surface)skin)temperature)from)geosta?onary)satellite)data) · 2013. 4. 17. · presentation11...

1
Conclusions and Future Work Except for certain viewing & illumina5on condi5ons, results comparable to MODIS to ±1 K, but with the added benefits of having consistent geometry and higher sampling frequency for any one loca5on These nearly instantaneous, nearglobal datasets are available for assimila5on in numerical weather predic5on models Important step taken towards assimila5on into the GEOS5 NWP system Need to beNer characterize angular and emissivity dependencies using nadir MODIS measurements Will employ the GMAO GEOS5 Model at finer resolu5on for pixellevel product, and globally validate nearreal5me, nearglobal pixellevel skin temperature product by end of 2013 Need to broaden the scale of data assimila5on from Americas to all non polar regions Background and Methodology Nearglobal radiometric and cloud microphysical property retrievals are achieved through the use of five GEOsats Nominally 8 retrievals per day, with poten5al for 24 ModernEra Retrospec5ve Analysis for Research and Applica5ons (MERRA) model forecasts provide T s and thermodynamic profiles used to compute the atmospheric transmissivity (via correlated kdistribu5on 1,2 ); together yielding es5mated nearsurface to TOA layer temperatures CERES cloud mask compares observa5ons with es5mates of T or visiblechannel reflectance Mean observed proper5es are computed for clear and cloudy pixels in each 1.0° × 1.0° grid box: the cloud mask is repeated using the new clearsky values Clear T pixels are grouped into 0.3125° x 0.25° 5les and brought to the surface using a modified correlated k distribu5on technique 1,2 , thus yielding surfaceleaving brightness temperature (T o ) Applica5on of CERES emissivity (ε s ) maps yields the near global highresolu?on skin temperature products (HRTP) HighResolu?on Skin Temperature Compared to GEOS5 Land Surface Temperature Model comparisons u5lize land surface temperature output from the NASA Goddard Earth Observing System Version 5.7.2 (GEOS5) at the 0.3125° × 0. 25° resolu5on Differences between the GEOS5 es5mates and the GOES13 satellite retrievals of skin temperature are not small Analysis nevertheless suggests that HRTP values are largely consistent with the independent GEOS5 es5mates Spa5al and temporal varia5ons of the biases must be addressed as part of the assimila5on system These issues can be fully resolved through improvements in the GEOS5 atmospheric model; par5cularly the moist physics and cloud parameteriza5ons 3 HighResolu?on Surface Temperature Compared with GroundSite Measurements Benjamin Scarino 1 , Patrick Minnis 2 , Rabindra Palikonda 1 , Christopher Yost 1 , Baojuan Shan 1 , Rolf H. Reichle 3 , Qing Liu 4 1 Science Systems and Applica5ons, Inc., Hampton, VA, USA ([email protected]) 2 NASA Langley Research Center, Hampton, VA, USA 3 NASA Goddard Space Flight Center, Greenbelt, MD, USA 4 Science Systems and Applica5ons, Inc., Lanham, MD, USA Surface Skin Temperature from Geosta?onary Satellite Data Introduc?on The temporal and spa5al coverage of geosta5onary sensors enable frequent retrieval of nearglobal surface skin temperature (T s ). In addi5on to cloud and other products (e.g., aircral icing poten5al in figure below) developed from GEOsats around the globe, NASA Langley is producing es5mates of T s by applying an inverted correlated k distribu5on method to clearpixel values of TOA infrared temperature (T). This method yields clearsky T s values