surface tension, droplets, and contact lines...

66
Surface Tension, Droplets, and Contact Lines Lecture III Boulder Condensed Matter Summer School 2015 Eric Dufresne Yale (c) Eric R Dufresne 2015

Upload: others

Post on 29-Mar-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Surface Tension, Droplets, and Contact Lines

    Lecture III

    Boulder Condensed Matter Summer School 2015

    Eric DufresneYale

    (c) Er

    ic R Du

    fresne

    2015

  • Dr. Rob Style->Oxford

    Elizabeth Jerison, Kate Jensen, Ye Xu, Ross Boltyanskiy, Larry Wilen, John Wettlaufer(c)

    Eric R

    Dufre

    sne 20

    15

  • Three Foundational Theories of Interfacial Mechanics

    Eshelby (1957)

    composites, fracture,

    dislocations

    JKR (1971)

    adhesionwetting

    Young-Dupre (18XX)

    (c) Er

    ic R Du

    fresne

    2015

  • Three Foundational Theories of Interfacial Mechanics

    Eshelby (1957)

    composites, fracture,

    dislocations

    JKR (1971)

    adhesionwetting

    Young-Dupre (18XX)

    (c) Er

    ic R Du

    fresne

    2015

  • 0.3mm0.3mm

    atomized glycerol

    3 kPa silicone gel ( 50 𝜇𝜇𝜇𝜇)

    glass (coverslip)

    1.8 MPa silicone elastomer ( 50 𝜇𝜇𝜇𝜇)

    glass (coverslip)

    (c) Er

    ic R Du

    fresne

    2015

  • Atomized spray of glycerol on a flat surface of a soft substrate with a

    thickness/stiffness gradient

    3 KPa

    Rigid(c) Er

    ic R Du

    fresne

    2015

  • Young-Dupre equation relates contact line geometry and material properties in equilibrium

    Thomas Young1773-1829

    cos𝜃𝜃 =𝛾𝛾𝑠𝑠𝑠𝑠 − 𝛾𝛾𝑠𝑠𝑙𝑙𝛾𝛾𝑙𝑙𝑠𝑠

    (c) Er

    ic R Du

    fresne

    2015

  • Glycerol drops on silicone (E=3kPa)Zygo surface profilometer

    On a soft substrate, apparent contact angle depends on droplet size and thickness of soft layer

    3um soft layer

    38um soft layer

    ?

    (c) Er

    ic R Du

    fresne

    2015

  • Droplets Deform Soft Substrates

    v

    l

    s

    Yonglu Che

    3kPa silicone

    glass

    (c) Er

    ic R Du

    fresne

    2015

  • Droplets Deform Soft Substrates

    v

    l

    s3kPa silicone

    glass

    𝛾𝛾𝑙𝑙𝑠𝑠

    ?

    𝜎𝜎𝑧𝑧𝑧𝑧 ≈ −(2𝛾𝛾𝑙𝑙𝑠𝑠/𝑅𝑅)𝜃𝜃(𝑅𝑅 − 𝑟𝑟) + 𝛾𝛾𝑙𝑙𝑠𝑠𝛿𝛿(𝑟𝑟 − 𝑅𝑅)

    (c) Er

    ic R Du

    fresne

    2015

  • Elastic Theories Cannot Balance Contact Line Forces

    Reasonable estimates for contact line width lead to unreasonable strains and displacements

    -100 -50 0 50 100

    0

    0.5

    1

    1.5

    u z[ ¹

    m]

    x [¹ m]position [microns]

    posit

    ion

    [mic

    rons

    ]

    𝜎𝜎 = 𝜀𝜀𝜀𝜀 𝜎𝜎 = 𝛾𝛾/𝛿𝛿

    (c) Er

    ic R Du

    fresne

    2015

  • Profiles change dramatically with droplet size

    0 50 100 150 200 250 300 350-10

    -5

    0

    5

    10

    r [µm]

    z [ µ

    m]

    (c) Er

    ic R Du

    fresne

    2015

  • 1) Align the peaks...

    0 50 100 150 200 250 300 350-10

    -5

    0

    5

    10

    r [µm]

    z [ µ

    m]

    Overall profiles change – but how about the ridge?

    (c) Er

    ic R Du

    fresne

    2015

  • 1) Align the peaks... 2) Rotate...

    0 50 100 150 200 250 300 350-10

    -5

    0

    5

    10

    r [µm]

    z [ µ

    m]

    Overall profiles change – but how about the ridge?

