symbolic computation of conservation laws of nonlinear

79
Symbolic Computation of Conservation Laws of Nonlinear Partial Differential Equations Willy Hereman Department of Applied Mathematics and Statistics Colorado School of Mines Golden, Colorado [email protected] http://inside.mines.edu/whereman/ Department of Mathematics and Statistics Jordan University of Science and Technology, Irbid, Jordan Tuesday, October 22, 2019, 13:30

Upload: others

Post on 29-Jan-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Symbolic Computation ofConservation Laws of Nonlinear

Partial Differential Equations

Willy Hereman

Department of Applied Mathematics and Statistics

Colorado School of Mines

Golden, Colorado

[email protected]

http://inside.mines.edu/∼whereman/

Department of Mathematics and Statistics

Jordan University of Science and Technology, Irbid, Jordan

Tuesday, October 22, 2019, 13:30

Acknowledgements

Douglas Poole (Chadron State College, Nebraska)

Unal Goktas (Turgut Ozal University, Turkey)

Mark Hickman (Univ. of Canterbury, New Zealand)

Bernard Deconinck (Univ. of Washington, Seattle)

Several undergraduate and graduate students

Research supported in part by NSF

under Grant No. CCF-0830783

This presentation was made in TeXpower

Outline• Examples of conservation laws

• The Korteweg-de Vries equation

• Other scaling invariant quantities (KdV equation)

• The Zakharov-Kuznetsov equation

• Methods for computing conservation laws

• Tools from the calculus of variations

• The variational derivative (testing exactness)

• The homotopy operator (inverting Dx and Div)

• Application 1: The KdV equation

• Application 2: The Zakharov-Kuznetsov equation

• Demonstration of ConservationLawsMD.m

• Conclusions and future work

• Additional examples

I Manakov-Santini system

I Camassa-Holm equation in (2+1) dimensions

I Khoklov-Zabolotskaya equation

I Shallow water wave model for atmosphere

I Kadomtsev-Petviashvili equation

I Potential Kadomtsev-Petviashvili equation

I Generalized Zakharov-Kuznetsov equation

Examples of Conservation Laws

Example 1: Traffic Flow

u

x

a b

= density of cars

Modeling the density of cars (Bressan, 2009)

u(x, t) density of cars on a highway (e.g., number of

cars per 100 meters).

s(u) mean (equilibrium) speed of the cars (depends

on the density).

u

x

a b

= density of cars

Change in number of cars in segment [a, b] equals the

difference between cars entering at a and leaving at b

during time interval [t1, t2]:∫ b

a

(u(x, t2)− u(x, t1)

)dx =

∫ t2

t1

(J(a, t)− J(b, t)

)dt∫ b

a

(∫ t2

t1

ut(x, t) dt

)dx = −

∫ t2

t1

(∫ b

aJx(x, t) dx

)dt

where J(x, t) = u(x, t)s(u(x, t)) is the traffic flow

(e.g., in cars per hour) at location x and time t.

Then,∫ ba

∫ t2t1

(ut + Jx) dt dx = 0 holds ∀(a, b, t1, t2)

Yields the conservation law:

ut + [s(u)u]x = 0 or Dtρ+ DxJ = 0

ρ = u is the conserved density;

J(u) = s(u)u is the associated flux.

A simple Lighthill-Whitham-Richards model:

s(u) = smax

(1−

u

umax

), 0 ≤ u ≤ umax

smax is posted road speed, umax is the jam density.

Example 2: Fluid and Gas Dynamics

Euler equations for a compressible, non-viscous fluid:

ρt +∇.(ρu) = 0

(ρu)t +∇.(u⊗ (ρu)

)+∇p = 0

Et +∇.((E + p) u

)= 0

or, in components

ρt +∇.(ρu) = 0

(ρ ui)t +∇.(ρ ui u + p ei) = 0 (i = 1, 2, 3)

Et +∇.((E + p) u

)= 0

Express conservation of mass, momentum, energy.

⊗ is the dyadic product.

ρ is the mass density.

u = u1 e1 + u2 e2 + u3 e3 is the velocity.

p is the pressure p(ρ, e).

