switched-capacitor circuit implementations · 2020. 10. 30. · switched-capacitor circuit...

55
Switched-Capacitor Circuit Implementations • SC Biquads: Block Diagram Representations and Implementations • SC Techniques for reduced area and high Q-filters • Other SC applications ECE 622(ESS) 1

Upload: others

Post on 15-Feb-2021

19 views

Category:

Documents


0 download

TRANSCRIPT

  • Switched-Capacitor Circuit Implementations • SC Biquads: Block Diagram Representations and Implementations • SC Techniques for reduced area and high Q-filters • Other SC applications

    ECE 622(ESS) 1

  • PRACTICAL CONSIDERATIONS FOR OP AMPS

    Key op amp specifications:

    •Gain

    •Speed (BW)

    •Supply voltages

    •Output swing

    •Noise

    •Power

    +

    2

  • NON-IDEAL EFFECTS OF OP AMPS

    A. FINITE DC GAIN For a two integrator biquadratic filter:

    QAQ

    AQ

    QA

    A

    o

    o

    aoo

    ooA

    −≅

    +=

    +=

    21211

    1ωω

    Therefore: - deviations are negligible - Q deviations can be significant

    B. FINITE BANDWIDTH • Bandwidth is very critical for high frequency applications

    3

  • How to determine the GB of an Op Amp? • The required GB is a function of the clock frequency and the feedback topology around the Op Amp. • A rule of thumb to select GB requires to satisfy the following inequality: a GB T/2 > 5 or GBT> 10/a where T is the period of the clock frequency, a is the capacitor ratio between the sum of all the feedback capacitors divided by the sum of all the capacitors connected to the input terminal of the Op Amp. More details later

    4

  • MULTI-STAGE OP AMP DESIGN A. SINGLE-ENDED CONFIGURATION • High gain • CMRR = 0 • Nested compensation trades BW for stability

    B. FULLY DIFFERENTIAL CONFIGURATION • High gain • Good CMRR • Rail-to-rail output swing • Higher bandwidth (less compensation) • Requires and additional CMFB and dynamic reset 5

  • Noise due to the switches

    • The switch noise density can be expressed as

    • Because two switches are present

    kTRswitch4v 2noise,sw =vin

    Vnoise Rswitch

    C

    Rswitch

    ∫ π==

    BW

    2total,sw RswitchC

    kTRswitch4dfkTRswitch8v

    CkT4v total,sw π

    =or

    4kT=16x10-21V2C For C=1 pF the noise level is around 70 µV C=10 pF ==> noise level is around 20 µV

    6

  • Clock Feedthrough

    The charge in the channel is

    When the switch is opened the channel charge, ideally, should be injected to vin, otherwise an error proportional to Q-channel is induced.

    If CP is small, then few electrons charge the capacitor at lower voltage, then rejecting the electrons. Then most of the charge is absorbed by the previous stage.

    IMPLEMENTATION

    ( )TGSOXchannel VVWLCQ −=-

    +

    Ci VG -VSS Vi Cf

    It is a matter of parasitic capacitances

    VG Vi

    CP

    ( )TDDOX1 V0VWLCQ −−=

    ( )TDDOX2 VVinVWLCQ −−=

    Basic principle

    7

  • Minimization of Clock Feedthrough

    The right hand side switches are opened before the others

    switches 1’ and 2’ can be implemented with

    only n-channel and should be turn off before switches 1 and 2.

    Error is minimized using these early clock phases Reference. D. A. Johns and K. Martin, “ Analog Integrated Circuit Design” Chapter 10

    -

    +

    Vi Cf

    VG Vi

    CP

    1 1’

    2 2’

    Ci

    Ci

    1’ 1

    8

  • Switch Resistance

    -

    +

    Cf VDD VDD

    vi

    VSS VSS

    Ci VT=VT0+∆V

    Body effect

    vi

    Rs

    ( )VTVVDDWCLRs

    iOXn −−µ=

    Vi=VDD-VT

    For VDD=1.5 V, and VT=1 ==> Vi

  • BASIC BUILDING BLOCKS

    A. GAIN AMPLIFIERS

    Basic Configuration:

    •Compact, versatile & time

    continuous

    •Lacks dc feedback

    - Op amp is not stabilized

    - Leakage current saturates the

    circuit

    −+

    o o

    iV

    IC

    1oV

    SC

    I

    SCCGain −=

    Analog and Mixed Signal Center TAMU 10

  • Improved Gain Amplifier •Low sensitivity to the op amp

    offset voltage and open loop

    gain (due to charge

    cancellation

    •Additional capacitor between

    nodes A and B eliminates the

    “spikes” during the non-

    overlapping clock phases IS

    CCgain −=

    −+

    o o

    iV

    HC

    oVSC

    •1φ

    2φ••

    A

    B

    •• •

    •• •

    IC 1φ

    11

  • B. Integrators Conventional stray-insensitive integrators: •Non-inverting:

    •Inverting:

    −+

    o

    iV

    ICooV

    SC••

    o

    eoVo

    • •

    1φ•

    −+

    o

    iV

    ICooV

    SC••

    o

    eoVo

    • •1φ

    2φ2φ

    1φ•

    12

  • Type of Integrator

    Mapping Transfer (Equivalent) Function

    Magnitude, )e(H Tjω

    Phase, )e(HA TjRG

    ω

    −+

    • •

    1V

    2C

    oV1R

    1V

    −+

    • •

    2C

    oV1C

    1φ 2φ

    Inverting (Forward)

    Non-Inverting

    Inverting (Backward)

    −+

    • •

    2C

    oV

    1C

    iV• •

    −+

    • •

    2C

    oV

    1C

    iV• •

    2φ2φ

    ωωo

    ))2/Tsin(

    2/T(

    atVFor

    o

    2o

    ωω

    ωω

    φ

    ))2/Tsin(

    2/T(

    atVFor

    o

    1o

    ωω

    ωω

    φ

    ))2/Tsin(

    2/T(

    atVFor

    o

    2o

    ωω

    ωω

    φ

    ))2/Tsin(

    2/T(

    atVFor

    o

    1o

    ωω

    ωω

    φ

    ))2/Tsin(

    2/T(

    atVFor

    o

    2o

    ωω

    ωω

    φ

    ))2/Tsin(

    2/T(

    atVFor

    o

    1o

    ωω

    ωω

    φ

    2T

    −π

    2T

    −π

    2T

    In the S-Plane LDI

    Forward

    LDI Forward

    Backward

    LDI

    SCSR1)S(H.e.i o

    21

    ω−==

    )Z1

    Z(CC)Z(H 1

    2/1

    2

    1−

    −−=

    )Z1

    Z(CC)Z(H 1

    1

    2

    1−

    −−=

    )Z1

    Z(CC)Z(H 1

    2/1

    2

    1−

    −=

    )Za

    Z(CC)Z(H 1

    1

    2

    1−

    −−=

    )Z1

    Z(CC)Z(H 1

    2/1

    2

    1−

    −−=

    )Z11(

    CC)Z(H 1

    2

    1−−

    −=

    13

  • Basic SC first-order low-pass

    −+

    inV 1R

    2R

    CoutV

    −+inV

    CoutV1

    C• •

    2φ2φ

    2C• •

    2φ2φ

    Active RC prototype

    2

    12sCR1

    R/R)s(H+

    −=

    2,1i,fC/1C/TR Siieq ===

    1)C/C1(zz)C/C()z(H

    2

    1−+

    −=

    0Zzero =

    )C/C1/(1Z 2pole +=

    14

  • Improved Integrator with reduced capacitance spread

    Problem: offset Solution: use an offset & low dc gain compensated integrator as the 2nd stage (only valid for two-integrator loop applications)

    −+

    oinV C eoV1

    C• •

    2φ2φ

    2C

    • •

    o o• •

    ••

    3C

    4C

    1'42

    31oin

    eooe

    z11

    CCCC

    )z(V)z(V)z(H −−

    −==

    34'4 CCC +=

    15

  • Offset and gain compensated Integrator

    • compensates the offset voltage and dc gain error of the op amp • eliminates spikes (providing continuous feedback to the op amp)

