sverre holm and fabrice prieur...second harmonic imaging in active sonar tutorial lecture 8. january...

55
Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Upload: others

Post on 15-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Second harmonic imaging in active sonar

Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium

Sverre Holm and Fabrice Prieur

Page 2: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

2015-20233 academic, 11 commercial, 4 public partners.

Norwegian Research CouncilNorwegian Research CouncilCentre for research-based innovation (SFI)

Page 3: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

The Great Wave off Kanagawa. Katsushika Hokusai (1760–1849)

8 Jan 2016 2016 IEEE/OES China Ocean Acoustics Symposium 4

( )

Page 4: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Outline

• Wave equation and the two mechanisms for li itnonlinearity

• Important applications• Second harmonic sonar

8 Jan 2016 52016 IEEE/OES China Ocean Acoustics Symposium

Page 5: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Harmonic generation

• Losses• Nonlinearityy• Weak

nonlinearityy

• Muir and Carstensen: Prediction of nonlinear acoustic effects at biomedical frequencies and intensities, Ultrasound in Medicine & Biology, 1980Medicine & Biology, 1980

8 Jan 2016 62016 IEEE/OES China Ocean Acoustics Symposium

Page 6: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Applications of nonlinear acoustics

Difference frequency: Harmonics:

• Parametric sonar • Harmonic imaging in medical ultrasound

• Parametric loudspeaker• Harmonic imaging in

• Parametric imaging in medical ultrasound

sonar

8 Jan 2016 2016 IEEE/OES China Ocean Acoustics Symposium 7

Page 7: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Tissue Harmonic Medical Imaging

• Ultrasound image of a heart (parasternal view) using second harmonic (left) and fundamental (right) signals. (Courtesy of Asbjørn Støylen, NTNU, Trondheim, Norway, , y

8 Jan 2016 82016 IEEE/OES China Ocean Acoustics Symposium

Page 8: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Muir 1980

Range – bearing display@ 100 m range

4th harmonic: fair reprentation of cylinder target

8 Jan 2016 2016 IEEE/OES China Ocean Acoustics Symposium 9

y g

Page 9: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Parametric sub-bottom profiler

TOPAS parametric sonar. Water depth >4600 m, penetration depth 60-90 m. C t f K b M iti NCourtesy of Kongsberg Maritime, Norway8 Jan 2016 102016 IEEE/OES China Ocean Acoustics Symposium

Page 10: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

P i d d b filPrimary and secondary beamprofiles

Primary: 40 kHz Secondary: 4 kHz

Conventional sonar would have required 5 10 times larger aperture

8 Jan 2016 2016 IEEE/OES China Ocean Acoustics Symposium 11

5-10 times larger aperture

Page 11: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Lossless wave equation

• Think of u as the displacement of a string

u(x,t)

• Left: Positive second derivative if u(x) is• Left: Positive second derivative if u(x) is smaller than its neighbors

• Right: Then acceleration is upwards8 Jan 2016 132016 IEEE/OES China Ocean Acoustics Symposium

Page 12: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Lossless wave equation

• Laplacian, second derivative in space:p , p

• c0 = speed of sound (at zero frequency)• p = pressure

8 Jan 2016 142016 IEEE/OES China Ocean Acoustics Symposium

Page 13: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Add some losses

• , viscosity/bulk modulus (solid), y ( )

• Small loss approximation:• Small loss approximation:• So lossy wave equation is often written

8 Jan 2016 152016 IEEE/OES China Ocean Acoustics Symposium

Page 14: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Losses in a fluid, gas in particular

• Loss: M h i l• Mechanical:– - shear and bulk viscosity coefficients

Thermal• Thermal:– · - thermal conductivity– c c - heat capacity at constant volume/pressurecv , cp heat capacity at constant volume/pressure.

• Loss terms are additive at low frequencies

8 Jan 2016 162016 IEEE/OES China Ocean Acoustics Symposium

Page 15: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Then add nonlinearity

• Nonlinearity coefficient:

• Nonlinearity parameter: B/AW t lt ti• Westervelt equation

8 Jan 2016 172016 IEEE/OES China Ocean Acoustics Symposium

Page 16: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Observations

• Mechanical and thermal losses

• Also two contributions to nonlinearity

8 Jan 2016 182016 IEEE/OES China Ocean Acoustics Symposium

Page 17: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Nonlinearity (1)

• Convection: The ’1’ in β=1+B/2A• The collective movement of ensembles of

molecules within fluids• Propagation velocity is due to

particle velocity, u:p y,

8 Jan 2016 192016 IEEE/OES China Ocean Acoustics Symposium

Page 18: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Nonlinearity (2)

