sv1-sv3

36
Codeware, Inc. Houston, TX, USA www.codeware.com COMPRESS Pressure Vessel Design Calculations Item: Split Stream Dearator Vessel No: V-1234 Customer: Magaladon Oil Venture Contract: C-45490-R56 Designer: John Doe Date: April 1, 2001 You can edit this page by selecting Cover Page settings... in the report menu.

Upload: muhammad-yousuf-ayub

Post on 25-Oct-2014

112 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SV1-SV3

Codeware, Inc.

Houston, TX, USA

www.codeware.com

COMPRESS Pressure Vessel Design Calculations

Item: Split Stream DearatorVessel No: V-1234Customer: Magaladon Oil Venture

Contract: C-45490-R56Designer: John Doe

Date: April 1, 2001

You can edit this page by selecting Cover Page settings... in the report menu.

Page 2: SV1-SV3

1/35

Page 3: SV1-SV3

Deficiencies Summary

Warnings Summary

ASME B16.5 / B16.47 Flange Warnings Summary

ASME B16.5 / 16.47 Flanges with Warnings

Flange Applicable Warnings

Nozzle #2 (N2) 1

Manhole (M1) 1

ASME B16.5 / 16.47 Flange Warnings

No. Warning

1 For Class 150 flanges, ASME B16.5 para. 5.4.3 recommends gaskets to be in accordance with Annex C, TableC1, Group No. I.

2/35

Page 4: SV1-SV3

Nozzle Schedule

Nozzlemark Service Size

Materials

Nozzle Impact Norm Fine Grain Pad Impact Norm Fine Grain Flange

M1 Manhole 24" Sch 40 DN 600 SA-106 B Smls.Pipe No No No SA-516 70 No No No WN A105 Class

150

N2 Nozzle #2 16" Sch 80 DN 400 SA-106 B Smls.Pipe No No No SA-516 70 No No No WN A105 Class

150

3/35

Page 5: SV1-SV3

Nozzle Summary

Nozzlemark

OD(mm)

tn

(mm)Req t

n(mm)

A1? A2?Shell Reinforcement

Pad Corr(mm)

Aa/A

r(%)

Nom t(mm)

Design t(mm)

User t(mm)

Width(mm)

tpad

(mm)

M1 609.60 17.48 5.59 Yes Yes 8.00 7.46 20.00 6.00 3.00 100.0

N2 406.40 21.44 7.48 Yes Yes 8.00 5.47 20.00 8.00 3.00 100.0

tn: Nozzle thicknessReq tn: Nozzle thickness required per UG-45/UG-16Nom t: Vessel wall thicknessDesign t: Required vessel wall thickness due to pressure + corrosion allowance per UG-37User t: Local vessel wall thickness (near opening)Aa: Area available per UG-37, governing conditionAr: Area required per UG-37, governing conditionCorr: Corrosion allowance on nozzle wall

4/35

Page 6: SV1-SV3

Pressure Summary

Pressure Summary for Chamber bounded by Ellipsoidal Head #1 and Ellipsoidal Head #2

IdentifierP

Design( kPa)

T

Design(°C)

MAWP( kPa)

MAP( kPa)

MDMT(°C)

MDMTExemption

Total Corrosion

Allowance(mm)

ImpactTest

Ellipsoidal Head #2 220.0 65.0 220.16 795.22 -105.0 Note 1 3.00 No

Straight Flange on Ellipsoidal Head #2 220.0 65.0 856.12 1371.77 -105.0 Note 2 3.00 No

Cylinder #1 220.0 65.0 856.12 1371.77 -105.0 Note 2 3.00 No

Straight Flange on Ellipsoidal Head #1 220.0 65.0 856.12 1371.77 -105.0 Note 2 3.00 No

Ellipsoidal Head #1 220.0 65.0 220.16 795.22 -105.0 Note 3 3.00 No

Saddle #1 220.0 65.0 220.16 N/A N/A N/A N/A N/A

Manhole (M1) 220.0 65.0 764.28 1001.44 -48.0 Nozzle Note 4; Pad Note 5 3.00 No

Nozzle #2 (N2) 220.0 65.0 608.02 940.46 -48.0 Nozzle Note 4; Pad Note 5 3.00 No

Chamber design MDMT is 0.00°CChamber rated MDMT is -48.00°C @ 220.16 kPa

Chamber MAWP hot & corroded is 220.16 kPa @ 65.0°C

Chamber MAP cold & new is 795.22 kPa @ 25.0°C

This pressure chamber is not designed for external pressure.

Notes for MDMT Rating:

Note # Exemption Details

1. Straight Flange governs MDMT

2. Material is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.25644)

3. Straight Flange governs MDMT

4.Flange rating governs:Flange rated MDMT = -105 °CBolts rated MDMT per Fig UCS-66 note (e) = -48 °C

UCS-66(b)(3): Coincident ratio = 0.1120392

5. Pad is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.25643).

Design notes are available on the Settings Summary page.

5/35

Page 7: SV1-SV3

Revision History

No. Date Operator Notes

0 5/28/2012 yousuf.ayub New vessel created ASME Section VIII Division 1 [Build 6258]

6/35

Page 8: SV1-SV3

Settings Summary

COMPRESS Build 6258

Units: SI

Datum Line Location: -75.00 mm from right seam

Design

ASME Section VIII Division 1, 2007 Edition Metric

Design or Rating: Get Thickness from PressureMinimum thickness: 1.50 mm per UG-16(b)Design for cold shut down only: NoDesign for lethal service (full radiography required): NoDesign nozzles for: Design P, find nozzle MAWP and MAPCorrosion weight loss: 100% of theoretical lossUG-23 Stress Increase: 1.20Skirt/legs stress increase: 1.0Minimum nozzle projection: 152.40 mmJuncture calculations for α > 30 only: YesPreheat P-No 1 Materials > 1.25&#34 and <= 1.50" thick: NoButt welds are tapered per Figure UCS-66.3(a).

Hydro/Pneumatic Test

Shop Hydrotest Pressure: 1.3 times vesselMAWP

Test liquid specific gravity: 1.00Maximum stress during test: 90% of yield

Required Marking - UG-116

UG-116 (e) Radiography: RT1UG-116 (f) Postweld heat treatment: None

Code Cases\Interpretations

Use Code Case 2547: NoApply interpretation VIII-1-83-66: YesApply interpretation VIII-1-86-175: YesApply interpretation VIII-1-83-115: YesApply interpretation VIII-1-01-37: YesDisallow UG-20(f) exemptions: No

UG-22 Loadings

UG-22 (a) Internal or External Design Pressure : YesUG-22 (b) Weight of the vessel and normal contents under operating or test conditions: YesUG-22 (c) Superimposed static reactions from weight of attached equipment (external loads): No

7/35

Page 9: SV1-SV3

UG-22 (d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs: YesUG-22 (f) Wind reactions: YesUG-22 (f) Seismic reactions: YesNote: UG-22 (b),(c) and (f) loads only considered when supports are present.