    −+

    oinV ooV1C

    • •

    2φ2φ

    FC

    o o• •

    ••

    hC2φ1φ

    MC

    1F

    1oin

    oooo

    z11

    CC

    )z(V)z(V)z(H −−

    −==

    hC

    MC

    16

  • SWITCHED-CAPACITOR FILTER IMPLEMENTATIONS

    φ1 φ1 φ1φ1

    C2 C3

    C1 CA

    φ2 φ2 φ2 φ2

    Vi ooV

    + 1Z11

    −−+

    iVA

    2

    CC

    A

    3

    CC

    A

    1

    CC

    i

    A

    3

    A

    1

    A

    21

    o V

    1ZCC

    1

    CC

    ZC

    CC

    V

    +

    ++

    −=

    + 1Z11

    −− 1Z11

    −−+ +

    1K−

    2K−

    3K−

    4K−

    1oV

    15ZK

    6K−

    2oV

    φ2

    φ1

    K1C1

    φ2

    C1

    C2

    K6C2

    φ1

    φ1φ1

    φ2 φ2

    V02

    φ1

    φ1

    φ2φ1 K5C2

    V01

    K4C1

    φ1

    φ2 φ2

    K2C2φ1

    φ2 φ2

    φ1

    Vi

    K3C2

    φ2

    17

  • −+

    12 =C

    )(out sV

    11 =C

    )(SVin

    • Q/1

    • • −+

    2k

    oω/1−

    • • •

    ok ω/1

    oo k/ω

    oω/1

    An alternate realization of a general active-RC biquad filter

    A direct mapping from an active-RC filter into a SC Filter. Since negative (equivalent) resistances are easily implemented in SC, a modified Active-RC prototype is next described

    18

  • • 16CK

    23CK

    • •

    2φ2φ

    25CK

    2φ1φ

    14CK

    )(1 ZV

    )(ZVi−+

    • • 11CK

    2φ• • •

    1φ 1φ

    12CK

    • 1C

    • • −+

    2C

    )(out ZV•

    A high-Q switched-capacitor biquad filter (without switch sharing). 19

  • + + outV

    + 1Z11

    −− 1Z11

    −−+ +

    1K−

    2K−

    3K−

    4K−

    15 ZK

    6K−

    outV

    Vio

    oKω

    1o kω−

    2k−

    s1 s1+

    Q−

    oω−

    Building Block Diagrams of Figs. In p 18 and 19

  • Biquad Circuit & Block Diagrams

    Circuit Diagram Block Diagram

    −+inV

    ooVAC

    • •

    C

    o o• •

    −+

    GC• •

    C

    • •

    CC• •

    1φ• •

    ECInverting Summer

    E−

    A

    1

    1

    z1z

    −∑ 1z1

    1−−

    o

    oV∑

    C−

    G−o

    inV

    Inverting Integrators Non-inverting Integrator

    21

  • Biquad Circuit 1

    Circuit Diagram Block Diagram

    −+

    inV

    oV

    2C

    o

    o• •−+

    1C

    22Cα2φ

    25Cα

    1φ 2φ

    17Cα

    1φ 2φ

    28Cα2φ

    •••

    ••

    • • •

    • •

    2φ 1φ

    22

  • Biquad Circuit 2

    Block Diagram Circuit Diagram

    1F4 C/C−

    2F2 C/C

    1

    1

    z1z

    −1z11

    −−o

    oV∑

    1F3 C/C−

    1F1 C/C−o

    inV

    23

  • •−+ outV

    2FC

    o−+

    1FC

    2C2

    1 2

    4C

    21

    3C21

    •••

    • • ••

    11

    •2

    •hC

    6 10

    21

    12 11

    7 89

    2•

    3

    21

    "1FC

    2

    1••

    4• •

    '1FC

    inVo20

    2

    5

    SC Bandpass C Diagram

    1F

    4"

    1F'1F

    '1F

    CC

    CCC+

    2F

    2CC 1

    1

    z1z

    −1z11

    −−o

    oV∑

    1F

    3CC

    1F

    1"

    1F'1F

    '1F

    CC

    CCC+

    o

    inV

    SC Bandpass Filter Block Diagram 24

  • Capacitor Values for the SC Filter

    Capacitor Values )Hz(fo )Cu(C

    '1F )Cu(CC 2F1F =

    697 852 1209 1477

    4 2.6 1.5 1.1

    11.4 9.3 6.6 5.4 ,Cu2.2C,Cu1CCCC:Where 1h432 =====

    kHz50T/1fandCu3C c"

    1F ===

    25

  • Specifications vs. Simulated Results for the SC Filter

    Design Specifications Gain Q (v/v)

    Simulated Results Gain Q (v/v)

    )Hz(fo)Hz(fo

    1 697 20 0.998 699.00 19.92 1 852 20 0.999 857.25 20.02 1 1209 20 1.000 1209.00 19.83 1 1477 20 1.002 1479.00 20.11