that are within ±2.0 K of measurements from groundsite instruments, e.g., the US Climate Reference Network (USCRN) and Atmospheric Radia5on Measurement (ARM) climate research facility infrared thermometers. Comparisons of the T s product with MODIS land surface temperature reveal a rela5ve accuracy within ±1 K for both day and night. These data, especially the eventual pixellevel data, will be useful for assimila5on with atmospheric models, which rely on high accuracy, highresolu5on ini5al radiometric and surface condi5ons. Modelers should find the immediate availability and broad coverage of these T s observa5ons valuable, which can lead to improved forecas5ng for both regional and global numerical weather predic5on models. Development Toward a RealTime PixelLevel Skin Temperature Product More con5nuous nearglobal coverage compared to the HRTP Cloudy/clear decision on pixel level greatly reduces chances of filtering good data points Close to 24 nearlyfull disk retrievals for each satellite per day Instances of pixel misclassifica5on remain, however, effect can be diminished by applying a buffer around known cloudy pixels References 1 Goody, R.; West, R.; Chen, L.; Crisp, D. The correlatedk method for radia5on calcula5ons in nonhomogeneous atmospheres. J. Quant. Spectrosc. Radiat. Transfer 1989, 42, 539–550. 2 Kratz, D.P. The correlated kdistribu5on technique as applied to the AVHRR channels. J. Quant. Spectrosc. Radiat. Transfer 1995, 53, 501–507. 3 Scarino, B.; Minnis, P.; Palikonda, R.; Reichle, R.H.; Morstad, D.; Yost, C.; Shan, B.; Liu, Q. Retrieving ClearSky Surface Skin Temperature for Numerical Weather Predic5on Applica5ons from Geosta5onary Satellite Data. Remote Sensing. 2013; 5(1):342366. Mean Difference (K) RMSD (K) GOES – ARM (SGP) GOES – USCRN (OK) GOES – USCRN (PA) GOES – MODIS GOES – ARM (SGP) GOES – USCRN (OK) GOES – USCRN (PA) GOES – MODIS Day 0.08 1.35 1.29 0.89 1.92 3.81 3.94 1.64 Night 1.70 0.51 0.95 0.51 2.00 1.06 1.48 1.08 Both 0.70 0.98 0.17 0.41 1.95 2.93 2.98 1.46 NearGlobal, High Resolu?on Surface Skin Temperature (K): Mean 18:00 UTC retrievals for July 2012 Intersatellite boundaries reflect slight differences in cloud detec?on owing to a variety of reasons, such as pixel size. Nevertheless, discon?nui?es are small, but can be par?ally explained by spectral band differences The gap region, between 50° and 90° east, filled by the Fengyun 2E (FY2E) satellite remains ques?onable Mean difference (K) between GEOS5 land surface temperature and GOES13 HRTP for clearsky condi?ons at (a) 06:00 UTC (nighdme) and (b) 18:00 UTC (day?me), averaged over 1 August 2011 to 31 July 2012 Day?me (18:00 UTC) seasonal rootmeansquare differences (RMSDs) (excluding seasonal mean difference) in Kelvin between GEOS5 land surface temperature and GOES13 HRTP for clearsky condi?ons for (a) Dec 2011–Feb 2012, (b) Mar– May 2012, (c) Aug 2011, Jun–Jul 2012, and (d) Sep–Nov 2011 Bias and RMSD (excluding annual mean differences) in Kelvin between GEOS5 land surface temperature and GOES13 skin temperature for clearsky condi?ons, averaged over 1 August 2011 to 31 July 2012, and areas in North, Central, and South America HRTP T o retrievals from GOES13 allow for frequent comparison with data taken at the Southern Great Plains (SGP) ARM 11.0μm upwelling Infrared Thermometer (IRT; T o ) and the S5llwater, OK and Avondale, PA USCRN Apogee Precision Infrared Thermocouple Sensors (IRTSP; T o ) Because of a viewing zenith angle (VZA) dependency, must correct surface