surface to surface intersection n. m. patrikalakis, t. maekawa, k. h. ko, h. mukundan may 25, 2004

30
Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Post on 19-Dec-2015

223 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Surface to Surface Intersection

N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan

May 25, 2004

Page 2: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 2

Introduction Motivation

Surface to surface intersection (SSI) is needed in:

Solid modeling Contouring Numerically controlled machining

Page 3: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 3

Introduction Background

Intersection of two parametric surfaces defined in parametric spaces andcan have multiple components [4].

An intersection curve segment is represented by a continuous trajectory in parametric space.

),(),( vut QP 1,0 vu1,0 t

10 10 u0

1

t

0

1

v

Parametric space of ),( vuQ

Parametric space of ),( tP3D Model Space

),( tP

),( vuQ

Page 4: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 4

IntroductionPossible Approaches

3 Major Methods

Lattice Methods Subdivision Based Methods

Marching Scheme (Our Choice) Intersection curve segment is represented as an IVP

Topology of the curve segments is maintained. Even small loops can be traced, given initial conditions.

roots.extraneoustopology,

roots. missing e,approximattopology,

torelatedIssues

Page 5: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 5

Introduction Background

It is thus a challenge to:

Identify all components,

Obtaining a strict starting point in each component,

Trace the given intersection correctly.

Assumption:

If we are given an intersection curve segment,

No singularities in the intersection curve segment.

Based on a topological configuration

Page 6: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 6

IntroductionObjective

Given an error bound on the starting point in both parametric spaces, obtain a bound for the entire intersection curve segment in 3D model space.

Strict Error Bound on Starting Point (Given) Strict Error Bound on the Entire Intersection Curve

Segment (Goal)

Page 7: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 7

Outline

Problem Formulation

Error Bounds in Parametric Space

Error Bounds in 3D Model Space

Results and Examples

Conclusions

Page 8: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 8

Problem FormulationTransversal Intersection

Intersection formulated as a system of ordinary differential equations (ODEs) in the parametric space [4].

,),(),(

)],(,,[

,),(),(

)],(,,[

,),(),(

)],(,,[

,),(),(

)],(,,[

vuvu

vuu

Det

ds

dv

vuvu

vuv

Det

ds

du

tt

tDet

ds

dt

tt

tt

Det

ds

d

QQ

Q

QQ

Q

PP

P

PP

P

NN

NcQ

NN

NQc

NN

NcP

NN

NPc

:obtainwe),,(),(From vut QP

sderivativepartialarevut Q,Q,P,P

andparameter length arc theis where s

Page 9: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 9

Problem FormulationTangential Intersection

ODEs are very similar to transversal intersection case

From the condition of equal normal curvatures we obtain an equation

Where are functions of the first and second fundamental form coefficients of the surfaces.For a unique marching direction, and

Thus if: or if:

surfaces. theof sderivative second theusing determined is

),(),(

,),(),(

)],(,,[',

),(),(

)],(,,[',

),(),(

)],(,,[',

),(),(

)],(,,['

c

QQQNPPPN

NN

NcQ

NN

NQc

NN

NcP

NN

NPc

QP

QQ

Q

QQ

Q

PP

P

PP

P

vutoNormalvu

andttoNormalt

vuvu

vuu

Detv

vuvu

vuv

Detu

tt

tDett

tt

tt

Det

0)'()')('(2)'( 2

2212

2

11 tbtbb

221211 ,, bbb

0)( 2211

2

12 bbb 0)( 2

22

2

11

2

12 bbb

0,0 2211 bb,011 b

Page 10: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 10

Problem FormulationVector IVP for ODE

Given a starting point (initial condition) corresponding to an intersection curve segment, we can integrate the system of ODEs.

The system of ODEs with the starting point represents an initial value problem (IVP).

Written in vector notation as:

Thus obtaining the intersection reduces to solving an IVP.0)(),( y0yyf

y

ds

d

),,,(

),,,(

),,,(

),,,(

4

3

2

1

vutf

vutf

vutf

vutf

ds

dvds

duds

dtds

d

Page 11: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 11

Outline

Problem Formulation

Error Bounds in Parametric Space Review of Standard Schemes

Interval Arithmetic

Validated Interval Scheme

Error Bounds in 3D Model Space

Results and Examples

Conclusions

Page 12: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 12

Error Bounds in Parametric SpaceReview of Standard Schemes

Famous Standard Schemes: Runge-Kutta Method Adams-Bashforth Method Taylor Series Method

Properties of Standard Schemes: They are approximation schemes and introduce a truncation

error They do not consider uncertainty in initial conditions They are prone to rounding errors They suffer from straying or looping near closely spaced

features

Page 13: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 13

Error Bounds in Parametric SpaceInterval Arithmetic (Introduction)

Intervals are defined by [2]:

Example:

Basic interval arithmetic operations defined by:

][3.142 , 3.141

4635897932383.14159265

Page 14: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 14

Error Bounds in Parametric Space Interval Arithmetic (Solution of IVPs)

For strict bounds for IVPs in parametric space, we employ validated interval scheme for ODEs [3].

The error in starting point is bounded by an initial interval.

Interval solution represents a family of solutions passing through the initial interval satisfying the governing ODEs.

Page 15: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 15

Error Bounds in Parametric Space Validated Interval Scheme (Introduction)

Every step of a validated interval scheme involves [3]:

Computing an interval valued function such that:

and The width of the is below a given tolerance

And the scheme verifies the existence and uniqueness of the solution in

the scheme notifies if the IVP has no solution or if it has more than one solution in .