8/35

Page 10: SV1-SV3

Thickness Summary

ComponentIdentifier

Material Diameter(mm)

Length(mm)

Nominal t(mm)

Design t(mm)

JointE

Load

Ellipsoidal Head #2 SA-516 70 1600.00 ID 404.61 4.61* 4.61 1.0000 Internal

Straight Flange on Ellipsoidal Head #2 SA-516 70 1600.00 ID 75.00 8.00 4.28 1.0000 Internal

Cylinder #1 SA-516 70 1600.00 ID 9850.00 8.00 4.28 1.0000 Internal

Straight Flange on Ellipsoidal Head #1 SA-516 70 1600.00 ID 75.00 8.00 4.28 1.0000 Internal

Ellipsoidal Head #1 SA-516 70 1600.00 ID 404.61 4.61* 4.61 1.0000 Internal

Nominal t: Vessel wall nominal thickness

Design t: Required vessel thickness due to governing loading + corrosion

Joint E: Longitudinal seam joint efficiency

* Head minimum thickness after forming

Load

internal: Circumferential stress due to internal pressure governs

external: External pressure governs

Wind: Combined longitudinal stress of pressure + weight + wind governs

Seismic: Combined longitudinal stress of pressure + weight + seismic governs

9/35

Page 11: SV1-SV3

Weight Summary

ComponentWeight ( kg) Contributed by Vessel Elements

MetalNew*

Metal

Corroded*Insulation &

Supports Lining Piping+ Liquid

OperatingLiquid

TestLiquid

Ellipsoidal Head #2 131.06 52.57 0.00 0.00 0.00 0.00 686.39

Cylinder #1 3,091.68 1,936.05 0.00 0.00 0.00 0.00 19,852.78

Ellipsoidal Head #1 131.06 52.57 0.00 0.00 0.00 0.00 686.39

Saddle #1 363.78 363.78 0.00 0.00 0.00 0.00 0.00

TOTAL: 3,717.58 2,404.96 0.00 0.00 0.00 0.00 21,225.55

* Shells with attached nozzles have weight reduced by material cut out for opening.

Component

Weight ( kg) Contributed by Attachments

Body Flanges Nozzles &Flanges Packed

BedsTrays &

SupportsRings &

ClipsVerticalLoads

New Corroded New Corroded

Ellipsoidal Head #2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cylinder #1 0.00 0.00 493.00 477.13 0.00 0.00 0.00 0.00

Ellipsoidal Head #1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TOTAL: 0.00 0.00 493.00 477.13 0.00 0.00 0.00 0.00

Vessel operating weight, Corroded: 2,882 kgVessel operating weight, New: 4,211 kgVessel empty weight, Corroded: 2,882 kgVessel empty weight, New: 4,211 kgVessel test weight, New: 25,436 kg

Vessel center of gravity location - from datum - lift condition

Vessel Lift Weight, New: 4,211 kgCenter of Gravity: 5,112.07 mm

Vessel Capacity

Vessel Capacity** (New): 21,179 litersVessel Capacity** (Corroded): 21,346 liters**The vessel capacity does not include volume of nozzle, piping or other attachments.

10/35

Page 12: SV1-SV3

Hydrostatic Test

Shop test pressure determination for Chamber bounded by Ellipsoidal Head #1 and Ellipsoidal Head #2 basedon MAWP per UG-99(b)

Shop hydrostatic test gauge pressure is 286.21 kPa at 25 °C (the chamber MAWP = 220.16 kPa)

The shop test is performed with the vessel in the horizontal position.

IdentifierLocal testpressure

kPa

Test liquidstatic head

kPa

UG-99stressratio

UG-99pressure

factor

Stressduring test

MPa

Allowabletest stress

MPa

Stressexcessive?

Ellipsoidal Head #2 (1) 303.45 17.25 1 1.30 47.367 234 No

Straight Flange on Ellipsoidal Head #2 303.45 17.25 1 1.30 30.497 234 No

Cylinder #1 303.45 17.25 1 1.30 30.497 234 No

Straight Flange on Ellipsoidal Head #1 303.45 17.25 1 1.30 30.497 234 No

Ellipsoidal Head #1 303.45 17.25 1 1.30 47.367 234 No

Manhole (M1) 298.43 12.23 1 1.30 63.406 324 No

Nozzle #2 (N2) 287.7 1.49 1 1.30 29.739 324 No

Notes:(1) Ellipsoidal Head #2 limits the UG-99 stress ratio.(2) PL stresses at nozzle openings have been estimated using the method described in PVP-Vol. 399, pages 77-82.(3) VIII-2, AD-151.1(b) used as the basis for nozzle allowable test stress.(4) The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-mostflange.

The field test condition has not been investigated for the Chamber bounded by Ellipsoidal Head #1 and EllipsoidalHead #2.

The test temperature of 25 °C is warmer than the minimum recommended temperature of -31 °C so the brittlefracture provision of UG-99(h) has been met.

11/35

Page 13: SV1-SV3

Cylinder #1

ASME Section VIII Division 1, 2007 Edition Metric

Component: CylinderMaterial specification: SA-516 70 (II-D Metric p. 18, ln. 22)Material is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.25644)

Internal design pressure: P = 220 kPa @ 65°C

Static liquid head:

Pth =17.2492 kPa (SG=1.0000, Hs=1760.40 mm, Horizontal test head)

Corrosion allowance: Inner C = 3.00 mm Outer C = 0.00 mm

Design MDMT = 0.00°C No impact test performedRated MDMT = -105.00°C Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Full UW-11(a) Type 1Left circumferential joint - Full UW-11(a) Type 1Right circumferential joint - Full UW-11(a) Type 1

Estimated weight: New = 3118.1006 kg corr = 1952.5571 kgCapacity: New = 19804.6035 liters corr = 19953.4004 litersID = 1600.00 mmLength Lc = 9850.00 mmt = 8.00 mm

Design thickness, (at 65.00°C) UG-27(c)(1)

t = P*R/(S*E - 0.60*P) + Corrosion= 220.00*803.00/(138000*1.00 - 0.60*220.00) + 3.00= 4.2824 mm