temperature to be warmer to match ground sites Mean differences and root mean square differences (RMSDs) between measured HRTP (To) and ARM IRT (To), HRTP (To) and USCRN IRTSP (To), and HRTP (Ts) and MODIS Land Surface Temperature (Ts). Betaversion VZA dependency correc?on applied for ground site comparisons. Note: The ARM IRT satura?on limit of 330 K diminishes the true day?me bias See panel below for more information on the MODIS comparison Comparisons of GOES13 HRTP (To) values with measurements taken from the a) ARM 10m upwelling IRT, the b) S?llwater, OK USCRN IRTSP (To), and the c) Avondale, PA USCRN IRTSP (To), on October 2011 and January, April, and July 2012. Data points are colorcoded by month. VZA dependency correc?on has NOT been applied HighResolu?on Skin Temperature Compared to MODIS Land Surface Temperature Clearsky comparisons of HRTP (Ts) and MODIS LST (Ts) within 15 min of each other over the (a) Southern Great Plains at 17:45 UTC, (b) Northeast United States at 17:45 UTC and (c) Southern Great Plains at 08:45 UTC during October 2011 and January, April, and July 2012. Emissivity for both sensors comes from the MODIS Level2 product, using Collec?on 5, 11.0μm, 5 min granules July 2012 comparison of GOES15 and GOES13 clearsky topofatmosphere infrared temperature near 17:45 UTC in the Southern Great Plains region MODIS Land Surface Temperature (LST; T s ) data averaged to same resolu5on as HRTP 5les and compared to spectrally corrected HRTP (T s ) values over two 15° × 10° regions for both day and night First region includes the SGP domain and second region is over the northeastern United States Disparity between HRTP and Terra MODIS day5me LST could be due to different viewing and illumina5on geometry Average clearsky T anisotropy for the GOES13 viewing and illumina5on angles at MODIS overpasses in SGP region are 0.5 4.0 K Small differences can also, at least par5ally, be explained by atmospheric correc5ons a) b) c) Nearglobal pixellevel surface skin temperature (K) for the GOESWest, GOESEast, Meteosat9, and MTSAT2 subsatellite domains. FY2E domain not shown Uses mean of the 18:00 UTC retrievals for July 2012 Pixel used only when classified as clear and are not adjacent to any pixels classified either as cloudy or no/bad retrieval a) GOES15 GOES13 Meteosat9 MTSAT2 b) a) b) c) Mean Difference (K) RMSD (K) GOES – ARM (SGP) GOES – USCRN (OK) GOES – USCRN (PA) GOES – ARM (SGP) GOES – USCRN (OK) GOES – USCRN (PA) Day 1.07 1.56 0.44 3.45 3.88 2.91 Night 2.00 0.18 1.01 2.5 1.08 1.53 Both 1.51 0.84 0.34 3.04 2.80 2.28 Mean differences and root mean square differences (RMSDs) between measured pixellevel To and ARM IRT (To), and pixellevel To and USCRN IRTSP (To). Beta version VZA dependency correc?on applied Note: ARM IRT satura?on limit of 330 K diminishes true day?me bias Comparisons of GOES13 pixellevel To values with measurements taken from the a) ARM 10m upwelling IRT, the b) S?llwater, OK USCRN IRTSP (To), and the c) Avondale, PA USCRN IRTSP (To), on October 2011 and January, April, and July 2012. Data points are colorcoded by month. Betaversion VZA dependency correc?on HAS been applied Nighdme correc?on of 1.7 K for 9.25° VZA difference between GOESEast and GOESWest Day?me correc?on of 1.8 K for 9.25° VZA difference between GOESEast and GOESWest c) Nearglobal aircral icing poten?al (none, indeterminable, low/medium/high probability for light icing, high probability for moderate to heavy icing, night icing, and no data) from geosta?onary satellites