E is the energy density per unit volume:

E = 12ρ|u|2 + ρe.

e is internal energy density per unit of mass

(related to temperature).

Notation – Computations on the Jet Space

• Independent variables x = (x, y, z)

• Dependent variables u = (u(1), u(2), . . . , u(j), . . . , u(N))

In examples: u = (u, v, θ, h, . . .)

• Partial derivatives ukx = ∂ku∂xk

, ukx ly = ∂k+lu∂xkyl

, etc.

Examples: uxxxxx = u5x = ∂5u∂x5

uxx yyyy = u2x 4y = ∂6u∂x2y4

• Differential functions

Example: f = uvvx + x2u3xvx + uxvxx

• Total derivatives: Dt, Dx,Dy, . . .

Example: Let f = uvvx + x2u3xvx + uxvxx

Then

Dxf =∂f

∂x+ ux

∂f

∂u+ uxx

∂f

∂ux

+vx∂f

∂v+ vxx

∂f

∂vx+ vxxx

∂f

∂vxx

= 2xu3xvx + ux(vvx) + uxx(3x

2u2xvx + vxx)

+vx(uvx) + vxx(uv + x2u3x) + vxxx(ux)

= 2xu3xvx + vuxvx + 3x2u2

xvxuxx + uxxvxx

+uv2x + uvvxx + x2u3

xvxx + uxvxxx

Conservation Laws for Nonlinear PDEs• System of evolution equations of order M

ut = F(u(M)(x))

with u = (u, v, w, . . .) and x = (x, y, z).• Conservation law in (1+1)-dimensions

Dtρ+ DxJ = 0

where the dot means evaluated on the PDE.Conserved density ρ and flux J.

P =

∫ ∞−∞

ρ dx = constant in time

if J vanishes at ±∞.

• Conservation law in (2+1)-dimensions

Dtρ+∇·J = Dtρ+ DxJ1 + DyJ2 = 0

Conserved density ρ and flux J = (J1, J2).

• Conservation law in (3+1)-dimensions

Dtρ+∇·J = Dtρ+ DxJ1 + DyJ2 + DzJ3 = 0

Conserved density ρ and flux J = (J1, J2, J3).

Reasons for Computing Conservation Laws

• Conservation of physical quantities (linear

momentum, mass, energy, electric charge, ... ).

• Testing of complete integrability and application

of Inverse Scattering Transform.

• Testing of numerical integrators.

• Study of quantitative and qualitative properties

of PDEs (Hamiltonian structure, recursion

operators, . . . ).

• Verify the closure of a model.

Examples of PDEs with Conservation Laws

Example 1: KdV Equation

∂u

∂t+ 6u

∂u

∂x+∂3u

∂x3= 0 or ut + 6uux + uxxx = 0

shallow water waves, ion-acoustic waves in plasmas

Diederik Korteweg Gustav de Vries

Dilation Symmetry

ut + 6uux + uxxx = 0

has dilation (scaling) symmetry (x, t, u)→ (xλ, tλ3, λ2u)

λ is an arbitrary parameter.

Notion of weight: W (x) = −1, thus, W (Dx) = 1.

W (t) = −3, hence, W (Dt) = 3.

W (u) = 2.

Notion of rank (total weight of a monomial).

Examples: Rank(u3) = Rank(3u2x) = 6.

Rank(u3uxx) = 10.

Key Observation: Scaling Invariance

Every term in a density has the same fixed rank.

Every term in a flux has some other fixed rank.

The conservation law

Dtρ+ DxJ = 0

is uniform in rank.

