andEasternCentral Range. TheCentral Range is underlainbya� regionof highvelocity. For a color versionof this figureseefigureC.10of appendixC.1.

72R

Chapter3

3.7.4�

The CoastalRange: incipient northwestward subductionof the PSP

In$

theCoastalRange,themodeledcreepmotion on theLongitudinalValley fault de-creases significantlynorthwardfrom

Ä a�� mm/yr� with anazimuthof N124± E" atTaitungto� Ä *XÅ�� mm/yr in N151± E at Hualien(figure3.8b). My strainratefield shows strongNE-SW9

contractionaccompaniedby large anticlockwiserotationratesin the CoastalRange�

andcomparableclockwiserotationratesjustoffshorebetween23.5± N9 and24± N9(figure!

3.9aand 3.9b). Southof 23.5± N9 the NE-SW contractionis more moderate(though!

significant)and smoothand predominantlyanticlockwiserotation ratesareobtained.� Somecareshouldbetakenwheninterpretingtheseresultsdueto poorerres-olution� in this areaespeciallyin the , -derivatives. However, basedon thedecreaseinmodeledfault motionsignificantcontractionalstrainratesor a significantdecreaseinPSPmotionareto beexpected.Sincethereareno indicationsto suspecta changeinPSPM

velocity at 23.5± N,9

40-50mm/yr of PSPmotionhasto beaccommodatedeastofthe�

CoastalRange.The focal mechanismsof the earthquakesin this region denoteafault with an averagestrike of 23± N9 andan averagedip of 75± locatedjust offshorethe�

islandof Taiwan(figure3.14). At Hualien(23.9± N),9

I plottedtheseismicityalonga� profile striking perpendicularto this fault (figure3.12;cross-sectionD). Theprofilesho� ws deep(up to 50 km), localizedseismicityaroundthefault andindicatesa north-westw� arddippingWadati-Benioff zone.Seismically, theslabextendsto approximately75R

km. Thefault locationis alsotiedwith asignificantgravity low observedin HualienCanN

yon (Yen et al., 1998). Further, regional tomography(RauandWu, 1995,figure3.13)�

shows awell definedhighvelocity zone(c ´¸ �XÅ ÆÌ8SÔÞk C )% underneaththeCoastal

RangeandCentralRange,which comparesin sizeto the Wadati-Benioff zoneof thePSPM

at theRyukyu trench.BasedonanaloguemodelingChemendaet al. (1997,2001)propose the possibleoccurrenceof incipient subductionof the PSPat the latitudeofHualien. Suchincipientsubductionwould accommodatemostof theconvergencebe-tween�

the PSPandEurasia. The hypothesisexplainsmy surfacedeformationmodeland� is in fact confirmedby the seismicitydataand the regional tomographicmodel(figure!

3.11). Thefault indicatedby thefocal mechanismsof eventsin theareacouldrepresentthetop of thePSPslabdevelopingnorthwestwardsubductionbelow easternT�aiwan.

3.8�

Geodynamicevolution

T�o provide anunderstandingfor thepresent-daytectonicsettingof Taiwan I consider

the�

geodynamicdevelopmentof the region. Eastof present-dayTaiwan, the subduc-tion�

of thePSPbelow theChinesecontinentalmargin in thepastmillion yearshasbeencharacterized by tearingof thecontinental-oceanboundary(COB)in roughlyWSWdi-rection.d Thetearconsistentlyfollowedthegeometryof theCOB,therebyprogressivelycreating thewestRyukyu Trench(Lallemandetal.,2001).Thiswestwardmigrationof

3.8�

Geodynamicevolution 73

Figure3.14: Focal mechanismsfrom the Harvard CMT catalog (M V 4, depth\ 50km).]

TheblacL

k mechanismsall denotea fault with a strikeof 23̂ N_

anddip of 73̂ withw thehorizontal.Thegr` ey vectors denotetheGPSvelocityvectors of Yu et al. [1997]. Thewhitevectorrepresentstheû PSPmotion. Barbedlines representthe Ryukyu trench where the segmentcentral in thefigurÂ

edenotesmyproposedsouthward continuation.

incipientPSPsubductionis causedby theobliquenessof thePSPmotionrelativeto thestrik� eof theEurasianplate.Trenchcreationthusadvancedwith anaveragespeedcom-parable to thecomponentof PSPmotionalongthestrike of theCOB. Thepositionofthe�

teartip coincideswith thenorthernextentof the(moreor lessN-Sstriking)Manilatrench,�

which accommodatesEUP subductionup to this latitude (Lallemandet al.,2001).

In the past3-5 My the strike of the Ryukyu trenchhasalignedwith the rela-ti�ve motionof thePSP. Whenviewedin a Eurasianfixedreferenceframe,theManilla

trench�

hasbeenrolling backto thewestwhile thecomponentof thePSPmotionalongthe�

strikeof theCOB(or normalto theManila trench)providestheoverridingmotion.Asa

longasroll-backspeedandoverridingmotionareequalthereis nospecialreasonforstrong� orogenicactivity. TheTaiwanorogenitself mustthenresultfrom achangein thedif�

ferencebetweenroll-backspeedof thetrenchandthewestwardcomponentof PSPadv� ance.I believe that theTaiwanorogenis a direct resultof a strongsouthwardturnof� thestrikeof theChinesecontinentalmargin, whichexistedeastof Taiwan.Ongoingroll-backof theManila trenchnow bringstheCOB in thepositionof beingoverriddenby�

the PSP(Chai, 1972;Suppe,1981,1984;Tsai, 1986). Resistanceof the Chinesecontinental lithosphereto subductionhasdecreasedthe roll-back motion causingthePSPto indenttheChinesecontinentalmargin thuscreatinganaccretionarywedge,the