– B/2A term: Pressure – density relationG l di b ti ( h t t f ) V C– Gas law, adiabatic (no heat transfer) pV=C– γ is the adiabatic exponent, = 1.4 for air

Closed enclosure subwoofer:A lo dspeaker affects the ol me– A loudspeaker affects the volume

– Our ears sense the pressureS ll b & hi h– Small box & high-power

– Siegfrid Linkwitz, www.linkwitzlab.com

8 Jan 2016 202016 IEEE/OES China Ocean Acoustics Symposium

Page 19: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

State equation for gas (gas law)

• Taylor series for pressure variation:

C ( ) /• Combined: A=0, B=0(-1) and B/A = -1

• A nonlinear spring: replaces Hooke’s lawA nonlinear spring: replaces Hooke s law– Similar approach for fluids

8 Jan 2016 212016 IEEE/OES China Ocean Acoustics Symposium

Page 20: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Nonlinearity parameter B/AMaterial B/A = γ-1

Bl d 6 1Blood 6.1

Brain 6.6

Fat 10

Liver 6.8β=1+B/2A is nonlinearitycoefficient

Muscle 7.4

W t 5 2

coefficient

Water 5.2

• Wikipedia

228 Jan 2016 2016 IEEE/OES China Ocean Acoustics Symposium

Page 21: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Sound speed under nonlinearitySound speed under nonlinearitySpeed of sound, c, varies with particle di l tdisplacement, u, or pressure p:

– p1(t) = pressure = p0 + p(t)• p0 = static pressurep0 static pressure• p(t) = applied pressure variation (= ”signal”)

8 Jan 2016 252016 IEEE/OES China Ocean Acoustics Symposium

Page 22: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Nonlinearity and plane wave• A plane wave in water, • Initial amplitude: 2 MPa = 20 atm• Frequency of 3 5 MHzFrequency of 3.5 MHz• Propagates for 100 mm. • Starts to deform immediately, • Peak-to-peak amplitude and power

decrease only slowly, following the y y, gexponential attenuation of water.

• Beyond 35 mm, however, a shock wave has formed, and the amplitude decreases rapidly.

• By 100 mm the amplitude has• By 100 mm, the amplitude has halved, and 80% of the beam's power has been lost.

• Generated by the "Bergen code" written at the University of Bergen i N

y gin Norway.

8 Jan 2016 2016 IEEE/OES China Ocean Acoustics Symposium 26

Page 23: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

1 MHz pulse shape and harmonics measured in water tank in our labmeasured in water tank in our lab

Fabrice Prieur, Sept. 2009

8 Jan 2016 2016 IEEE/OES China Ocean Acoustics Symposium 27

Page 24: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Harmonic & intermodulation distortionHarmonic & intermodulation distortion

Transmit f1 and f2

1. Harmonic distortion: 2f1, 2f2, 3f1, 3f2, ...

2. Intermodulation distortion: f1-f2, f1+f2, 2f1-f2, ...

8 Jan 2016 292016 IEEE/OES China Ocean Acoustics Symposium

Page 25: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Main applications of nonlinearity

1. Harmonic imaging, medical ultrasound: – Transmit f: generate 2f, (3f, 4f, ...)

2. Parametric sound source, parametric sonar:– Transmit f1 and f2: Use difference frequency f1-f2– Narrow beam at primary frequencies also at

difference frequency

8 Jan 2016 302016 IEEE/OES China Ocean Acoustics Symposium

Page 26: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

1 Harmonic imaging

8 Jan 2016 312016 IEEE/OES China Ocean Acoustics Symposium

Page 27: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Circular symmetric (1-D) simulation

1. harmonic: 2. harmonic:

15 mm aperturte, focus 60 mm, f=2.275 MHzJ.F.Synnevåg UIO, Burgers equation (Christopher & Parker k-space)

8 Jan 2016 2016 IEEE/OES China Ocean Acoustics Symposium 32

Page 28: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

1. Harmonic imaging, ultrasound

Whittingham Medical diagnostic

• Positive effect on images:– 2. harmonic beam is narrower => better resolution– Is not generated in sidelobes of 1. harmonic beam => lower sidelobes

Whittingham, Medical diagnostic applications and sources, Progress Biophys & Molecular Biology, 2007

– Is generated inside medium => avoids some of the reverberations from chest wall• Negative effect:

– 2. harmonic attenuates faster => less penetration

8 Jan 2016 2016 IEEE/OES China Ocean Acoustics Symposium 33

Page 29: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Liver, 1. harmonic vs 2. harmonic