Hence,

Rank(ρ) + Rank(Dt) = Rank(J) + Rank(Dx)

• First six (of infinitely many) conservation laws:

Dt

(u)

+ Dx

(3u2 + uxx

)= 0

Dt

(u2)

+ Dx

(4u3 − ux2 + 2uuxx

)= 0

Dt

(u3 −

1

2u2x

)+ Dx

(92u4 − 6uu2

x + 3u2uxx +1

2u2xx − uxuxxx

)= 0

Dt

(u4 − 2uu2

x + 15u2xx

)+ Dx

(245u5 − 18uu2

x + 4u3uxx

+2u2xuxx + 16

5uu2

xx −4uuxuxxx − 15u2xxx + 2

5uxxu4x

)= 0

Dt

(u5 − 5u2u2

x + uu2xx − 1

14u2xxx

)+ Dx

(5u6 − 40u3u2

x − . . . − 17uxxxu5x

)= 0

Dt

(u6 − 10u3u2

x −5

6u4x + 3u2u2

xx

+1021u3xx − 3

7uu2

xxx + 142u2

4x

)+ Dx

(367u7 − 75u4u2

x − . . . + 121u4xu6x

)= 0

• Third conservation law: Gerald Whitham, 1965

• Fourth and fifth: Norman Zabusky, 1965-66• Seventh (sixth thru tenth): Robert Miura, 1966

Robert Miura

• Conservation law explicitly dependent on t and x:

Dt

(tu2 −

1

3xu)

+Dx

(4tu3 − xu2 +

1

3ux − tu2

x + 2tuuxx −1

3xuxx

)= 0

• First five: IBM 7094 computer with FORMAC

(1966) −→ storage space problem!

IBM 7094 Computer

• First eleven densities: Control Data Computer

CDC-6600 computer (2.2 seconds)

−→ large integers problem!

Control Data CDC-6600

Other Scaling Invariant Quantities

• Generalized Symmetries:

G(x, t, u(N)) is an Nth order generalized symmetry

iff it leaves ut = F (x, t, u(M)) invariant for the

replacement u→ u+ εG, uix → uix + εDixG, within

order ε:

Dt(u+ εG) = F (u+ εG)

must hold up to order ε.

• Defining equation:

DtG = F ′(u)[G]

F (u)′[G] is the Frechet derivative of F (u) in the

direction of G:

F ′(u)[G] =∂

∂εF (u+ εG)|ε=0 =

M∑i=0

(DixG)

∂F

∂uix

• First 4 generalized symmetries of ut = 6uux + u3x

G(1) = ux

G(2) = 6uux + uxxx

G(3) = 30u2ux + 20uxuxx + 10uuxxx + u5x

G(4) = 140u3ux + 70u3x + 280uuxuxx + 70u2uxxx

+70uxxuxxx + 42uxu4x + 14uu5x + u7x

Generalized symmetries are invariant under thescaling symmetry.

• Recursion Operator:

A recursion operator R connects symmetries

G(j+s) = RG(j), j = 1, 2, . . .

s is seed (s = 1 in simplest case).

• Defining equation:

DtR+ [R, F ′(u)] = 0

Explicitly,

∂R∂t

+R′[F ] +R F ′(u)− F ′(u) R = 0

where stands for composition, and R′[F ] is theFrechet derivative of R in the direction of F :

R′[F ] =

n∑i=0

(DixF )

∂R∂uix

• Recursion operator (KdV equation):

R = D2x + 2uI + 2DxuD−1

x = D2x + 4uI + 2uxD

−1x

• For example,

Rux=(D2x + 2uI + 2DxuD−1

x )ux=6uux + u3x

R(6uux + u3x)=(D2x + 2uI + 2DxuD−1

x )(6uux + u3x)

=30u2ux + 20uxu2x + 10uu3x + u5x

Recursion operator is invariant under the scalingsymmetry.

• Lax Pair:

• Key idea: Replace ut + 6uux + uxxx = 0 with a

compatible linear system (Lax pair):

ψxx + (u− λ)ψ = 0

ψt + 4ψxxx + 6uψx + 3uxψ = 0

ψ is eigenfunction; λ is constant eigenvalue

(λt = 0) (isospectral)

• Lax Pair (L,M) in Operator Form:

Lψ = λψ and Dtψ =Mψ

• Require compatibility of both equations

Ltψ + (LM−ML)ψ = 0

• Defining Equation: Lt + [L,M] = O

with commutator [L,M] = LM−ML.