Upload: others

Post on 23-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Surface)Skin)Temperature)from)Geosta?onary)Satellite)Data) · 2013. 4. 17. · Presentation11 Author: Benjamin Scarino Created Date: 4/4/2013 4:06:45 PM

Conclusions  and  Future  Work    Except  for  certain  viewing  &  illumina5on  condi5ons,  results  comparable  

to  MODIS  to  ±1  K,  but  with  the  added  benefits  of  having  consistent  geometry  and  higher  sampling  frequency  for  any  one  loca5on  

  These  nearly  instantaneous,  near-­‐global  datasets  are  available  for  assimila5on  in  numerical  weather  predic5on  models  

  Important  step  taken  towards  assimila5on  into  the  GEOS-­‐5  NWP  system      Need  to  beNer  characterize  angular  and  emissivity  dependencies  using  

nadir  MODIS  measurements    Will  employ  the  GMAO  GEOS-­‐5  Model  at  finer  resolu5on  for  pixel-­‐level  

product,  and  globally  validate  near-­‐real-­‐5me,  near-­‐global  pixel-­‐level  skin  temperature  product  by  end  of  2013  

  Need  to  broaden  the  scale  of  data  assimila5on  from  Americas  to  all  non-­‐polar  regions  

Background  and  Methodology    Near-­‐global  radiometric  and  cloud  microphysical  property  

retrievals  are  achieved  through  the  use  of  five  GEOsats    Nominally  8  retrievals  per  day,  with  poten5al  for  24    Modern-­‐Era  Retrospec5ve  Analysis  for  Research  and  

Applica5ons  (MERRA)  model  forecasts  provide  Ts  and  thermodynamic  profiles  used  to  compute  the  atmospheric  transmissivity  (via  correlated  k-­‐distribu5on1,2);  together  yielding  es5mated  near-­‐surface  to  TOA  layer  temperatures  

  CERES  cloud  mask  compares  observa5ons  with  es5mates  of  T  or  visible-­‐channel  reflectance    

  Mean  observed  proper5es  are  computed  for  clear  and  cloudy  pixels  in  each  1.0°  ×  1.0°  grid  box:  the  cloud  mask  is  repeated  using  the  new  clear-­‐sky  values  

  Clear  T  pixels  are  grouped  into  0.3125°  x  0.25°  5les  and  brought  to  the  surface  using  a  modified  correlated  k-­‐distribu5on  technique1,2,  thus  yielding  surface-­‐leaving  brightness  temperature  (To)  

  Applica5on  of  CERES  emissivity  (εs)  maps  yields  the  near-­‐global  high-­‐resolu?on  skin  temperature  products  (HRTP)  

High-­‐Resolu?on  Skin  Temperature  Compared  to  GEOS-­‐5  Land  Surface  Temperature    Model  comparisons  u5lize  land  surface  temperature  output  from  the  NASA  Goddard  Earth  Observing  System  Version  

5.7.2  (GEOS-­‐5)  at  the  0.3125°  ×  0.  25°  resolu5on    Differences  between  the  GEOS-­‐5  es5mates  and  the  GOES-­‐13  satellite  retrievals  of  skin  temperature  are  not  small  

  Analysis  nevertheless  suggests  that  HRTP  values  are  largely  consistent  with  the  independent  GEOS-­‐5  es5mates    Spa5al  and  temporal  varia5ons  of  the  biases  must  be  addressed  as  part  of  the  assimila5on  system      These  issues  can  be  fully  resolved  through  improvements  in  the  GEOS-­‐5  atmospheric  model;  par5cularly  the  moist  

physics  and  cloud  parameteriza5ons3  

High-­‐Resolu?on  Surface  Temperature  Compared  with  Ground-­‐Site  Measurements  

Benjamin  Scarino1  ,  Patrick  Minnis2,  Rabindra  Palikonda1,  Christopher  Yost1,  Baojuan  Shan1,  Rolf  H.  Reichle3,  Qing  Liu4    1Science  Systems  and  Applica5ons,  Inc.,  Hampton,  VA,  USA  ([email protected])      2NASA  Langley  Research  Center,  Hampton,  VA,  USA      3NASA  Goddard  Space  Flight  Center,  Greenbelt,  MD,  USA      4Science  Systems  and  Applica5ons,  Inc.,  Lanham,  MD,  USA  