    26

  • Design of 2nd-Order LP Notch Filter Design a LP Notch Filter with =1,800 Hz, = 1,700 Hz, =30 and 0dB DC Gain. The corresponding H(s) yields:

    zf pf pQ

    )10140926.1(s0475.356s)10140926.1(s89195.0)s(H 82

    82

    ×++×+

    =

    By using the bilinear mapping

    1

    1

    z1z1Ks −

    +−

    =

    )2/T(tan/aKwhere dωω=The corresponding transfer function becomes:

    21

    21

    z997232.0z99029.11zz99220.1189093.0)z(H −−

    −−

    +−++

    =

    Next we will match the coefficients of H(z) with the ones of a SC Biquad Topology, i.e.,

    21

    21

    E ẑCẑ)CE(1ẑ)HG(ẑ)JGI(I)ẑ(H

    z −−

    −−

    +++−+−++

    −=

    1zẑ;z1

    zẑwhere 11

    1 −=−

    = −−

    21

    21

    ẑ000694.0ẑ0097.01ẑ0078.0ẑ0078.0189093.0)ẑ(H −−

    −−

    ++++

    = 27

  • E-CIRCUIT

    CAPACITOR (PF) INITIAL

    DYNAMIC RANGE

    ADJUSTED FINAL

    A B C D E F G H I J K(I=J) C(pF) ∑

    1.0000 1.0000 0.00694 1.0000 0.00277

    --- 0.00694

    --- --- ---

    0.89093 ---

    0.08308 1.0000 0.00694 0.08308 0.00277

    --- 0.00694

    --- --- ---

    0.89093 ---

    1.0000 12.0365 2.5035 29.9613 1.0000

    --- 2.5035

    --- --- ---

    10.7238 59.7

    28

  • 1ẐZ;1-ZẐ :NOTATION DOMAIN - ˆ +==Z

    ( ) ( )( ) ( )

    ( )

    12211

    o2121o1oo

    2212

    21

    1

    o1

    12

    2

    221221

    11

    22

    11o

    aa1,a2

    bbb,bb2,b

    where

    ra,cosr2a;ZaZa1

    bZbZbZH

    Ẑcosr2r1Ẑcosr221ẐKNK

    ẐẐ1ẐẐẐH

    −+=−=

    ++=+==

    ==+−

    ++=

    −++−+=

    ++++

    =

    −−

    −−

    −−−−

    −−

    αα

    βββ

    θθααβββ

    29

  • LP 20 (bilinear transform)

    LP 11

    LP 10

    LP 02 (forward transform)

    LP 01

    LP 00 (backward transform)

    BP 10 ((bilinear transform)

    BP 01 (forward)

    BP 00 (backward)

    HP

    ( )21 4ˆ41 −− ++ zzK

    ( ) 11 ˆ1ˆ2 −− + zzK( )1ˆ3ˆ3ˆ2 112 ++ −−− zzzK

    ( ) 11 ˆˆ1 −−+ zzK

    ( )21ˆ1 −+ zK

    2−Kz

    ( )1ˆ21 −+ zK1ˆ −zK

    ( )1ˆ1 −+ zK

    K

    LPN

    ( )211 −+ zK

    ( )11 1 −− + zKz( )11 −+ zK

    K

    2−Kz1−Kz

    ( )( )11 11 −− +− zzK

    ( )11 1 −− − zKz( )11 −− zK( )211 −− zK( ) 0,,1 21 >>++ −− ββαεε zzK ( ) ( )[ ]21 ˆ22ˆ1 −− ++++ zzK εε

    HPN ( ) 0,,1 21 >

  • Recall notation for and building blocks Ẑ Z

    - +

    - +

    φ1 φ1 KiC Vin

    φ2 φ2

    C

    φ1 Vo Vin

    -Ki 1ˆ1 −+ Z Vo

    Vin φ1 KnC

    φ2 φ1

    φ2

    C

    φ1 Vo Vin

    Kn 1ˆ −Z Vo

    Vin -Ki

    111

    −− ZVo

    Vin -Ki

    1

    1

    1 −−

    − ZZ

    Vo

    31

  • 2V

    oinV ∑

    o

    o

    1V

    )1ẑ( 1 +− I−

    1ẑ− F− )ẑ1(1−+

    J

    A

    H1ẑ− E−

    )ẑ1( 1−+

    C−G−

    A general SC biquad flow diagram type 1. 32

  • SC implementation type 1 with maximum number of switches.