Furthermore, Ltψ = [Dt,L]ψ = Dt(Lψ)− LDtψ.

• Lax pair for the KdV equation:

L = D2x + u I

M = −(

4 D3x + 6uDx + 3ux I

)Lax pair is invariant under the scaling symmetry.

Example 2:

The Zakharov-Kuznetsov Equation

ut + αuux + β(uxx + uyy)x = 0

models ion-sound solitons in a low pressure uniform

magnetized plasma.

• Conservation laws:

Dt

(u)

+ Dx

(α2u2 + βuxx

)+ Dy

(βuxy

)= 0

Dt

(u2)

+ Dx

(2α3u3 − β(u2

x − u2y) + 2βu(uxx + uyy)

)+ Dy

(− 2βuxuy

)= 0

• More conservation laws (ZK equation):

Dt

(u3 − 3β

α(u2

x + u2y))

+ Dx

(3u2(α

4u2 + βuxx)− 6βu(u2

x + u2y)

+ 3β2

α(u2

xx − u2yy)−

6β2

α(ux(uxxx + uxyy) + uy(uxxy + uyyy))

)+ Dy

(3βu2uxy + 6β2

αuxy(uxx + uyy)

)= 0

Dt

(tu2 − 2

αxu)

+ Dx

(t(2α

3u3 − β(u2

x − u2y) + 2βu(uxx + uyy))

− x(u2 + 2βαuxx) + 2β

αux)

+ Dy

(− 2β(tuxuy + 1

αxuxy)

)= 0

Methods for Computing Conservation Laws

• Use the Lax pair L and A, satisfying [L,A] = 0.

If L = Dx + U, A = Dt + V then Vx − Ut + [U, V ] = 0.

L = TLT−1 gives the densities, A = TAT−1 gives

the fluxes.

• Use Noether’s theorem (Lagrangian formulation)

to generate conservation laws from symmetries

(Ovsiannikov, Olver, Mahomed, Kara, etc.).

• Integrating factor methods (Anderson, Bluman,

Anco, Cheviakov, Mason, Naz, etc.) require

solving ODEs (or PDEs).

Proposed Algorithmic Method

• Density is linear combination of scaling invariant

terms (in the jet space) with undetermined

coefficients.

• Compute Dtρ with total derivative operator.

• Use variational derivative (Euler operator) to

express exactness.

• Solve a (parametrized) linear system to find the

undetermined coefficients.

• Use the homotopy operator to compute the flux

(invert Dx or Div).

• Work with linearly independent pieces in finite

dimensional spaces.

• Use linear algebra, calculus, and variational

calculus (algorithmic).

• Implement the algorithm in Mathematica.

Tools from the Calculus of Variations

• Definition:

A differential function f is a exact iff f = Div F.

Special case (1D): f = Dx F.

• Question: How can one test that f = Div F ?

• Theorem (exactness test):

f = Div F iff Lu(j)(x)f ≡ 0, j = 1, 2, . . . , N.

N is the number of dependent variables.

The Euler operator annihilates divergences

• Euler operator in 1D (variable u(x)):

Lu(x) =M∑k=0

(−Dx)k ∂

∂ukx

=∂

∂u−Dx

∂ux+ D2

x

∂uxx−D3

x

∂uxxx+ · · ·

• Euler operator in 2D (variable u(x, y)):

Lu(x,y) =

Mx∑k=0

My∑`=0

(−Dx)k(−Dy)

` ∂

∂ukx `y

=∂

∂u−Dx

∂ux−Dy

∂uy

+ D2x

∂uxx+DxDy

∂uxy+D2

y

∂uyy−D3

x

∂uxxx· · ·

• Question: How can one compute F = Div−1 f ?

• Theorem (integration by parts):

• In 1D: If f is exact then

F = D−1x f =

∫f dx = Hu(x)f

• In 2D: If f is a divergence then

F = Div−1 f = (H(x)u(x,y)f, H

(y)u(x,y)f)

The homotopy operator inverts total

derivatives and divergences!