Surface  Skin  Temperature  from  Geosta?onary  Satellite  Data  

Introduc?on  The   temporal   and   spa5al   coverage   of   geosta5onary   sensors  enable   frequent   retrieval   of   near-­‐global   surface   skin  temperature   (Ts).   In   addi5on   to   cloud   and   other   products  (e.g.,   aircral   icing  poten5al   in   figure  below)  developed   from  GEOsats   around   the   globe,   NASA   Langley   is   producing  es5mates   of   Ts   by   applying   an   inverted   correlated   k-­‐distribu5on   method   to   clear-­‐pixel   values   of   TOA   infrared  temperature   (T).   This   method   yields   clear-­‐sky   Ts   values   that  are   within   ±2.0   K   of   measurements   from   ground-­‐site  instruments,  e.g.,    the  US  Climate  Reference  Network  (USCRN)  and   Atmospheric   Radia5on   Measurement   (ARM)   climate  research  facility  infrared  thermometers.  Comparisons  of  the  Ts  product   with   MODIS   land   surface   temperature   reveal   a  rela5ve   accuracy   within   ±1   K   for   both   day   and   night.   These  data,  especially  the  eventual  pixel-­‐level  data,  will  be  useful  for  assimila5on   with   atmospheric   models,   which   rely   on   high-­‐accuracy,   high-­‐resolu5on   ini5al   radiometric   and   surface  condi5ons.   Modelers   should   find   the   immediate   availability  and  broad   coverage  of   these  Ts   observa5ons   valuable,  which  can  lead  to  improved  forecas5ng  for  both  regional  and  global  numerical  weather  predic5on  models.  

Development  Toward  a  Real-­‐Time  Pixel-­‐Level  Skin  Temperature  Product  

  More  con5nuous  near-­‐global  coverage  compared  to  the  HRTP    Cloudy/clear  decision  on  pixel  level  greatly  reduces  chances  of  filtering  

good  data  points        Close  to  24  nearly-­‐full  disk  retrievals  for  each  satellite  per  day    Instances  of  pixel  misclassifica5on  remain,  however,  effect  can  be  

diminished  by  applying  a  buffer  around  known  cloudy  pixels  

References  1Goody,   R.;   West,   R.;   Chen,   L.;   Crisp,   D.   The   correlated-­‐k   method   for   radia5on  calcula5ons   in   nonhomogeneous   atmospheres.   J.   Quant.   Spectrosc.   Radiat.   Transfer  1989,  42,  539–550.  

2Kratz,  D.P.  The  correlated  k-­‐distribu5on  technique  as  applied  to  the  AVHRR  channels.  J.  Quant.  Spectrosc.  Radiat.  Transfer  1995,  53,  501–507.    

3Scarino,  B.;  Minnis,  P.;  Palikonda,  R.;  Reichle,  R.H.;  Morstad,  D.;  Yost,  C.;  Shan,  B.;  Liu,  Q.  Retrieving   Clear-­‐Sky   Surface   Skin   Temperature   for   Numerical   Weather   Predic5on  Applica5ons  from  Geosta5onary  Satellite  Data.  Remote  Sensing.  2013;  5(1):342-­‐366.  

Mean  Difference  (K)   RMSD  (K)  

GOES  –  ARM  (SGP)  

GOES  –  USCRN  (OK)  

GOES  –  USCRN  (PA)  

GOES  –  MODIS  

GOES  –  ARM  (SGP)  

GOES  –  USCRN  (OK)  

GOES  –  USCRN  (PA)  

GOES  –  MODIS  

Day   -­‐0.08   -­‐1.35   -­‐1.29   0.89   1.92   3.81   3.94   1.64  

Night   -­‐1.70   -­‐0.51   0.95   -­‐0.51   2.00   1.06   1.48   1.08  

Both   -­‐0.70   -­‐0.98   -­‐0.17   0.41   1.95   2.93   2.98   1.46  

 Near-­‐Global,  High-­‐Resolu?on  Surface  Skin  Temperature  (K):  Mean  18:00  UTC  retrievals  for  July  2012  