74R

Chapter3

Taiwan orogen. The decreasein slabroll-back alsoled to a steepeningof the dip ofthe�

subductingEUP, asobservedin theglobaltomography(figure3.10).Subsequentlypart of thecontinentalcrustsubductedto mid-crustallevelsbeforebuoyancy forcesini-tiated�

failureandthickeningof thesubductingcrustalongtwo conjugatethrustfaultsresultingin theexhumation(squeezingout) of a crustalslice(Chemendaet al., 2001)as� I have deducedfor the easternCentralRange.Further, the Ryukyu trenchhasnotpropagated into the Chinesecontinentalmargin (henceis not tearingthe continentase� xemplifiedby the”T1-tear” of Lallemandet al. (2001)).Instead,I proposethesouth-w� ardpropagation(moreor lessalongtheeastcoastof Taiwan)of theRyukyu trench,thus�

overcomingthejog in theCOB geometrybelow present-dayTaiwan. In conjunc-tion�

with this southwardbendingof the trenchincipientnorthwestwardsubductionofthe�

PSPunderTaiwanis now in progress.

3.9�

Summary and conclusions

Themethodof SpakmanandNyst (2002)hasbeenappliedto derive thesurfacedefor-mationfrom GPSmotion vectors,whereI exploreddifferentmodelingoptions. Thef�ault-slip-rate-onlysolutionof inversionI resultsin large datamisfits andthe agree-

ment� with neotectonicfaultobservationsis poor. Thesolutionin termsof 34+ generates�smaller� datamisfits. This modelgenerallyagreeswith othercontinuous-deformation-only� studies. However, the presenceof large, active faultson Taiwan cannot be ig-nored, thusthekinematicsof Taiwanshouldbestudiedin termsof fault slip rateand3I+ .

In$

versionIII providesanacceptabledatamisfit, covarianceandspatialresolution.In this model the methodof SpakmanandNyst (2002)exposesa trade-off problembetween�

fault slip rate and the velocity gradientfield that can only be resolved byplacing both stationscloseto the faultsandstationsin the interior of crustalblocks.ThemodelshowssignificantmotionontheLongitudinalValley fault,southernChukoufault andthesouthernDeformationFront. Strainratesrotatefrom NW-SEcontractionin#

the CoastalRangeto E-W contractionin the southernWesternFoothills andNW-SE(

extensionin northernTaiwan. The rotation rate field shows several blocks withconsistent (anti) clockwiserotation.

The interpretationof my surfacedeformationmodel,combinedwith the seismic-ity data,gravity dataandtomography, leadsto a coherentmodel for the present-daytectonic�

activity of Taiwan(figure3.11). I divide Taiwanin 4 distinctdomains:south-ern� Taiwan,centralTaiwan,northernTaiwanandtheCoastalRange.Thedomainsarebounded�

by thetwo majortransferfault zonesandtheLongitudinalValley fault. I de-duce�

activeconvergencebetweentheEUPandthePSPin bothcentralandsouthernTai-w� an. In southernTaiwanthealmostE-W collisionhasresultedin N-S lateralextrusionof� theweaksedimentarycovertowardstheManilaaccretionarywedge.To thenorththe

3.9�

Summaryandconclusions 75

e� xtrusionis terminatedby theChishanTransferFault zone.In my deformationmodelthe�

easternCentralRangeof centralTaiwanshowsalmostorogen-perpendicularexten-sion,� while thewesternCentralRangeandtheWesternFoothills show predominantlyNW9

-SEcollisioninducedcontraction.In conjunctionwith Chemendaetal. (2001),Lin(1998)!

andLin et al. (1998)I relatethis featureto active exhumationof a crustalslice.However, I believe thattheexhumationis propagatingsouthwardalongwith thecolli-sion,� causingtheprincipaldirectionsof theextensionto rotateto amoreNE-SWorien-tation.�

NorthernTaiwanis transferringinto astateof gravitationalcollapseinducedbythe�

inlandpropagationof theopeningOkinawa Trough(Liu, 1995b;Yehet al., 1989)along� apre-existingweakzone,theLishanfault. Thoughmy modelshowsthatsouthof23.5 ± N9 averysignificantpartof theconvergencebetweenthePSPandtheSouthChinaSea(

is accommodatedby slip ontheLongitudinalValley fault,whereasnorthof 23.5± N9about� 40-50mm/yr needsto beaccommodatedeastof theislandof Taiwan. I observea� clearnorthwestwarddippingWadati-Benioff zonein boththeseismicitydataandthered gional tomographicmodelof RauandWu (1995). I deducethat in thetransferzonebetween�

the two contrarysubductionzonesa southwardpropagatingcrustaltearfaulthasdevelopedeastof Taiwan. Thetearfault is thecrustalresponseto incipientnorth-westw� ard subductionof the PSPbelow easternTaiwan. Thus, the Ryukyu trenchisbending�

southwardbecomingalmostperpendicularto theconvergencedirection,whilesubduction� of the PSPcontinues.Slab-slabinteractionbetweenthe PSPslabandtheEurasianslabmayoccuranddetachmentof theEurasianslabmaycommence.In thissetting� asuddenrapidsouthwardpropagationof incipientsubductionis conceivable.

76R

Chapter3