8 Jan 2016 342016 IEEE/OES China Ocean Acoustics Symposium

Page 30: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

2. Parametric imaging

8 Jan 2016 352016 IEEE/OES China Ocean Acoustics Symposium

Page 31: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

2a. Parametric audio sound source

• Non-linear interaction• Holosonics: Audio Spotlight• Holosonics: Audio Spotlight

– http://www.holosonics.com/

8 Jan 2016 2016 IEEE/OES China Ocean Acoustics Symposium 36

Page 32: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Parametric Audio Source• Primary frequencies 50-70 kHz• Transmission of a single sinusoid: simpleTransmission of a single sinusoid: simple

• Ex: transmission of two sinusoids: 1 and 1.3 kHz – Send 50, 51 and 51.3 kHz– Nonlinarity creates 1 and 1.3 kHz: OK– It also gives intermodulation products at 0.3 kHz + g p

harmonics ++– Result: Up to 50% distortion with broadband audio

• Predistortion to cancel the undesired intermodulation

8 Jan 2016 382016 IEEE/OES China Ocean Acoustics Symposium

Page 33: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

2b Parametric medical imaging

8 Jan 2016 392016 IEEE/OES China Ocean Acoustics Symposium

Page 34: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

SURF: Second order UltRasound Field• Hansen, Måsøy, Angelsen, Utilizing

dual frequency band transmit pulse l i di l lt d

Higher ccomplexes in medical ultrasound imaging. J. Acoustical Society of Am. 2010

• The HF pulses are used for image reconstruction, whereas the LF pulses are used to manipulate the p pnonlinear elastic properties of the medium observed by the HF imaging pulses.Lower c

• Reverberation suppresion through Dual Band Imaging + Multiple transmissions and Delay Corrected SubtractionSubtraction

8 Jan 2016 402016 IEEE/OES China Ocean Acoustics Symposium

Page 35: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

2c. Parametric sonar

• Topas: Kongsberg Defense & AerospaceAerospace

• Parametric sub-bottom profilers• Low frequency sound generation

due to non-linear interaction indue to non linear interaction in the water column from two high intensity sound beams at higher frequencies.

• The resulting signal has a high relative bandwidth (~80%), narrow beam profile P t ti 100 150• Penetration ~100 m, 150 ms

8 Jan 2016 422016 IEEE/OES China Ocean Acoustics Symposium

Page 36: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

KONGSBERG Sub-Bottom Profilers: The full rangeKONGSBERG Sub Bottom Profilers: The full range

8 Jan 2016 432016 IEEE/OES China Ocean Acoustics Symposium

Page 37: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Topas: Parametric profilersPS 18 PS 40 PS 120

Secondary 0.5-6 kHz 1-10 kHz 2-30 kHzyfrequencyPrimary frequencies

15-21 kHz 35-45 kHz 70-100 kHz

Source levels

Secondary: 208Primary: 242

Secondary: 206Primary: 240

Secondary: 202Primary: 238

Water depth > 10m 5 to > 1000 m 3 to > 400 m

Hor. <5 x 5 deg < 4 x 6 deg < 4 x 6 degresolution

Signatures CW, Chirp, Ricker

8 Jan 2016 462016 IEEE/OES China Ocean Acoustics Symposium

Page 38: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

TOPAS PS 18 – 650 meters depth (faults)

~30 meters40 ms

Mediterranean1.5 to 5 kHz, 20 ms Chirp signal

8 Jan 2016 502016 IEEE/OES China Ocean Acoustics SymposiumCourtesy of CSIC, Spain.

Page 39: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Kongsberg TOPAS PS 18Deep water (~3,750

meters) highmeters), high

penetration 200 m

(> 200 meters)

S th G iSouth Georgia1.5 to 5 kHz, 20 msChirp signal.Courtesy of CSIC, Spain

8 Jan 2016 512016 IEEE/OES China Ocean Acoustics Symposium

Page 40: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Kongsberg TOPAS PS 40

Gas?Organic gas?

5 kHz Ricker pulse from the Stockholm Archipelago Sweden8 Jan 2016 2016 IEEE/OES China Ocean Acoustics Symposium 52

5 kHz Ricker pulse, from the Stockholm Archipelago, Sweden

Page 41: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

TOPAS PS 40 – buried pipeline

Sheng Li area, China.(No heave compensation used)(No heave compensation used)Courtesy of SOA, China.