    A1φ• • +

    −1φ

    2φ2φ

    o2V

    2φ F

    1φ 1φ

    B

    2φ I

    1φ 1φ

    J1φ

    o

    1V

    • +

    D

    2φ C

    1φ 1φ

    E

    2φ G

    1φ 1φ

    H1φ

    o

    inV+

    − o

    33

  • SC implementation type 1 minimum switch configuration.

    A1φ• • +

    −1φ

    2φo

    2V

    B

    I

    J

    o

    1V

    • +

    D

    C

    2φ G

    1φ 1φ

    H1φ

    o

    inVo

    6

    •9

    •5

    •7

    •834

    E

    F

    •2•120

    34

  • SWITCAP Input file

    timing; period 7.8125e-06; clock clk 1 (0 1/2); end; circuit; cg (1 2) 2.5935; ca (8 7) 1.0000; cd (4 3) 29.9613; cb (6 5) 12.0365; ce (4 5) 1.00000; cc (2 9) 2.5035; e1 (3 0 0 4) 28000; e2 (5 0 0 6) 28000; s1 (20 1) #clk;

    s4 (2 4) #clk; s5 (9 5) #clk; s9 (8 0) #clk; s10 (7 6) #clk; s2 (1 0) clk; s3 (2 0) clk; s6 (9 0) clk; s7 (3 8) clk; s8 (7 0) clk; v1 (20 0); end; analyze sss; infreq 1 4000 lin 300; set v1 ac 1.0 0.0; print vm(5); plot vm(5);

    35

  • 36

  • • Switched-capacitor techniques conventionally have only two degrees of freedom: clock frequency

    capacitor ratios

    i.e.,

    eqseq

    seq C

    CfC

    CTCR ⋅=⋅== 1τ

    -37-

    Francisco Duque-Carrillo & Edgar Sánchez-Sinencio

    37

  • Periodic Non-Uniform Switched Capacitor Principle

    • The number of active pulses (pi) of a switched-capacitor branch controls the equivalent resistance value.

    Vo

    Master CLK

    φi

    sTm ⋅

    si

    Tp ⋅

    ⋅⋅=⋅=

    1CCT

    pmCR s

    ieqτ

    1 2 pi

    sT

    -38-

    viφ1 φ1

    φ2 φ2

    C1

    C

    vo

    +

    An additional degree of freedom (m/pi) is provided by this approach

    38

  • Periodic Non-Uniform Switched-Capacitor Example • In more complex switched-capacitor networks, any response parameter can be fully-programmed by means of the number of active pulses of some switched-capacitor branches:

    DC gain:

    2

    1)0(CC

    ppH

    f

    k ⋅=

    Cutoff frequency (ωo): f

    sop

    CCCmTjez

    +

    ==2

    ω

    -39-

    C

    vivo

    C1

    C2

    φ1k φ2kφ1kφ2k

    φ2f φ2f

    φ1f φ1f

    φ1f

    mTS

    φf 1 2 3 pf

    φk 1 2 pk

    fs

    39

  • Periodic Non-Uniform Switched-Capacitor Remarks Advantages: • Great flexibility and resolution for programming SC signal processors. • The design is performed in the digital domain with a single logic programmable section (i.e., FPGA). • Reduced cost (area) and high accuracy (no extra parasitic capacitances) respect to any other programming technique (i.e., capacitor arrays). • Only one clock is used. One sub-clock (φi) is required for each output response parameter to be programmed. • The programmability does not affect the circuit dynamic range.

    Disadvantages: • The master clock frequency must be m times the clock frequency of the traditional case (pi=m). However, the amplifier requirements remain unchanged. -40-

    40

  • -41-

    HP HP

    A

    B

    -

    +

    -

    +

    φ 1f LP φ 1f

    G

    C φ

    1f

    I

    F

    A1 A2 V o

    E

    φ 1f

    D

    φ 1f

    φ 1f

    φ 1f K

    BP

    V i φ

    2f φ

    2f

    φ 2f

    φ 2f

    φ 2f

    φ 2f

    φ 2f

    φ 2f

    φ 2q

    φ 1q

    φ 2q

    φ 1q

    φ 2f

    Example of the Proposed Technique

    •Universal second-order SC filter (CMOS 1.2 µm, Vsupply= + 1.5 V)