• Homotopy Operator in 1D (variable x):

Hu(x)f =

∫ 1

0

N∑j=1

(Iu(j)f)[λu]dλ

λ

with integrand

Iu(j)f =

M(j)x∑

k=1

k−1∑i=0

u(j)ix (−Dx)k−(i+1)

∂f

∂u(j)kx

(Iu(j)f)[λu] means that in Iu(j)f one replaces

u→ λu, ux → λux, etc.

More general: u→ λ(u− u0) + u0

ux → λ(ux − ux0) + ux0 etc.

• Homotopy Operator in 2D (variables x and y):

H(x)u(x,y)f =

∫ 1

0

N∑j=1

(I(x)

u(j)f)[λu]

λ

H(y)u(x,y)f =

∫ 1

0

N∑j=1

(I(y)

u(j)f)[λu]

λ

where for dependent variable u(x, y)

I(x)u f =

Mx∑k=1

My∑`=0

k−1∑i=0

∑j=0

uix jy

(i+ji

)(k+`−i−j−1k−i−1

)(k+`k

)(−Dx)

k−i−1 (−Dy

)`−j) ∂f

∂ukx `y

Application 1: The KdV Equation

ut + 6uux + uxxx = 0

• Step 1: Compute the dilation symmetry

Set (x, t, u)→ (xλ, tλa, λbu) = (x, t, u)

Apply change of variables (chain rule)

λ−(a+b)ut+λ−(2b+1)uux+λ

−(b+3)u3x = 0

Solve a+ b = 2b+ 1 = b+ 3.

Solution: a = 3 and b = 2

(x, t, u)→ (x

λ,t

λ3, λ2u)

Compute the density of selected rank, say, 6.

• Step 2: Determine the form of the density

List powers of u, up to rank 6 : [u, u2, u3]

Differentiate with respect to x to increase

the rank

u has weight 2 → apply D4x

u2 has weight 4 → apply D2x

u3 has weight 6 → no derivatives needed

Apply the Dx derivatives

Remove total and highest derivative terms:

D4xu → u4x → empty list

D2xu

2 → ux2, uuxx → ux2

since uuxx=(uux)x−ux2

D0xu

3 → u3 → u3

Linearly combine the “building blocks”

Candidate density: ρ = c1u3 + c2ux

2

• Step 3: Compute the coefficients ci Compute

Dtρ =∂ρ

∂t+ ρ′(u)[ut]

=∂ρ

∂t+

M∑k=0

∂ρ

∂ukxDkxut

= (3c1u2I + 2c2uxDx)ut

Substitute ut by −(6uux + uxxx)

E = −Dtρ = (3c1u2I + 2c2uxDx)(6uux + uxxx)

= 18c1u3ux + 12c2u

3x + 12c2uuxuxx

+3 c1u2uxxx + 2c2uxu4x

Apply the Euler operator (variational derivative)

Lu(x) =δ

δu=

m∑k=0

(−Dx)k ∂

∂ukx

Here, E has order m = 4, thus

Lu(x)E =∂E

∂u−Dx

∂E

∂ux+D2

x

∂E

∂uxx−D3

x

∂E

∂u3x+D4

x

∂E

∂u4x

= −18(c1 + 2c2)uxuxx

This term must vanish!

So, c2 = −12c1. Set c1 = 1 then c2 = −1

2.

Hence, the final form density is ρ = u3 −1

2ux

2

• Step 4: Compute the flux J

Method 1: Integrate by parts (simple cases)

Now,

E=18u3ux + 3u2uxxx − 6u3x − 6uuxuxx − uxuxxxx

Integration of DxJ = E yields the flux

J =9

2u4 − 6uux

2 + 3u2uxx +1

2u2xx − uxuxxx

Method 2: Use the homotopy operator

J = D−1x E =

∫E dx = Hu(x)E =

∫ 1

0(IuE)[λu]

λ

with integrand

IuE =M∑k=1

k−1∑i=0

uix (−Dx)k−(i+1)

∂E

∂ukx

Here M = 4, thus

IuE = (uI)(∂E

∂ux) + (uxI− uDx)(

∂E

∂uxx)

+(uxxI− uxDx + uD2x)(

∂E

∂uxxx)

+(uxxxI− uxxDx + uxD2x − uD3

x)(∂E

∂u4x)

= (uI)(18u3 + 18u2x − 6uuxx − uxxxx)

+(uxI− uDx)(−6uux)

+(uxxI− uxDx + uD2x)(3u

2)

+(uxxxI− uxxDx + uxD2x − uD3

x)(−ux)

= 18u4 − 18uu2x + 9u2uxx + u2

xx − 2uxuxxx

Note: correct terms but incorrect coefficients!