Maximum allowable working pressure, (at 65.00°C) UG-27(c)(1)

P = S*E*t/(R + 0.60*t) - Ps= 138000*1.00*5.0003 / (803.00 + 0.60*5.0003) - 0.0000= 856.1241 kPa

Maximum allowable pressure, (at 25.00°C) UG-27(c)(1)

P = S*E*t/(R + 0.60*t)= 138000*1.00*8.0000 / (800.00 + 0.60*8.0000)= 1371.7694 kPa

% Extreme fiber elongation - UCS-79(d)

= (50 * t / Rf) * (1 - Rf / Ro)= (50 * 8.00 / 804.0000) * (1 - 804.0000 / ∞)= 0.4975 %

12/35

Page 14: SV1-SV3

Ellipsoidal Head #2

ASME Section VIII, Division 1, 2007 Edition Metric

Component: Ellipsoidal HeadMaterial Specification: SA-516 70 (II-D Metric p.18, ln. 22)Straight Flange governs MDMT

Internal design pressure: P = 220 kPa @ 65 °C

Static liquid head:

Ps= 0 kPa (SG=1, Hs=0 mm Operating head)Pth= 17.2492 kPa (SG=1, Hs=1760.4 mm Horizontal test head)

Corrosion allowance: Inner C = 3 mm Outer C = 0 mm

Design MDMT = 0°C No impact test performedRated MDMT = -105°C Material is normalized

Material is not produced to fine grain practicePWHT is not performedDo not Optimize MDMT / Find MAWP

Radiography: Category A joints - Seamless No RT Head to shell seam - Full UW-11(a) Type 1

Estimated weight*: new = 131.1 kg corr = 52.6 kgCapacity*: new = 687 liters corr = 696.2 liters* includes straight flange

Inner diameter = 1600 mmMinimum head thickness = 4.61 mmHead ratio D/2h = 2 (new)Head ratio D/2h = 1.9926 (corroded)Straight flange length Lsf = 75 mmNominal straight flange thickness tsf = 8 mmResults Summary

The governing condition is internal pressure.Minimum thickness per UG-16 = 1.5 mm + 3 mm = 4.5 mmDesign thickness due to internal pressure (t) = 4.61 mmMaximum allowable working pressure (MAWP) = 220.16 kPaMaximum allowable pressure (MAP) = 795.22 kPa

K (Corroded)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (1,606 / (2*403))2]=0.995047

K (New)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (1,600 / (2*400))2]=1

13/35

Page 15: SV1-SV3

Design thickness for internal pressure, (Corroded at 65 °C) Appendix 1-4(c)

t = P*D*K / (2*S*E - 0.2*P) + Corrosion= 220*1,606*0.995047 / (2*138,000*1 - 0.2*220) + 3= 4.27 mm

Design thickness for internal pressure, (Corroded at 65 °C) Appendix 1-4(f)(2)

From Table UG-37, L = 1,443 mm.From Table 1-4.4, r / D = 0.1712.r = 0.1712*1,606 = 275 mm

0.0005 ≤ (tmin head - Corrosion) / L = 1.61 / 1,443 = 0.0011 < 0.002

C1 = 0.692*r / D + 0.605= 0.692*0.1712 + 0.605= 0.7235

Se = C1*ET*(t / r)= 0.7235*199,866.7*(1.61 / 275)= 847.782 MPa

C2 = 1.46 - 2.6*r / D= 1.46 - 2.6*0.1712= 1.0148

φ = (L * t)1/2 / r= (1,443 * 1.61)1/2 / 275= 0.175397

a = 0.5*D - r= 0.5*1,606 -275= 528 mm

b = L - r= 1,443 - 275= 1,168 mm

β = arc cos(a / b)= arc cos(528 / 1,168)= 1.101729 radians

φ = 0.1754 < β = 1.1017

c = a / (cos(β - φ))= 528 / (cos(1.1017 - 0.1754))= 878.87 mm

Re = c + r= 878.87 + 275= 1,153.87 mm

Pe = Se*t / (C2*Re*(0.5*Re / r - 1))= 847,781.9*1.61 / (1.0148*1,153.87*(0.5*1,153.87 / 275 - 1))= 1,063.18 kPa

14/35

Page 16: SV1-SV3

Py = Sy*t / (C2*Re*(0.5*Re / r - 1))= 246,000*1.61 / (1.0148*1,153.87*(0.5*1,153.87 / 275 - 1))= 308.5 kPa

1 ≤ Pe / Py = 1,063.18 / 308.5 = 3.45 ≤ 8.29

Pck = 0.408*Py + 0.192*Pe= 0.408*308.5 + 0.192*1,063.18= 330 kPa

Pck / 1.5 = 220 kPa ≥ Internal design pressure P = 220 kPa

t = tr + Corrosion= 1.61 + 3= 4.61 mm

Design thickness is acceptable per Appendix 1-4(f) for a design pressure of 220 kPa.

The head internal pressure design thickness is 4.61 mm.

Maximum allowable working pressure, (Corroded at 65 °C) Appendix 1-4(c)

P = 2*S*E*t / (K*D + 0.2*t) - Ps= 2*138,000*1*1.61 / (0.995047*1,606 +0.2*1.61) - 0= 278.51 kPa

Maximum allowable working pressure, (Corroded at 65 °C) Appendix 1-4(f)(2)

From Table UG-37, L = 1,443 mm.From Table 1-4.4, r / D = 0.1712.r = 0.1712*1,606 = 275 mm

0.0005 ≤ (tmin head - Corrosion) / L = 1.61 / 1,443 = 0.0011 < 0.002

C1 = 0.692*r / D + 0.605= 0.692*0.1712 + 0.605= 0.7235

Se = C1*ET*(t / r)= 0.7235*199,866.7*(1.61 / 275)= 848.106 MPa

C2 = 1.46 - 2.6*r / D= 1.46 - 2.6*0.1712= 1.0148

φ = (L * t)1/2 / r= (1,443 * 1.61)1/2 / 275= 0.17543

a = 0.5*D - r= 0.5*1,606 -275= 528 mm

b = L - r= 1,443 - 275

15/35

Page 17: SV1-SV3

= 1,168 mm

β = arc cos(a / b)= arc cos(528 / 1,168)= 1.101729 radians

φ = 0.1754 < β = 1.1017

c = a / (cos(β - φ))= 528 / (cos(1.1017 - 0.1754))= 878.83 mm

Re = c + r= 878.83 + 275= 1,153.83 mm

Pe = Se*t / (C2*Re*(0.5*Re / r - 1))= 848,105.5*1.61 / (1.0148*1,153.83*(0.5*1,153.83 / 275 - 1))= 1,064.1 kPa

Py = Sy*t / (C2*Re*(0.5*Re / r - 1))= 246,000*1.61 / (1.0148*1,153.83*(0.5*1,153.83 / 275 - 1))= 308.65 kPa

1 ≤ Pe / Py = 1,064.1 / 308.65 = 3.45 ≤ 8.29

Pck = 0.408*Py + 0.192*Pe= 0.408*308.65 + 0.192*1,064.1= 330.24 kPa

Pck / 1.5 = 220.16 kPa ≥ Internal design pressure P = 220 kPa

P = Pck / 1.5 - Ps= 330.24 / 1.5 - 0= 220.16 kPa

The maximum allowable working pressure (MAWP) is 220.16 kPa.