    (c) Er

    ic R Du

    fresne

    2015

  • 61 glycerol dropsradii: 18um - 1000um

    Four different substrates: 13.5 - 50um thick

    Ridge shape is universal near contact line

    (c) Er

    ic R Du

    fresne

    2015

  • 93°

    r [µm]

    -6 -4 -2 0 2 4 6-2

    -1

    0

    1

    r [µm]

    heig

    ht [ µ

    m]

    149°

    fluorinert fc-7014 drops

    radii: 140um - 270umsubstrate: 23 um thick

    glycerol61 drops

    radii: 18um - 1000umsubstrates: 13.5 - 50um thick

    Contact line geometry depends on the wetting fluid

    (c) Er

    ic R Du

    fresne

    2015

  • 10 100 1000-50

    -40

    -30

    -20

    -10

    0

    10Ψ

    [deg

    rees

    ]

    Droplet radius [µm]

    h=14µmh=20µmh=30µmh=50µm

    Cusp rotates as droplets get smaller

    VL

    VL VL(c)

    Eric R

    Dufre

    sne 20

    15

  • Macroscopic contact angle follows rotation of cusp

    10 100 1000-50

    -40

    -30

    -20

    -10

    0

    10Ψ

    [deg

    rees

    ]

    Droplet radius [µm]

    40

    50

    60

    70

    80

    90

    100

    θ [d

    egre

    es]

    h=14µmh=20µmh=30µmh=50µm

    100

    90

    80

    70

    60

    50

    40

    𝜃𝜃 [degrees]

    Angles between all three interfaces are fixed!

    𝜃𝜃

    (c) Er

    ic R Du

    fresne

    2015

  • While apparent contact angle depends on boundary conditions… microscopic configuration of interfaces is universal

    Glycerol

    Silicone

    Air128.2o

    93.4o

    Fluorinated oil

    Silicone

    Air

    151o

    149o

    (c) Er

    ic R Du

    fresne

    2015

  • Key Experimental Observations

    • Young’s law doesn’t work on a 3KPa silicone substrate when glycerol droplets are smaller than about 100 microns. The apparent contact angle drops as the droplet gets smaller.

    • For droplets much bigger than 100 microns, you get a size independent contact angle. This contact angle matches that of much stiffer silicone, of order 1MPa, about 90 degrees.

    • Within two microns of the contact line, all the interfaces are straight and meet each other at fixed orientations. These orientations depend on the liquid.

    (c) Er

    ic R Du

    fresne

    2015

  • Glycerol

    Silicone

    Air128.2o

    93.4oFluorinated oil

    Silicone

    Air

    151o

    149o

    Υ𝑠𝑠𝑠𝑠 Υ𝑠𝑠𝑙𝑙

    𝛾𝛾𝑙𝑙𝑠𝑠

    Υ𝑠𝑠𝑠𝑠 Υ𝑠𝑠𝑙𝑙

    𝛾𝛾𝑙𝑙𝑠𝑠

    Hypothesis: geometry at contact line is determined by avector balance of interfacial stresses

    𝛾𝛾𝑙𝑙𝑠𝑠: l-v surface tension Υ𝑠𝑠𝑠𝑠: s-v surface tension Υ𝑠𝑠𝑙𝑙: s-l surface tension