    Design specifications { fo = 0.2 kHz, Q = 0.707, k = 0 dB } with fs = 20 kHz

    The SC circuit was designed to operate with clock frequencies up to 1 MHz

    The digital programming signals were off-chip generated by a commercial FPGA 41

  • Experimental Results of Second-Order Non-Uniform SC 1. Low-pass response programmability (m = 8, fs = 160 kHz)

    Swp Time: 19.66 SecVBW: OffRange 0 dBmRes BW: 9.1 HzA: NORMALIZED SPEC

    Stop 800 HzStart 50 Hz

    LogMag 5dB /div

    -25

    25dB

    LP fo-programmability (1 < pf < 8)

    LP Q-factor programmability (1 < pq < 8)

    Swp Time: 31.13 SecVBW: OffRange 0 dBmRes BW: 18 HzA: NORMALIZED SPEC

    Stop 5 000 HzStart 50 Hz

    LogMag 3dB /div

    -28

    2dB

    -42- 42

  • Experimental Results (continues) 2. fo Band-pass response programmability

    Swp Time: 31.13 SecVBW: OffRange 0 dBmRes BW: 36 HzA: NORMALIZED SPEC

    Stop 20 000 HzStart 100 Hz

    LogMag 4dB /div

    -36

    4dB

    m = 8; fs = 160 kHz (1 < pf < 8)

    m = 24; fs = 960 kHz (1 < pf < 24)

    Swp Time: 13.11 SecVBW: OffRange 0 dBmRes BW: 36 HzA: NORMALIZED SPEC

    Stop 4 000 HzStart 50 Hz

    LogMag 2dB /div

    -18

    2dB

    -43-

    Note the increased resolution

    43

  • Experimental Results (continues) 3. Q-factor band-pass programmability

    m = 8; fs = 160 kHz (1 < pq < 8)

    m = 32; pf = 3; fs = 1 MHz (1 < pq < 25)

    Swp Time: 31.13 SecVBW: OffRange 0 dBmRes BW: 18 HzA: NORMALIZED SPEC

    Stop 5 000 HzStart 200 Hz

    LogMag 6dB /div

    -20

    40dB

    Swp Time: 13.11 SecVBW: OffRange 0 dBmRes BW: 36 HzA: NORMALIZED SPEC

    Stop 800 HzStart 50 Hz

    LogMag 5dB /div

    -20

    30dB

    -44-

    Enhanced Resolution

    44

  • Experimental Results (continues) 4. Q-factor Band-pass and Notch programmability

    m = 32; pf = 2; fs = 0.8 MHz (1 < pq < 16)

    m = 24; fs = 1 MHz (1 < pq < 16)

    Swp Time: 50.79 SecVBW: OffRange 0 dBmRes BW: 18 HzA: NORMALIZED SPEC

    Stop 8 000 HzStart 200 Hz

    LogMag 5dB /div

    -45

    5dB

    Swp Time: 18.02 SecVBW: OffRange 0 dBmRes BW: 18 HzA: NORMALIZED SPEC

    Stop 3 000 HzStart 200 Hz

    LogMag 6dB /div

    -10

    50dB

    -45- 45

  • Conclusions

    A SC technique with an additional degree of freedom is presented. Potential applications are very wide and practical implications are very promising. The ideal situation of analog processing and digital control are present in the proposed scheme.

    46

  • outVinV −

    + • 1C

    Bφ• •

    • •

    3C

    2C

    )()()()(

    21

    12

    cacaB

    cacaA

    φφφφφ

    φφφφφ

    •+•=

    •+•=

    (a)

    • •

    caφ

    (b)

    (a) A switched-capacitor square-wave modulator where the input clock phases are controlled by the modulating square wave φM. (b) A possible circuit realization for φA and φB.

    A full-wave detector based on the square-modulator circuit of Fig. (a)

    (a) Fig.ofModulator

    +−

    caφ

    inV outV

    47

  • High-Q bandpass filter with center frequency f0

    Period T

    Period T = 1/f0

    A BP Filter based sinusoidal oscillator.