8 Jan 2016 532016 IEEE/OES China Ocean Acoustics Symposium

Page 42: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Harmonic imaging in sonar

1. Success in medical imaging2. Observation of target strength estimates in

fishery research that fall with sonar power3. Frequency response for target

characterization 4. Wideband transducers are now feasible

8 Jan 2016 552016 IEEE/OES China Ocean Acoustics Symposium

Page 43: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

8 Jan 2016 562016 IEEE/OES China Ocean Acoustics Symposium

Page 44: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Observed underestimation of target strength (TS) in fishery researchstrength (TS) in fishery researchTS falls with power due to nonlinear conversion

• Tichy, Solli, Klaveness. "Non-linear effects in a 200-kHz sound beam and the consequences for target-strength measurement." ICES J. Marine Science, 2003

8 Jan 2016 572016 IEEE/OES China Ocean Acoustics Symposium

Page 45: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

TS estimation at different frequencies is useful to aid in target classificationis useful to aid in target classification

• Fish or zooplanktonVaries with size– Varies with size

– Presence of swimbladder

• Other: Bathymetry, buried object detection, gas seep detection

R. J. Korneliussen and E. Ona ICES J. Mar. Sci., 2003R. J. Korneliussen and E. Ona ICES J. Mar. Sci., 20038 Jan 2016 582016 IEEE/OES China Ocean Acoustics Symposium

Page 46: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Measurements in 6 x 15 x 6 m tank

• Fig. 1 Setup for measurements of pressure fields in water tank. The hydrophone is positioned along the z-axis and θ is the angle between th t d ’ i ti di ti d th ithe transducer’s main propagation direction and the z-axis.

8 Jan 2016 592016 IEEE/OES China Ocean Acoustics Symposium

Page 47: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Simulation, distilled water

8 Jan 2016 2016 IEEE/OES China Ocean Acoustics Symposium 60

Page 48: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Measured spectra @ 3 m, 121 kHz2.: harm -12, -19 dB

3. harm: -25, -42 dB

100-W (thick line) and 600-W (thin line) input electrical power.

8 Jan 2016 612016 IEEE/OES China Ocean Acoustics Symposium

Page 49: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Axial response: Simulation vs measurement 121 kHzmeasurement, 121 kHz

- ASA simulator-.- KZKTexas

1. harmonic matches measurement; 2, 3. harmonics match measurement

ES120-7C transducer—input electrical power level: 600 W.

8 Jan 2016 622016 IEEE/OES China Ocean Acoustics Symposium

Page 50: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Radial profile: Narrower main lobe and lower sidelobes 121 and 200 kHzlower sidelobes, 121 and 200 kHz

1. sidelobe: -29, -41 dB

Radial profiles, 3 m, ES120-7C (left) and ES200-7C (right). Input pwr = 600W (450 kPa, 800 kPa). Markers = measurements, lines = ASA sim Deviation < 4dB (left) and 9db (right)lines = ASA sim. Deviation < 4dB (left) and 9db (right).8 Jan 2016 632016 IEEE/OES China Ocean Acoustics Symposium

Page 51: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Spherical targets: 13 7 and 38 1 mmSpherical targets: 13.7 and 38.1 mm

Fundamental (black)

Second harmonic (red)

8 Jan 2016 642016 IEEE/OES China Ocean Acoustics Symposium

Page 52: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Range estimation: Parameters in active sonar equationactive sonar equation

8 Jan 2016 652016 IEEE/OES China Ocean Acoustics Symposium

Page 53: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Sonar equation: Fundamental, 200 kHzReverberation-limitedReverberation-limited

SL 2TL+TSSL-2TL+TS

RL+DT

NL-DI+DT Reverb limited: 343 mReverb-limited: 343 m

8 Jan 2016 662016 IEEE/OES China Ocean Acoustics Symposium

Page 54: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Sonar equation: 2. harmonic, 400 kHzNoise-limitedNoise-limited

SL 2TL+TSSL-2TL+TS

RL+DT

NL-DI+DT Noise-limited: 243 mReverb-limited: 660 m

Counterintuitive: In a reverb-limited scenario, range ld b 2 f d l’would be ~2x fundamental’s range

8 Jan 2016 672016 IEEE/OES China Ocean Acoustics Symposium

Page 55: Sverre Holm and Fabrice Prieur...Second harmonic imaging in active sonar Tutorial lecture 8. January 2016, 2016 IEEE/OES China Ocean Acoustics Symposium Sverre Holm and Fabrice Prieur

Conclusion: Second harmonic imaging in active sonarimaging in active sonar• Will obtain useful range even at 2. harmonic• Wideband transducers are now feasible• Comparison to wideband sonar which p

transmits at fundamental then at 2. harmonic:– Much better sidelobe suppression than if one had pp

transmitted at 2x frequency– Twice the update rate

• Improved image resolution• Better target characterization• Better target characterization 8 Jan 2016 682016 IEEE/OES China Ocean Acoustics Symposium