Maximum allowable pressure, (New at 25 °C) Appendix 1-4(c)

P = 2*S*E*t / (K*D + 0.2*t) - Ps= 2*138,000*1*4.61 / (1*1,600 +0.2*4.61) - 0= 795.22 kPa

The maximum allowable pressure (MAP) is 795.22 kPa.

% Extreme fiber elongation - UCS-79(d)

= (75*t / Rf)*(1 - Rf / Ro)= (75*8 / 276)*(1 - 276 / ∞)= 2.1739%

The extreme fiber elongation does not exceed 5%.

16/35

Page 18: SV1-SV3

Straight Flange on Ellipsoidal Head #2

ASME Section VIII Division 1, 2007 Edition Metric

Component: Straight FlangeMaterial specification: SA-516 70 (II-D Metric p. 18, ln. 22)Material is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.25644)

Internal design pressure: P = 220 kPa @ 65°C

Static liquid head:

Pth =17.2492 kPa (SG=1.0000, Hs=1760.40 mm, Horizontal test head)

Corrosion allowance: Inner C = 3.00 mm Outer C = 0.00 mm

Design MDMT = 0.00°C No impact test performedRated MDMT = -105.00°C Material is normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Seamless No RTCircumferential joint - Full UW-11(a) Type 1

Estimated weight: New = 23.7419 kg corr = 14.8672 kgCapacity: New = 150.7964 liters corr = 151.9294 litersID = 1600.00 mmLength Lc = 75.00 mmt = 8.00 mm

Design thickness, (at 65.00°C) UG-27(c)(1)

t = P*R/(S*E - 0.60*P) + Corrosion= 220.00*803.00/(138000*1.00 - 0.60*220.00) + 3.00= 4.2824 mm

Maximum allowable working pressure, (at 65.00°C) UG-27(c)(1)

P = S*E*t/(R + 0.60*t) - Ps= 138000*1.00*5.0003 / (803.00 + 0.60*5.0003) - 0.0000= 856.1241 kPa

Maximum allowable pressure, (at 25.00°C) UG-27(c)(1)

P = S*E*t/(R + 0.60*t)= 138000*1.00*8.0000 / (800.00 + 0.60*8.0000)= 1371.7694 kPa

% Extreme fiber elongation - UCS-79(d)

= (50 * t / Rf) * (1 - Rf / Ro)= (50 * 8.00 / 804.0000) * (1 - 804.0000 / ∞)= 0.4975 %

17/35

Page 19: SV1-SV3

Straight Flange on Ellipsoidal Head #1

ASME Section VIII Division 1, 2007 Edition Metric

Component: Straight FlangeMaterial specification: SA-516 70 (II-D Metric p. 18, ln. 22)Material is impact test exempt to -105 °C per UCS-66(b)(3) (coincident ratio = 0.25644)

Internal design pressure: P = 220 kPa @ 65°C

Static liquid head:

Pth =17.2492 kPa (SG=1.0000, Hs=1760.40 mm, Horizontal test head)

Corrosion allowance: Inner C = 3.00 mm Outer C = 0.00 mm

Design MDMT = 0.00°C No impact test performedRated MDMT = -105.00°C Material is not normalized

Material is not produced to Fine Grain PracticePWHT is not performed

Radiography: Longitudinal joint - Seamless No RTCircumferential joint - Full UW-11(a) Type 1

Estimated weight: New = 23.7419 kg corr = 14.8672 kgCapacity: New = 150.7964 liters corr = 151.9294 litersID = 1600.00 mmLength Lc = 75.00 mmt = 8.00 mm

Design thickness, (at 65.00°C) UG-27(c)(1)

t = P*R/(S*E - 0.60*P) + Corrosion= 220.00*803.00/(138000*1.00 - 0.60*220.00) + 3.00= 4.2824 mm

Maximum allowable working pressure, (at 65.00°C) UG-27(c)(1)

P = S*E*t/(R + 0.60*t) - Ps= 138000*1.00*5.0003 / (803.00 + 0.60*5.0003) - 0.0000= 856.1241 kPa

Maximum allowable pressure, (at 25.00°C) UG-27(c)(1)

P = S*E*t/(R + 0.60*t)= 138000*1.00*8.0000 / (800.00 + 0.60*8.0000)= 1371.7694 kPa

% Extreme fiber elongation - UCS-79(d)

= (50 * t / Rf) * (1 - Rf / Ro)= (50 * 8.00 / 804.0000) * (1 - 804.0000 / ∞)= 0.4975 %

18/35

Page 20: SV1-SV3

Ellipsoidal Head #1

ASME Section VIII, Division 1, 2007 Edition Metric

Component: Ellipsoidal HeadMaterial Specification: SA-516 70 (II-D Metric p.18, ln. 22)Straight Flange governs MDMT

Internal design pressure: P = 220 kPa @ 65 °C

Static liquid head:

Ps= 0 kPa (SG=1, Hs=0 mm Operating head)Pth= 17.2492 kPa (SG=1, Hs=1760.4 mm Horizontal test head)

Corrosion allowance: Inner C = 3 mm Outer C = 0 mm

Design MDMT = 0°C No impact test performedRated MDMT = -105°C Material is not normalized

Material is not produced to fine grain practicePWHT is not performedDo not Optimize MDMT / Find MAWP

Radiography: Category A joints - Seamless No RT Head to shell seam - Full UW-11(a) Type 1

Estimated weight*: new = 131.1 kg corr = 52.6 kgCapacity*: new = 687 liters corr = 696.2 liters* includes straight flange

Inner diameter = 1600 mmMinimum head thickness = 4.61 mmHead ratio D/2h = 2 (new)Head ratio D/2h = 1.9926 (corroded)Straight flange length Lsf = 75 mmNominal straight flange thickness tsf = 8 mmResults Summary