    (c) Er

    ic R Du

    fresne

    2015

  • Deformation of a linear elastic solid surface

    𝑢𝑢𝑧𝑧 = 𝐴𝐴 sin 2𝜋𝜋𝜋𝜋/𝜆𝜆

    Elastic restoring force: 𝜎𝜎𝐸𝐸 = 𝜀𝜀𝜀𝜀 ~ 𝐴𝐴𝜀𝜀/𝜆𝜆

    (c) Er

    ic R Du

    fresne

    2015

  • Flattening of a linear elastic solid by surface tension

    𝑢𝑢𝑧𝑧 = 𝐴𝐴 sin 2𝜋𝜋𝜋𝜋/𝜆𝜆

    Elastic restoring force: 𝜎𝜎𝐸𝐸 = 𝜀𝜀𝜀𝜀 ~ 𝐴𝐴𝜀𝜀/𝜆𝜆

    Capillary force (LaPlace): 𝜎𝜎𝛾𝛾 ~ Υ𝐴𝐴/𝜆𝜆2

    Υ: solid surface tension

    Long Ajdari 1996, Jerison Dufresne 2011, Jagota 2012

    (c) Er

    ic R Du

    fresne

    2015

  • Balance of Elasticity and Capillarity Defines a Length scale

    𝜎𝜎𝐸𝐸𝜎𝜎Υ

    ~𝜆𝜆Υ/𝜀𝜀

    l = Υ/𝜀𝜀Elastocapillary Length

    𝜆𝜆 ≫ Υ/𝜀𝜀 𝜆𝜆 ≪ Υ/𝜀𝜀

    Elasticity Dominates Surface Tension Dominates

    𝑢𝑢𝑧𝑧 = 𝐴𝐴 sin 2𝜋𝜋𝜋𝜋/𝜆𝜆

    (c) Er

    ic R Du

    fresne

    2015

  • Capillarity Dominates at Short Length Scales on Soft Materials

    Υ = 0.03 N/m

    Υ/𝜀𝜀 = 0.1 Å for 𝜀𝜀 = 3 GPa

    Υ/𝜀𝜀 = 10 nm for 𝜀𝜀 = 3 MPa

    Υ/𝜀𝜀 = 10 µm for 𝜀𝜀 = 3 KPa

    𝑢𝑢𝑧𝑧 = 𝐴𝐴 sin 2𝜋𝜋𝜋𝜋/𝜆𝜆

    (c) Er

    ic R Du

    fresne

    2015

  • Linear Elasticity Plus Solid Surface Tension Captures Profiles

    h=13.5 umR=216 um

    h=19.5 umR=72 um

    h=29.5 umR=25 um

    h=50 umR=177 um

    Sharp features near contact line are controlled by surface tension.

    Far-field determined by elasticity

    L V

    S

    L V

    S

    L V

    S

    L V

    S

    (c) Er

    ic R Du

    fresne

    2015

  • Glycerol drops on silicone (E=3kPa)

    3um soft layer

    38um soft layer

    Linear Elasticity Plus Solid Surface Tension Predicts Change in Apparent Contact Angle

    (c) Er

    ic R Du

    fresne

    2015

  • Υ/𝜀𝜀𝑅𝑅 ≪ 1 Υ/𝜀𝜀𝑅𝑅 ≫ 1

    Υ/𝜀𝜀𝐸𝐸 ≫ 1

    𝐸𝐸

    Neumann(liquid on liquid)

    Young-Dupre(liquid on rigid solid)

    Wetting on Deformable Solids

    𝛼𝛼𝛽𝛽

    𝜃𝜃

    𝛼𝛼𝛽𝛽

    Theory and preliminary expts:Jerison et al Physical Review Letters 2011Style et al Soft Matter 2012

    Breakdown of Young-DupreStyle et al Physical Review Letters 2013

    Drop movementStyle et al PNAS 2013(c)

    Eric R

    Dufre

    sne 20

    15

  • Three Foundational Theories of Interfacial Mechanics

    Eshelby (1957)

    composites, fracture,

    dislocations

    JKR (1971)

    adhesionwetting

    Young-Dupre (18XX)

    (c) Er

    ic R Du

    fresne

    2015

  • Johnson, Kendall & Roberts (1971) – ‘JKR’

    Substrate surface tension, Υ𝑠𝑠𝑠𝑠 ,Υ𝑠𝑠𝑝𝑝?

    d

    Adhesion Energy, 𝑊𝑊 = 𝛾𝛾𝑠𝑠𝑝𝑝 − 𝛾𝛾𝑠𝑠𝑠𝑠 − 𝛾𝛾𝑝𝑝𝑠𝑠

    Substrate Elasticity, 𝜀𝜀

    (c) Er

    ic R Du

    fresne

    2015

  • Zero-force indentation for different stiffness substrates

    Glass bead15 micron radius

    (c) Er

    ic R Du

    fresne

    2015

  • Glass bead15 micron radius

    Zero-force indentation for different stiffness substrates

    (c) Er

    ic R Du

    fresne

    2015

  • Glass bead15 micron radius

    Zero-force indentation for different stiffness substrates

    (c) Er

    ic R Du

    fresne

    2015

  • d, indentation

    E=3kPa

    E=85kPa

    E=250kPa

    E=500kPa

    Glass beadd

    Zero-force indentation for different stiffness substrates

    (c) Er

    ic R Du

    fresne

    2015

  • Comparing results with JKR

    E=3kPa

    E=85kPa

    E=250kPa

    E=500kPa

    d,indentation

    W~70mN/m

    W~25mN/m

    }Bead radius[um]

    Inde

    ntat

    ion

    [um

    ]

    (c) Er

    ic R Du

    fresne

    2015

  • JKR collapses the data, but scaling changes for small particles and soft surfaces

    Bead radius x Young’s modulus [N/m]

    Inde

    ntat

    ion

    xYo

    ung’

    s m

    odul

    us [N

    /m]

    E=3kPaE=85kPaE=250kPaE=500kPa

    𝐸𝐸~𝑅𝑅1/3

    JKR:

    (c) Er

    ic R Du

    fresne

    2015

  • Bead radius x Young’s modulus [N/m]