 Inter-­‐satellite  boundaries  reflect  slight  differences  in  cloud  detec?on  owing  to  a  variety  of  reasons,  such  as  pixel  size.  Nevertheless,  discon?nui?es  are  small,  but  can  be  par?ally  explained  by  spectral  band  differences  

 The  gap  region,  between  50°  and  90°  east,    filled  by  the  Fengyun  2E  (FY-­‐2E)  satellite  remains  ques?onable    

Mean  difference  (K)  between  GEOS-­‐5  land  surface  temperature  and  GOES-­‐13  HRTP  for  clear-­‐sky  condi?ons  at  (a)  06:00  UTC  (nighdme)  and  (b)  18:00  UTC  (day?me),  averaged  over  1  August  2011  to  31  July  2012  

Day?me  (18:00  UTC)  seasonal  root-­‐mean-­‐square  differences  (RMSDs)  (excluding  seasonal  mean  difference)  in  Kelvin  between  GEOS-­‐5  land  surface  temperature  and  GOES-­‐13  HRTP  for  clear-­‐sky  condi?ons  for  (a)  Dec  2011–Feb  2012,  (b)  Mar–

May  2012,  (c)  Aug  2011,  Jun–Jul  2012,  and  (d)  Sep–Nov  2011  

Bias  and  RMSD  (excluding  annual  mean  differences)  in  Kelvin  between  GEOS-­‐5  land  surface  temperature  

and  GOES-­‐13  skin  temperature  for  clear-­‐sky  condi?ons,  averaged  over  1  August  2011  to  31  July  

2012,  and  areas  in  North,  Central,  and  South  America    

  HRTP  To  retrievals  from  GOES-­‐13  allow  for  frequent  comparison  with  data  taken  at  the  Southern  Great  Plains  (SGP)  ARM  11.0-­‐μm  upwelling  Infrared  Thermometer  (IRT;  To)  and  the  S5llwater,  OK  and  Avondale,  PA  USCRN  Apogee  Precision  Infrared  Thermocouple  Sensors  (IRTS-­‐P;  To)  

  Because  of  a  viewing  zenith  angle  (VZA)  dependency,  must  correct  surface  temperature  to  be  warmer  to  match  ground  sites  

Mean  differences  and  root  mean  square  differences  (RMSDs)  between  measured  HRTP  (To)  and  ARM  IRT  (To),  HRTP  (To)  and  USCRN  IRTS-­‐P  (To),  and  HRTP  (Ts)  and  MODIS  Land  Surface  Temperature  (Ts).  Beta-­‐version  VZA  dependency  correc?on  applied  for  ground  site  comparisons.  Note:  The  ARM  IRT  satura?on  limit  of  330  K  diminishes  the  true  day?me  bias  

See panel below for more information on the MODIS comparison

Comparisons  of  GOES-­‐13  HRTP  (To)  values  with  measurements  taken  from  the  a)  ARM  10-­‐m  upwelling  IRT,  the  b)  S?llwater,  OK  USCRN  IRTS-­‐P  (To),  and  the  c)  Avondale,  PA  USCRN  IRTS-­‐P  (To),  on  October  2011  and  January,  April,  and  July  2012.  Data  points  are  color-­‐coded  by  month.  VZA  dependency  correc?on  has  NOT  been  applied  

High-­‐Resolu?on  Skin  Temperature  Compared  to  MODIS  Land  Surface  Temperature    Clear-­‐sky  comparisons  of  HRTP  (Ts)  and  MODIS  LST  (Ts)  within  15  min  of  each  other  over  the  (a)  Southern  Great  Plains  at  17:45  UTC,  (b)  Northeast  United  States  at  17:45  UTC  and  (c)  Southern  Great  Plains  at  08:45  UTC  during  October  2011  and  January,  April,  and  July  2012.  Emissivity  for  both  sensors  comes  from  the  MODIS  Level-­‐2  product,  using  Collec?on  5,  11.0-­‐μm,  5-­‐min  granules  July  2012  comparison  of  GOES-­‐15  and  