The governing condition is internal pressure.Minimum thickness per UG-16 = 1.5 mm + 3 mm = 4.5 mmDesign thickness due to internal pressure (t) = 4.61 mmMaximum allowable working pressure (MAWP) = 220.16 kPaMaximum allowable pressure (MAP) = 795.22 kPa

K (Corroded)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (1,606 / (2*403))2]=0.995047

K (New)

K=(1/6)*[2 + (D / (2*h))2]=(1/6)*[2 + (1,600 / (2*400))2]=1

19/35

Page 21: SV1-SV3

Design thickness for internal pressure, (Corroded at 65 °C) Appendix 1-4(c)

t = P*D*K / (2*S*E - 0.2*P) + Corrosion= 220*1,606*0.995047 / (2*138,000*1 - 0.2*220) + 3= 4.27 mm

Design thickness for internal pressure, (Corroded at 65 °C) Appendix 1-4(f)(2)

From Table UG-37, L = 1,443 mm.From Table 1-4.4, r / D = 0.1712.r = 0.1712*1,606 = 275 mm

0.0005 ≤ (tmin head - Corrosion) / L = 1.61 / 1,443 = 0.0011 < 0.002

C1 = 0.692*r / D + 0.605= 0.692*0.1712 + 0.605= 0.7235

Se = C1*ET*(t / r)= 0.7235*199,866.7*(1.61 / 275)= 847.782 MPa

C2 = 1.46 - 2.6*r / D= 1.46 - 2.6*0.1712= 1.0148

φ = (L * t)1/2 / r= (1,443 * 1.61)1/2 / 275= 0.175397

a = 0.5*D - r= 0.5*1,606 -275= 528 mm

b = L - r= 1,443 - 275= 1,168 mm

β = arc cos(a / b)= arc cos(528 / 1,168)= 1.101729 radians

φ = 0.1754 < β = 1.1017

c = a / (cos(β - φ))= 528 / (cos(1.1017 - 0.1754))= 878.87 mm

Re = c + r= 878.87 + 275= 1,153.87 mm

Pe = Se*t / (C2*Re*(0.5*Re / r - 1))= 847,781.9*1.61 / (1.0148*1,153.87*(0.5*1,153.87 / 275 - 1))= 1,063.18 kPa

20/35

Page 22: SV1-SV3

Py = Sy*t / (C2*Re*(0.5*Re / r - 1))= 246,000*1.61 / (1.0148*1,153.87*(0.5*1,153.87 / 275 - 1))= 308.5 kPa

1 ≤ Pe / Py = 1,063.18 / 308.5 = 3.45 ≤ 8.29

Pck = 0.408*Py + 0.192*Pe= 0.408*308.5 + 0.192*1,063.18= 330 kPa

Pck / 1.5 = 220 kPa ≥ Internal design pressure P = 220 kPa

t = tr + Corrosion= 1.61 + 3= 4.61 mm

Design thickness is acceptable per Appendix 1-4(f) for a design pressure of 220 kPa.

The head internal pressure design thickness is 4.61 mm.

Maximum allowable working pressure, (Corroded at 65 °C) Appendix 1-4(c)

P = 2*S*E*t / (K*D + 0.2*t) - Ps= 2*138,000*1*1.61 / (0.995047*1,606 +0.2*1.61) - 0= 278.51 kPa

Maximum allowable working pressure, (Corroded at 65 °C) Appendix 1-4(f)(2)

From Table UG-37, L = 1,443 mm.From Table 1-4.4, r / D = 0.1712.r = 0.1712*1,606 = 275 mm

0.0005 ≤ (tmin head - Corrosion) / L = 1.61 / 1,443 = 0.0011 < 0.002

C1 = 0.692*r / D + 0.605= 0.692*0.1712 + 0.605= 0.7235

Se = C1*ET*(t / r)= 0.7235*199,866.7*(1.61 / 275)= 848.106 MPa

C2 = 1.46 - 2.6*r / D= 1.46 - 2.6*0.1712= 1.0148

φ = (L * t)1/2 / r= (1,443 * 1.61)1/2 / 275= 0.17543

a = 0.5*D - r= 0.5*1,606 -275= 528 mm

b = L - r= 1,443 - 275

21/35

Page 23: SV1-SV3

= 1,168 mm

β = arc cos(a / b)= arc cos(528 / 1,168)= 1.101729 radians

φ = 0.1754 < β = 1.1017

c = a / (cos(β - φ))= 528 / (cos(1.1017 - 0.1754))= 878.83 mm

Re = c + r= 878.83 + 275= 1,153.83 mm

Pe = Se*t / (C2*Re*(0.5*Re / r - 1))= 848,105.5*1.61 / (1.0148*1,153.83*(0.5*1,153.83 / 275 - 1))= 1,064.1 kPa

Py = Sy*t / (C2*Re*(0.5*Re / r - 1))= 246,000*1.61 / (1.0148*1,153.83*(0.5*1,153.83 / 275 - 1))= 308.65 kPa

1 ≤ Pe / Py = 1,064.1 / 308.65 = 3.45 ≤ 8.29

Pck = 0.408*Py + 0.192*Pe= 0.408*308.65 + 0.192*1,064.1= 330.24 kPa

Pck / 1.5 = 220.16 kPa ≥ Internal design pressure P = 220 kPa

P = Pck / 1.5 - Ps= 330.24 / 1.5 - 0= 220.16 kPa

The maximum allowable working pressure (MAWP) is 220.16 kPa.

Maximum allowable pressure, (New at 25 °C) Appendix 1-4(c)

P = 2*S*E*t / (K*D + 0.2*t) - Ps= 2*138,000*1*4.61 / (1*1,600 +0.2*4.61) - 0= 795.22 kPa

The maximum allowable pressure (MAP) is 795.22 kPa.

% Extreme fiber elongation - UCS-79(d)

= (75*t / Rf)*(1 - Rf / Ro)= (75*8 / 276)*(1 - 276 / ∞)= 2.1739%

The extreme fiber elongation does not exceed 5%.