,)]([)( ss yy ],[ 1

jj sss

],[ 1jj ss

)]([ sy

)]([ sy

],[ 1jj ss

Page 16: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 16

Error Bounds in Parametric Space Validated Interval Scheme (Overview)

One step of a validated interval scheme done in two phases:

Phase I Algorithm

A step size

An a priori enclosure such that:

Phase II Algorithm

Using compute a tighter bound

at .

]~[ jy

]~[ jy ][ 1jy

],[],~[)( 1 jjj sssysy

jjj ssh 1

Phase 1:

1js

Page 17: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 17

Error Bounds in Parametric Space Validated Interval Scheme (Phase I : Validation)

A pair of and satisfying the relation:

assures existence and uniqueness of the solution.

This method is called a constant enclosure method [3].

The a priori enclosure bounds the true solution in the parametric space .

Numerical implementation Choosing a and, iterating to find a corresponding .

jjjj h])~([][]~[ yfyy

jh]~[ jy

jh]~[ jy

]~[ jy],[ 1 jj sss

Page 18: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 18

Error Bounds in Parametric Space Validated Interval Scheme (Phase II : Tighter Bound)

Using the a priori enclosure wefind a tighter bound at [3].

This phase helps in the propagation of the solution by providing a small initial interval for the successive step.

The key idea is to use:Interval version of Taylor’s formula [3].

1js

tcoefficienTayloritherepresentswhere

hh

thj

i

jkk

jji

k

i

ijjj

])([

])~([])([][][

][

][][1

11

yf

yfyfyy

][ 1jy

Page 19: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 19

Error Bounds in Parametric Space Validated Interval Scheme (Application to SSI)

We represent the surfaces as interval surfaces. Interval surfaces have interval coefficients and are written

as:

We obtain a vector interval ODE system :

With an interval initial condition :

)])(([ sds

d

ds

dv

ds

du

ds

dt

ds

dT

yfy

),(and),( vut QP

Tvut ][][][][][ 00000 y

Page 20: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 20

Error Bounds in Parametric Space

Validated ODE solver produces a priori enclosures in parametric space of each surface guaranteed to contain the true intersection curve segment.

The union of a priori enclosures bounds the true intersection curve segment in parametric space.

Page 21: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 21

Outline

Problem Formulation

Error Bounds in Parametric Space

Error Bounds in 3D Model Space

Results and Examples

Conclusions

Page 22: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 22

Error Bounds in 3D Model Space Mapping into 3D Model Space

Mapping from parametric space to 3D model space using corresponding surfaces coupled with interval arithmetic evaluation

Ensures continuous error bounds in 3D model space [1] guaranteed to contain the true curve of intersection.

),(o),( vurt QP

Page 23: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 23

Outline

Problem Formulation

Error Bounds in Parametric Space

Error Bounds in 3D Model Space

Results and Examples

Conclusions

Page 24: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 24

Results & Examples Error Bounds in 3D Model Space (Transversal)

The method was implemented using C++ and extensive tests were performed.

Torus and cylinder Two bi-cubic surfaces

0.020.001

Self intersection of a bi-cubic surface

Page 25: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 25

Tangential intersection of two parametric surfaces

Results & Examples Error Bounds in 3D Model Space (Tangential)

Page 26: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 26

Validated ODE solver can correctly trace the intersection curve segment even through closely spaced features, where standard methods fail.

Results & Examples Preventing Straying or Looping

Adams-Bashforth Runge-Kutta

Result from a validated interval

scheme

Perturbation Steps Required bythe Method

+0.000003 1139

0.0 Singularity Reported

-0.000003 1303

t

t

t

Page 27: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 27

Outline

Problem Formulation

Error Bounds in Parametric Space

Error Bounds in 3D Model Space

Results and Examples

Conclusions

Page 28: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 28

ConclusionsMerits

We realize validated error bounds in 3D model space which enclose the true curve of intersection.

The scheme can prevent the phenomenon of straying or looping.

Scheme can accommodate the errors in: initial condition perturbation in the surface itself rounding during digital computation

Validated error bounds for surface intersection is essential in interval boundary representation for consistent solid models [5].

Page 29: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 29

ConclusionsLimitations and Future Work

Limitations We assume that we have a

Identifying each of the segment strict error bound on the starting point

Increasing width of the interval solutions due to Rounding Phenomenon of wrapping

Scope for future work Accurate evaluation of starting points Cases of tangential intersections and surface overlaps

Page 30: Surface to Surface Intersection N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan May 25, 2004

Slide No. 30

References 1. Tracing surface intersections with a validated ODE system solver,

Mukundan, H., Ko, K. H., Maekawa, T. Sakkalis, T., and Patrikalakis, N. M., Proceedings of the Ninth EG/ACM Symposium on Solid Modeling and Applications, G. Elber and G. Taubin, editors. Genova, Italy, June 2004. Eurographics Press.

2. R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, 1966.

3. N. S. Nedialkov. Computing the Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation. PhD thesis, University of Toronto, Toronto, Canada, 1999.

4. N. M. Patrikalakis and T. Maekawa. Shape Interrogation for Computer Aided Design and Manufacturing. Springer-Verlag, Heidelberg, 2002.

5. T. Sakkalis, G. Shen and N.M. Patrikalakis, Topological and Geometric Properties of Interval Solid Models, Graphical Models, 2001.