    Inde

    ntat

    ion

    xYo

    ung’

    s m

    odul

    us [N

    /m]

    E=3kPaE=85kPaE=250kPaE=500kPa

    Indentation proportional to bead radius for small beads

    𝐸𝐸~𝑅𝑅

    (c) Er

    ic R Du

    fresne

    2015

  • LiquidSoft solid

    Indentation, 𝐸𝐸~𝑅𝑅 implies constant contact angle

    For small particles at zero force, the indentation depth is given by Young-Dupre, just like a colloidal particle on a fluid interface

    Style et al Nature Communications (2013)Jensen et al …preprint to appear soon on arXiv(c)

    Eric R

    Dufre

    sne 20

    15

  • JKR plus surface tension fits data

    Bead radius x Young’s modulus [N/m]

    Inde

    ntat

    ion

    xYo

    ung’

    s m

    odul

    us [N

    /m]

    E=3kPaE=85kPaE=250kPaE=500kPa JKR

    modified JKRwith surface tension

    Minimize total energy (a la Carillo/Raphael/Dobrynin 2010):

    Elastic energy + Adhesion Energy + Surface Tension

    (from JKR) Υ𝑠𝑠𝑠𝑠Δ𝐴𝐴

    𝑊𝑊 = 71𝜇𝜇𝑚𝑚𝜇𝜇 , Υ𝑠𝑠𝑠𝑠 = 45

    𝜇𝜇𝑚𝑚𝜇𝜇

    (c) Er

    ic R Du

    fresne

    2015

  • In the limit of small beads, our scaling predicts…

    𝐸𝐸 = 𝑊𝑊𝑅𝑅/Υ𝑠𝑠𝑠𝑠

    Υ𝑠𝑠𝑠𝑠 cos 𝜃𝜃 = 𝑊𝑊 − Υ𝑠𝑠𝑠𝑠

    𝛾𝛾𝑠𝑠𝑠𝑠 cos 𝜃𝜃 = 𝛾𝛾𝑠𝑠𝑝𝑝 − 𝛾𝛾𝑝𝑝𝑠𝑠

    𝐸𝐸equivalently…

    for Υ𝑠𝑠𝑠𝑠 = 𝛾𝛾𝑠𝑠𝑠𝑠,

    Young-Dupre with soft substrate in the place of the liquid

    ‘Smells’ like Young-Dupre

    (c) Er

    ic R Du

    fresne

    2015

  • Adhesion Summary• For large particles, Υ/𝜀𝜀𝑅𝑅 ≪ 1, the classic

    balance of surface energy and elasticity by JKR accurately describes contact mechanics of soft substrate

    • For small particles, Υ/𝜀𝜀𝑅𝑅 ≫ 1, the indentation depth is given by Young-Dupre, just like a colloidal particle on a fluid interface.

    •Again, surface tension swamps elasticity for Υ/𝜀𝜀𝑅𝑅 ≫ 1

    Style et al Nature Communications (2013)

    Latest coming to the arXiv next week! (c) Er

    ic R Du

    fresne

    2015

  • Three Foundational Theories of Interfacial Mechanics

    Eshelby (1957)

    composites, fracture,

    dislocations

    JKR (1971)

    adhesionwetting

    Young-Dupre (18XX)

    (c) Er

    ic R Du

    fresne

    2015

  • solid

    (c) Er

    ic R Du

    fresne

    2015

  • fluid(c) Er

    ic R Du

    fresne

    2015

  • fluid

    micron scale glycerol droplets in PDMS

    0% 5% 10% 15% 20% v/v

    (c) Er

    ic R Du

    fresne

    2015

  • Micron-scale glycerol droplets soften 100KPa PDMS

    Increasing glycerol

    CompositeStiffness

    (c) Er

    ic R Du

    fresne

    2015

  • Micron-scale glycerol droplets stiffen 3 KPa PDMS

    Elastic theory works for stiff matrices, but not for soft!

    (c) Er

    ic R Du

    fresne

    2015

  • QuickTime™ and aMotion JPEG OpenDML decompressor

    are needed to see this picture.

    Visualizing single inclusions

    ~MPa silicone sheet

    Ionic liquid drops

    3 or 100 KPaPDMS

    (c) Er

    ic R Du

    fresne

    2015

  • 33µm

    Visualizing single inclusions

    (c) Er

    ic R Du

    fresne

    2015

  • Elastic theory says drop shape should depend on strain…not size or stiffness

    Linear elastic solid(Young’s modulus E)

    Inclusion

    (Eshelby, 1957)(c) Er

    ic R Du

    fresne

    2015

  • Bigger droplets deform more than little onesSt

    rain

    6%

    19%

    29%

    Droplet size2.5µm 6.4µm 16.5µm

    (c) Er

    ic R Du

    fresne

    2015

  • Scale-dependent deformation

    l

    w

    (c) Er

    ic R Du

    fresne

    2015

  • l

    w

    Scale-dependent deformation

    (c) Er

    ic R Du

    fresne

    2015

  • Far-field strain collapses droplet strain……and a length scale emerges!