22/35

Page 24: SV1-SV3

Manhole (M1)

ASME Section VIII Division 1, 2007 Edition Metric

tw(lower) = 8 mmLeg41 = 8 mmtw(upper) = 6 mmLeg42 = 6 mmDp = 649.6 mmte = 6 mm

Note: round inside edges per UG-76(c)

Located on: Cylinder #1Liquid static head included: 0 kPaNozzle material specification: SA-106 B Smls. Pipe (II-D Metric p. 14, ln. 5)Nozzle longitudinal joint efficiency: 1Nozzle description: 24" Sch 40 DN 600Pad material specification: SA-516 70 (II-D Metric p. 18, ln. 22)Pad diameter: 649.6 mmFlange description: 24 inch Class 150 WN A105Bolt Material: SA-193 B7 Bolt <= 64 (II-D Metric p. 348, ln. 33)Flange rated MDMT: -48°C(UCS-66(b)(3): Coincident ratio = 0.1120392)(Flange rated MDMT = -105 °CBolts rated MDMT per Fig UCS-66 note (e) = -48 °C)Liquid static head on flange: 0 kPaASME B16.5 flange rating MAWP: 1880.54 kPa @ 65°CASME B16.5 flange rating MAP: 1965.01 kPa @ 25°CASME B16.5 flange hydro test: 3102.64 kPa @ 25°CNozzle orientation: 90°Local vessel minimum thickness: 8 mmNozzle center line offset to datum line: 6925 mmEnd of nozzle to shell center: 1200 mmNozzle inside diameter, new: 574.65 mmNozzle nominal wall thickness: 17.48 mmNozzle corrosion allowance: 3 mmProjection available outside vessel, Lpr: 344.25 mmProjection available outside vessel to flange face, Lf: 392 mmPad is split: no

23/35

Page 25: SV1-SV3

Reinforcement Calculations for Internal Pressure

Available reinforcement per Appendix 1-10 governs the MAWP of this nozzle.

Appendix 1-10 Maximum Local PrimaryMembrane Stress

For P = 764.28 kPa @ 65 °CThe opening is adequately reinforced

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

PL(MPa)

Sallow(MPa)

A1(cm2)

A2(cm2)

A3(cm2)

A5(cm2)

Awelds(cm2)

treq(mm)

tmin(mm)

207 207 4.1447 8.0432 -- 1.2 0.5001 4.89 15.29

Division 2 Part 4.5 Strength of Nozzle Attachment Welds SummaryAverage Shear Stress in Weld

kyLτ

(mm)Lτp

(mm)L41T(mm)

L42T(mm)

L43T(mm)

fwelds(N)

τ1(MPa)

τ2(MPa)

τ3(MPa)

τ(MPa)

S(MPa)

Overstressed

1.0499 478.78 510.19 5.66 4.24 0 142,364 47.3 26.72 76.86 76.86 138 No

Division 2 Part 4.5 Strength of Nozzle Attachment Welds SummaryAverage Shear Stress in Nozzle Wall

τn(MPa)

1.5*Sn(MPa)

Overstressed

56.75 177 No

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 4.2 5.6 weld size isadequate

Pad to shell fillet (Leg42) 2.5 4.2 weld size isadequate

Nozzle to pad groove (Upper) 4.2 6 weld size isadequate

Reinforcement Calculations for MAP

Available reinforcement per Appendix 1-10 governs the MAP of this nozzle.

Appendix 1-10 Maximum Local PrimaryMembrane Stress

For P = 1001.44 kPa @ 25 °CThe opening is adequately reinforced

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

PL(MPa)

Sallow(MPa)

A1(cm2)

A2(cm2)

A3(cm2)

A5(cm2)

Awelds(cm2)

treq(mm)

tmin(mm)

24/35

Page 26: SV1-SV3

207 207 8.3531 11.0566 -- 1.2 0.5001 2.45 15.29

Division 2 Part 4.5 Strength of Nozzle Attachment Welds SummaryAverage Shear Stress in Weld

kyLτ

(mm)Lτp

(mm)L41T(mm)

L42T(mm)

L43T(mm)

fwelds(N)

τ1(MPa)

τ2(MPa)

τ3(MPa)

τ(MPa)

S(MPa)

Overstressed

1.0608 478.78 510.19 5.66 4.24 0 195,702.2 51.62 29.16 83.89 83.89 138 No

Division 2 Part 4.5 Strength of Nozzle Attachment Welds SummaryAverage Shear Stress in Nozzle Wall

τn(MPa)

1.5*Sn(MPa)

Overstressed

46.73 177 No

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 4.2 5.6 weld size isadequate

Pad to shell fillet (Leg42) 3 4.2 weld size isadequate

Nozzle to pad groove (Upper) 4.2 6 weld size isadequate

25/35

Page 27: SV1-SV3

Nozzle #2 (N2)

ASME Section VIII Division 1, 2007 Edition Metric

tw(lower) = 8 mmLeg41 = 8 mmtw(upper) = 8 mmLeg42 = 8 mmDp = 446.4 mmte = 8 mm

Note: round inside edges per UG-76(c)

Located on: Cylinder #1Liquid static head included: 0 kPaNozzle material specification: SA-106 B Smls. Pipe (II-D Metric p. 14, ln. 5)Nozzle longitudinal joint efficiency: 1Nozzle description: 16" Sch 80 DN 400Pad material specification: SA-516 70 (II-D Metric p. 18, ln. 22)Pad diameter: 446.4 mmFlange description: 16 inch Class 150 WN A105Bolt Material: SA-193 B7 Bolt <= 64 (II-D Metric p. 348, ln. 33)Flange rated MDMT: -48°C(UCS-66(b)(3): Coincident ratio = 0.1120392)(Flange rated MDMT = -105 °CBolts rated MDMT per Fig UCS-66 note (e) = -48 °C)Liquid static head on flange: 0 kPaASME B16.5 flange rating MAWP: 1880.54 kPa @ 65°CASME B16.5 flange rating MAP: 1965.01 kPa @ 25°CASME B16.5 flange hydro test: 3102.64 kPa @ 25°CNozzle orientation: 0°Local vessel minimum thickness: 8 mmNozzle center line offset to datum line: 1200 mmEnd of nozzle to shell center: 960.4 mmNozzle inside diameter, new: 363.52 mmNozzle nominal wall thickness: 21.44 mmNozzle corrosion allowance: 3 mmProjection available outside vessel, Lpr: 115.82 mmProjection available outside vessel to flange face, Lf: 152.4 mmPad is split: no

26/35

Page 28: SV1-SV3

Reinforcement Calculations for Internal Pressure

Available reinforcement per UG-37 governs the MAWP of this nozzle.