GOES-­‐13  clear-­‐sky  top-­‐of-­‐atmosphere  infrared  temperature  near  17:45  UTC  in  

the  Southern  Great  Plains  region  

  MODIS  Land  Surface  Temperature  (LST;  Ts)  data  averaged  to  same  resolu5on  as  HRTP  5les  and  compared  to  spectrally  corrected  HRTP  (Ts)  values  over  two  15°  ×  10°  regions  for  both  day  and  night  

  First  region  includes  the  SGP  domain  and  second  region  is  over  the  northeastern  United  States  

  Disparity  between  HRTP  and  Terra-­‐MODIS  day5me  LST  could  be  due  to  different  viewing  and  illumina5on  geometry  

  Average  clear-­‐sky  T  anisotropy  for  the  GOES-­‐13  viewing  and  illumina5on  angles  at  MODIS  overpasses  in  SGP  region  are  0.5  -­‐  4.0  K  

  Small  differences  can  also,  at  least  par5ally,  be  explained  by  atmospheric  correc5ons  

a)    

b)   c)  

Near-­‐global  pixel-­‐level  surface  skin  temperature  (K)  for  the  GOES-­‐West,  GOES-­‐East,  Meteosat-­‐9,  and  MTSAT-­‐2  sub-­‐satellite  domains.  FY-­‐2E  domain  not  shown  

Uses  mean  of  the  18:00  UTC  retrievals  for  July  2012  

Pixel  used  only  when  classified  as  clear  and  are  not  adjacent  to  any  pixels  classified  either  as  cloudy  or  no/bad  retrieval  

a)    

GOES-­‐15   GOES-­‐13   Meteosat-­‐9   MTSAT-­‐2  

b)  

a)     b)   c)  

Mean  Difference  (K)   RMSD  (K)  

GOES  –  ARM  (SGP)  

GOES  –  USCRN  (OK)  

GOES  –  USCRN  (PA)  

GOES  –  ARM  (SGP)  

GOES  –  USCRN  (OK)  

GOES  –  USCRN  (PA)  

Day   -­‐1.07   -­‐1.56   -­‐0.44   3.45   3.88   2.91  

Night   -­‐2.00   -­‐0.18   1.01   2.5   1.08   1.53  

Both   -­‐1.51   -­‐0.84   0.34   3.04   2.80   2.28  

Mean  differences  and  root  mean  square  differences  (RMSDs)  between  measured  pixel-­‐level  To  and  ARM  IRT  (To),  and  pixel-­‐level  To  and  USCRN  IRTS-­‐P  (To).  Beta-­‐version  VZA  dependency  correc?on  applied  

Note:  ARM  IRT  satura?on  limit  of  330  K  diminishes  true  day?me  bias  

Comparisons  of  GOES-­‐13  pixel-­‐level  To  values  with  measurements  taken  from  the  a)  ARM  10-­‐m  upwelling  IRT,  the  b)  S?llwater,  OK  USCRN  IRTS-­‐P  (To),  and  the  c)  Avondale,  PA  USCRN  IRTS-­‐P  (To),  on  October  2011  and  January,  April,  and  July  2012.  Data  points  

are  color-­‐coded  by  month.  Beta-­‐version  VZA  dependency  correc?on  HAS  been  applied  

Nighdme  correc?on  of  1.7  K  for  -­‐9.25°  VZA  difference  between  GOES-­‐East  and  GOES-­‐West    

Day?me  correc?on  of  1.8  K  for  -­‐9.25°  VZA  difference  between  GOES-­‐East  and  GOES-­‐West    

c)  

Near-­‐global  aircral  icing  poten?al  (none,  indeterminable,  low/medium/high  probability  for  light  icing,  high  probability  for  moderate  to  heavy  icing,  night  icing,  and  no  data)  from  geosta?onary  satellites