    Micro strain/Macro strain

    Droplet Size(c) Er

    ic R Du

    fresne

    2015

  • Microscopic response depends on size and stiffness

    E = 100 KPaE = 3 KPa

    Elastic theory says this response should be independent of size and stiffness

    (c) Er

    ic R Du

    fresne

    2015

  • Classic elastic theories ignore the interface

    (c) Er

    ic R Du

    fresne

    2015

  • More generally, surface tension creates a normal-stress jump across curved interfaces

    total curvature: 𝜅𝜅 = 𝜕𝜕𝑖𝑖𝑛𝑛𝑖𝑖

    (𝜎𝜎2−𝜎𝜎1) � �𝑛𝑛 = Υ12𝜅𝜅 �𝑛𝑛

    Generalized Young-Laplace:

    surface tension, Υ12: i.e. surface stress assumed to be isotropic

    �𝑛𝑛

    𝜎𝜎1𝜎𝜎2

    Υ12

    Υ12

    (c) Er

    ic R Du

    fresne

    2015

  • Surface tension can drive elastic deformation

    Υ𝜅𝜅~𝜀𝜀𝜀𝜀

    𝜀𝜀~𝜅𝜅 Υ/𝜀𝜀

    Υ𝜅𝜅

    𝜀𝜀

    materialproperty

    (c) Er

    ic R Du

    fresne

    2015

  • 𝜅𝜅Υ/𝜀𝜀 ≪ 1

    Υ/𝜀𝜀𝑅𝑅 ≪ 1

    bulk elasticity dominates

    surface tension dominates

    𝜅𝜅Υ/𝜀𝜀 ≫ 1

    Υ/𝜀𝜀𝑅𝑅 ≫ 1

    Microscopic response to macroscopic strain

    (c) Er

    ic R Du

    fresne

    2015

  • Eshelby with Surface Tension (analytic)

    Increasing surface tension

    macroscopic strain 0.3

    strain independent surface tension, no shear stress at the interface

    Υ/𝜀𝜀𝑅𝑅 = 10Υ/𝜀𝜀𝑅𝑅 = 0.1 Υ/𝜀𝜀𝑅𝑅 = 1

    (c) Er

    ic R Du

    fresne

    2015

  • Linear elastic theory with surface tension captures single droplet trend

    Micro strain/Macro strain

    Droplet Size(c) Er

    ic R Du

    fresne

    2015

  • Surface tension ‘pulls back’ when the bulk solid attempts to deform embedded droplets

    (c) Er

    ic R Du

    fresne

    2015

  • Composite Stiffness Dilute Limit (Eshelby Method)

    3 KPa100 KPa

    (c) Er

    ic R Du

    fresne

    2015

  • Composite Stiffness Dilute Limit (Eshelby Method)

    2/3

    (c) Er

    ic R Du

    fresne

    2015

  • • When liquid inclusions are smaller than Υ/𝜀𝜀, surface tension dominates bulk elastic response

    • In this limit, fluid inclusions stiffen soft solids

    • Need to revisit applications of Eshelby, e.g. fracture mechanics

    • More generally, surface tension dominates elastic response when 𝜅𝜅Υ/𝜀𝜀 ≫ 1

    • References:• Experiment: Style et al Nature Physics 2015 • Theory: Style et al Soft Matter 2015

    Inclusions in Soft Solids

    (c) Er

    ic R Du

    fresne

    2015

  • The Big PictureClassic theories of solid mechanics fail when 𝜅𝜅Υ/𝜀𝜀 ≳ 1

    Soft solids can behave very differently than stiff ones.Implications for cellular biomechanics…

    Many solid mechanics problems need to be revisited…(c) Er

    ic R Du

    fresne

    2015

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Adhesion SummarySlide Number 42Slide Number 43Slide Number 44Slide Number 45Slide Number 46Slide Number 47Slide Number 48Slide Number 49Slide Number 50Slide Number 51Slide Number 52Slide Number 53Slide Number 54Slide Number 55Slide Number 56Slide Number 57Slide Number 58Slide Number 59Slide Number 60Slide Number 61Slide Number 62Slide Number 63Slide Number 64Slide Number 65The Big Picture