UG-37 Area Calculation Summary (cm2)For P = 608.02 kPa @ 65 °C

The opening is adequately reinforced

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

13.2979 13.3109 5.291 3.7374 -- 3.2 1.0826 6.55 18.76

Weld Failure Path Analysis Summary (N)All failure paths are stronger than the applicable weld loads

Weld loadW

Weld loadW1-1

Path 1-1strength

Weld loadW2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

116,818 110,676 1,307,421 79,442 1,142,816 132,434 705,293

UW-16 Weld Sizing Summary

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 5.6 5.6 weld size isadequate

Pad to shell fillet (Leg42) 2.5 5.6 weld size isadequate

Nozzle to pad groove (Upper) 5.6 8 weld size isadequate

Reinforcement Calculations for MAP

Available reinforcement per UG-37 governs the MAP of this nozzle.

UG-37 Area Calculation Summary (cm2)For P = 940.46 kPa @ 25 °C

The opening is adequately reinforced

UG-45Nozzle WallThicknessSummary

(mm)The nozzle

passes UG-45

Arequired

Aavailable A1 A2 A3 A5

Awelds treq tmin

20.2402 20.2471 9.0251 6.8348 -- 3.2 1.1871 5.47 18.76

Weld Failure Path Analysis Summary (N)All failure paths are stronger than the applicable weld loads

Weld loadW

Weld loadW1-1

Path 1-1strength

Weld loadW2-2

Path 2-2strength

Weld loadW3-3

Path 3-3strength

167,547 154,862 1,450,089 142,346 1,338,371 195,338 900,847

UW-16 Weld Sizing Summary

27/35

Page 29: SV1-SV3

Weld description Required weldsize (mm)

Actual weldsize (mm) Status

Nozzle to pad fillet (Leg41) 5.6 5.6 weld size isadequate

Pad to shell fillet (Leg42) 4 5.6 weld size isadequate

Nozzle to pad groove (Upper) 5.6 8 weld size isadequate

28/35

Page 30: SV1-SV3

Saddle #1

Saddle material: SA-136

Saddle construction is: Centeredweb

Saddle allowable stress: Ss = 137.895 MPaSaddle yield stress: Sy = 262.001 MPaSaddle distance to datum: 1,000 mmTangent to tangent length: L = 10,000 mmSaddle separation: Ls = 8,000 mmVessel radius: R = 808 mmTangent distance left: Al = 1,000 mmTangent distance right: Ar = 1,000 mmSaddle height: Hs = 1,300 mmSaddle contact angle: θ = 120 °Wind pressure: 0.66 kPaWear plate thickness: tp = 8 mmWear plate width: Wp = 400 mmWear plate contact angle: θw = 132 °Web plate thickness: ts = 10 mmBase plate length: E = 1,425 mmBase plate width: F = 230 mmBase plate thickness: tb = 10 mmNumber of stiffener ribs: n = 4Largest stiffener rib spacing: di = 463.2 mmStiffener rib thickness: tw = 10 mmSaddle width: B = 205 mmAnchor bolt size & type: 20 mmAnchor bolt material: SA-36Anchor bolt allowable shear: 103.421 MPaAnchor bolt corrosion allowance: 0 mmAnchor bolts per saddle: 2Base coefficient of friction: µ = 0.45

Weight on left saddle: operating corr =1,302.72 kg, test new =12,581.75 kgWeight on right saddle: operating corr =1,215.63 kg, test new =12,490.57 kgWeight of saddle pair =363.78 kg

Notes:(1) Saddle calculations are based on the method presented in "Stresses in Large Cylindrical Pressure Vessels onTwo Saddle Supports" by L.P. Zick.

Seismic base shear on vessel

Vessel is assumed to be a rigid structure.Method of seismic analysis: UBC 1997 ground supportedVertical seismic accelerations considered: YesForce Multiplier: 0.3333Minimum Weight Multiplier: 0.2Seismic zone: 2BImportance factor: I = 1Soil profile: SD

29/35

Page 31: SV1-SV3

V = 0.7 * Ca * I * W/1.4= 0.7 * 0.28 * 1 * 24,696.53/1.4= 3,457.51 N

Saddle reactions due to weight + seismic

Vv = vertical seismic force acting on left saddleV = horizontal seismic shear acting on left saddle (worst case if not slotted)

Seismic longitudinal reaction, Ql (left saddle):

Ql = V * Hs / Ls + Vv= 3,457.51 * 1,300 / 7,999.9999 + 2,555.06= 3,116.9 N

Seismic transverse reaction, Qt (left saddle):

Qt = V*Hs/(Ro*Sin( θ /2 )) + Vv= 1,788.54*1,300/(808*Sin( 120 /2 )) + 2,555.06= 5,877.83 N

Q = Weight on saddle + larger of Qt or QlQ = W + Qt = 12,775.29 + 5,877.83 = 18,653.12 N

Transverse wind shear on vessel

Vwt = Pw*G*(Cf(shell)*(Projected shell area) + Cf(saddle)*(Projected saddle area))= 0.66*0.85*1000*(0.6*17.1764 + 2*0.2017)= 6,021.58 N

End wind shear on vessel

Vwe = Pw*G*(Cf(shell)*π*Ro2 / 144 + Cf(saddle)*(Projected saddle area))

= 0.66*1e3*0.85*(0.5*π*0.8082 / 1 + 2*0.88)= 1,564.66 N

Load Vesselcondition

Bending + pressurebetween saddles

(MPa)

Bending + pressure atthe saddle

(MPa)

S1(+)

allow(+)

S1(-)

allow(-)

S2(+)

allow(+)

S2(-)

allow(-)

Seismic Operating 20.231 165.6 2.553 92.347 19.353 165.6 1.675 92.347

Wind Operating 20.192 165.6 2.515 92.347 19.074 165.6 1.396 92.347

Wind Test 25.928 235.8 10.755 92.347 23.893 235.8 8.721 92.347

Load Vesselcondition Tangential

shear (MPa)Circumferential

stress (MPa)

Stress oversaddle(MPa)

Splitting(MPa)

S3 allow S5 allow S6 allow

30/35

Page 32: SV1-SV3

S4(horns)

S4(Wearplate)

allow(+/-)

Seismic Operating 4.384 110.4 -17.809 -51.634 207 6.421 123 0.644 91.93

Wind Operating 4.474 110.4 -17.538 -50.847 207 6.324 123 0.634 91.93

Wind Test 17.402 188.64 -83.555 -139.227 235.8 31.759 235.8 4.324 235.801

Longitudinal stress between saddles (Seismic ,Operating, left saddle loading and geometry govern)

S1 = +- 3*K1*Q*(L/12) / (π*R2*t)= 3*0.5581*18,653.12*(10,000/12) / (π*805.52*5)= 2.553 MPa