    1VrefV

    outV

    refV−

    sin (wot)

    48

  • +outV

    • •

    4C

    • 1φ

    refV+−+

    • 2φ

    • •

    1φ X

    1φ X

    1=BC

    1=AC

    2C

    • 1φ2φ

    1C

    5C

    +−

    +−

    6C

    3C

    Comp

    7CstVStart-up

    circuit • XX

    A SC implementation of a BP based Oscillator

    49

  • References • E. Sanchez-Sinencio, J. Silva-Martinez, The Circuits and Filters Handbook: Switched Capacitor Filters, CRC Press Inc., section XV, pp. 2491-2520, 1995. • E. Sanchez-Sinencio, R.L. Geiger and J. Silva-Martinez, “Tradeoffs between Passive Sensitivity, Output Voltage Swing and Total Capacitance in Biquadratic SC Filters,” IEEE Trans. Circuits and Systems, Vol. CAS-31, No. 11, pp. 984-987, November 1984. • E. Sanchez-Sinencio, J. Silva-Martinez, and R.L. Geiger, “Biquadratic SC Filters with Small GB Effects,” IEEE Trans. Circuits and Systems, Vol. CAS-31, No. 10, pp.876- 884, October 1984. • R. Castello, F. Montecchi, F. Rezzi and A. Baschirotto, “Low-Voltage Analog Filters,” IEEE Trans. on Circuits and Systems I, Vol. 42, No. 11, pp. 827-840, November 1995. • A. Abo, “Low Voltage, High-Speed, High-Precision Switched-capacitor Circuits,” Qualifying Exam, University Of California at Berkeley, May 1996.

    50

  • outVinV −

    + • 1C

    Bφ• •

    • •

    3C

    2C

    )()()()(

    21

    12

    cacaB

    cacaA

    φφφφφ

    φφφφφ

    •+•=

    •+•=

    (a)

    • •

    caφ

    (b)

    (a) A switched-capacitor square-wave modulator where the input clock phases are controlled by the modulating square wave φM. (b) A possible circuit realization for φA and φB.

    A full-wave detector based on the square-modulator circuit of Fig. (a)

    (a) Fig.ofModulator

    +−

    caφ

    inV outV

    51

  • High-Q bandpass filter with center frequency f0

    Period T

    Period T = 1/f0

    A BP Filter based sinusoidal oscillator.

    1VrefV

    outV

    refV−

    sin (wot)

    52

  • +outV

    • •

    4C

    • 1φ

    refV+−+

    • 2φ

    • •

    1φ X

    1φ X

    1=BC

    1=AC

    2C

    • 1φ2φ

    1C

    5C

    +−

    +−

    6C

    3C

    Comp

    7CstVStart-up

    circuit • XX

    A SC implementation of a BP based Oscillator

    53

  • References • E. Sanchez-Sinencio, J. Silva-Martinez, The Circuits and Filters Handbook: Switched Capacitor Filters, CRC Press Inc., section XV, pp. 2491-2520, 1995. • E. Sanchez-Sinencio, R.L. Geiger and J. Silva-Martinez, “Tradeoffs between Passive Sensitivity, Output Voltage Swing and Total Capacitance in Biquadratic SC Filters,” IEEE Trans. Circuits and Systems, Vol. CAS-31, No. 11, pp. 984-987, November 1984. • E. Sanchez-Sinencio, J. Silva-Martinez, and R.L. Geiger, “Biquadratic SC Filters with Small GB Effects,” IEEE Trans. Circuits and Systems, Vol. CAS-31, No. 10, pp.876- 884, October 1984. • R. Castello, F. Montecchi, F. Rezzi and A. Baschirotto, “Low-Voltage Analog Filters,” IEEE Trans. on Circuits and Systems I, Vol. 42, No. 11, pp. 827-840, November 1995. • A. Abo, “Low Voltage, High-Speed, High-Precision Switched-capacitor Circuits,” Qualifying Exam, University Of California at Berkeley, May 1996.

    54

  • J. L. Ausin, J. F. Duque-Carillo, G. Torelli, E. Sánchez-Sinencio, and F. Maloberti, “Periodical nonuniform individually sampled switched-capacitor circuits,” ISCAS 2000, pp. 449-452, May 2000, Geneva, Switzerland P. E. Fleischer and K.R. Laker, “A family of active switched-capacitor biquad building blocks,” Bell Syst. Tech J., vol. 58, pp. 2253-2269, Oct. 1979. J. Adut and J. Silva-Martínez, “A high-Q switched-capacitor filter with reduced capacitance spread using a randomized noninterval sampling technique”, ISCAS 2002 submitted.

    55

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41Slide Number 42Slide Number 43Slide Number 44Slide Number 45ConclusionsSlide Number 47Slide Number 48Slide Number 49Slide Number 50Slide Number 51Slide Number 52Slide Number 53Slide Number 54Slide Number 55