Sp = P*R/(2*t)= 0.22*803/(2*5)= 17.678 MPa

Maximum tensile stress S1t = S1 + Sp = 20.231 MPaMaximum compressive stress (shut down) S1c = S1 = 2.553 MPa

Tensile stress is acceptable (<=1.2*S*E = 165.6 MPa) (165.6 MPa)Compressive stress is acceptable (<=1.2*Sc = 92.347 MPa)

Longitudinal stress at the left saddle (Seismic ,Operating)

Le = 2*(Left head depth)/3 + L + 2*(Right head depth)/3= 2*404.61/3 + 10,000 + 2*404.61/3= 10,539.48 mm

Seismic vertical acceleration coefficient m = 1.4286*0.14 = 0.2

w = Wt*(1 + m)*10/Le = 24,696.53*(1 + 0.2)*10/10,539.48 = 28.12 N/cm

Bending moment at the left saddle:

Mq = w*(2*H*Al/3 + Al2/2 - (R2 - H2)/4)

= 28.12/10000*(2*404.61*1,000/3 + 1,0002/2 - (8082 - 404.612)/4)= 1,820.6 N-m

S2 = +- Mq*K1'/ (π*R2*t)= 1,820.6*1e3*9.3799/ (π*805.52*5)= 1.675 MPa

Sp = P*R/(2*t)= 0.22*803/(2*5)= 17.678 MPa

Maximum tensile stress S2t = S2 + Sp = 19.353 MPaMaximum compressive stress (shut down) S2c = S2 = 1.675 MPa

Tensile stress is acceptable (<=1.2*S = 165.6 MPa)Compressive stress is acceptable (<=1.2*Sc = 92.347 MPa)Circumferential stress at the left saddle horns (Seismic ,Operating)

S4 = -Q/(4*(t+tp)*(b+1.56*Sqr(Ro*t))) - 3*K3*Q/(2*(t2+tp2))

31/35

Page 33: SV1-SV3

= -18,653.12/(4*(5+8)*(205+1.56*Sqr(808*5))) - 3*0.0529*18,653.12/(2*(52+82))= -17.809 MPa

Circumferential stress at saddle horns is acceptable (<=1.5*Sa = 207 MPa)

Circumferential stress at the left saddle wear plate horns (Seismic ,Operating)

S4 = -Q/(4*t*(b+1.56*Sqr(Ro*t))) - 3*K3*Q/(2*t2)= -18,653.12/(4*5*(205+1.56*Sqr(808*5))) - 3*0.0434*18,653.12/(2*52)= -51.634 MPa

Circumferential stress at wear plate horns is acceptable (<=1.5*Sa = 207 MPa)

Ring compression in shell over left saddle (Seismic ,Operating)

S5 = K5*Q/((t + tp)*(ts + 1.56*Sqr(Ro*tc)))= 0.7603*18,653.12/((5 + 8)*(10 + 1.56*Sqr(808*13)))= 6.421 MPa

Ring compression in shell is acceptable (<= 0.5*Sy = 123 MPa)

Saddle splitting load (left, Seismic ,Operating)

Area resisting splitting force = Web area + wear plate area

Ae = Heff*ts + tp*Wp= 26.9333*1 + 0.8*40= 58.9333 cm2

S6 = K8*Q / Ae= 0.2035*18,653.12 / 5,893.3328= 0.644 MPa

Stress in saddle is acceptable (<= (2/3)*Ss = 91.93 MPa)

Tangential shear stress in the shell (left saddle, Wind ,Operating)

Qshear = Q - w*(a + 2*H/3)= 18,368.77 - 2.34*(1,000 + 2*404.61/3)= 15,393.46 N

S3 = K2.2*Qshear/(R*t)= 1.1707*15,393.46/(805.5*5)= 4.474 MPa

Tangential shear stress is acceptable (<= 0.8*S = 110.4 MPa)

Shear stress in anchor bolting, one end slotted

Maximum seismic or wind base shear = 3,457.51 N

Thermal expansion base shear = W*µ = 14,559.03 * 0.45= 6,551.56 N

Corroded root area for a 20 mm bolt = 2.3484 cm2 ( 2 per saddle )

Bolt shear stress = 6,551.56/(234.8382*2) = 13.949 MPa

32/35

Page 34: SV1-SV3

Anchor bolt stress is acceptable (<= 103.421 MPa)

Web plate buckling check (Escoe pg 251)

Allowable compressive stress Sc is the lesser of 137.895 or 107.812 MPa: (107.812)

Sc = Ki*π2*E/(12*(1 - 0.32)*(di/tw)2)= 1.28*π2*19.99E+04/(12*(1 - 0.32)*(463.2/10)2)= 107.812 MPa

Allowable compressive load on the saddle

be = di*ts/(di*ts + 2*tw*(b - 1))= 18.2362*0.3937/(18.2362*0.3937 + 2*0.3937*(8.0709 - 1))= 0.5632

Fb = n*(As + 2*be*tw)*Sc= 4*(1,950 + 2*14.31*10)*107.812= 964,322.3 N

Saddle loading of 127,014.37 N is <= Fb; satisfactory.

Primary bending + axial stress in the saddle due to end loads (assumes one saddle slotted)σb = V * (Hs - xo)* y / I + Q / A= 3,457.51 * (1,300 - 668.21)* 102.5 / (1e4*2,875.04) + 18,653.12 / 21,794.97= 8.644 MPa

The primary bending + axial stress in the saddle <= 137.895 MPa; satisfactory.

Secondary bending + axial stress in the saddle due to end loads (includes thermal expansion, assumes onesaddle slotted)σb = V * (Hs - xo)* y / I + Q / A= 10,009.08 * (1,300 - 668.21)* 102.5 / (1e4*2,875.04) + 18,653.12 / 21,794.97= 23.401 MPa

The secondary bending + axial stress in the saddle < 2*Sy= 524.002 MPa; satisfactory.

Saddle base plate thickness check (Roark sixth edition, Table 26, case 7a)

where a = 463.2, b = 110 mm

tb = (β1*q*b2/(1.5*Sa))0.5

= (3*0.388*1102/(1.5*137.895))0.5

= 8.25 mm

The base plate thickness of 10 mm is adequate.

Foundation bearing check

Sf = Qmax / (F*E)= 127,014.37 / (230*1,425)= 0.388 MPa

Concrete bearing stress < 11.432 MPa ; satisfactory.

33/35

Page 35: SV1-SV3

Seismic Code

Seismic calculations are reported in the saddle report.

34/35

Page 36: SV1-SV3

Wind Code

Wind calculations are reported in the saddle report.

35/35