Finally,

J =Hu(x)E =

∫ 1

0(IuE)[λu]

λ

=

∫ 1

0

(18λ3u4 − 18λ2uu2

x + 9λ2u2uxx + λu2xx

−2λuxuxxx) dλ

=9

2u4 − 6uu2

x + 3u2uxx +1

2u2xx − uxuxxx

Final form of the flux:

J =9

2u4 − 6uu2

x + 3u2uxx +1

2u2xx − uxuxxx

Application 2: Zakharov-Kuznetsov Equation

ut + αuux + β(uxx + uyy)x = 0

• Step 1: Compute the dilation invariance

ZK equation is invariant under scaling symmetry

(t, x, y, u)→ (t

λ3,x

λ,y

λ, λ2u)= (t, x, y, u)

λ is an arbitrary parameter.

• Hence, the weights of the variables are

W (u) = 2, W (Dt) = 3, W (Dx) = 1, W (Dy) = 1.

• A conservation law is invariant under the scaling

symmetry of the PDE.

W (u) = 2, W (Dt) = 3, W (Dx) = 1, W (Dy) = 1.

For example,

Dt

(u3 − 3β

α(u2

x +u2y))

+ Dx

(3u2(α

4u2 +βuxx)−6βu(u2

x + u2y)

+ 3β2

α(u2

xx −u2xy)−

6β2

α(ux(uxxx +uxyy) + uy(uxxy +uyyy))

)+ Dy

(3βu2uxy + 6β2

αuxy(uxx + uyy)

)= 0

Rank (ρ) = 6, Rank (J) = 8.

Rank (conservation law) = 9.

Compute the density of selected rank, say, 6.

• Step 2: Construct the candidate density

For example, construct a density of rank 6.

Make a list of all terms with rank 6:

u3, u2x, uuxx, u

2y, uuyy, uxuy, uuxy, u4x, u3xy, u2x2y, ux3y, u4y

Remove divergences and divergence-equivalentterms.

Candidate density of rank 6:

ρ = c1u3 + c2u

2x + c3u

2y + c4uxuy

• Step 3: Compute the undetermined coefficients

Compute

Dtρ=∂ρ

∂t+ ρ′(u)[ut]

=∂ρ

∂t+

Mx∑k=0

My∑`=0

∂ρ

∂ukx `yDkx D`

y ut

=(

3c1u2I + 2c2uxDx + 2c3uyDy + c4(uyDx + uxDy)

)ut

Substitute ut = −(αuux + β(uxx + uyy)x

).

E = −Dtρ = 3c1u2(αuux + β(uxx + uxy)x)

+ 2c2ux(αuux + β(uxx + uyy)x)x + 2c3uy(αuux

+ β(uxx + uyy)x)y + c4(uy(αuux + β(uxx + uyy)x)x

+ ux(αuux + β(uxx + uyy)x)y)

Apply the Euler operator (variational derivative)

Lu(x,y)E =

Mx∑k=0

My∑`=0

(−Dx)k(−Dy)

` ∂E

∂ukx `y

=−2(

(3c1β + c3α)uxuyy + 2(3c1β + c3α)uyuxy

+2c4αuxuxy +c4αuyuxx +3(3c1β +c2α)uxuxx)

≡ 0

Solve a parameterized linear system for the ci:

3c1β + c3α = 0, c4α = 0, 3c1β + c2α = 0

Solution:

c1 = 1, c2 = −3βα, c3 = −3β

α, c4 = 0

Substitute the solution into the candidate density

ρ = c1u3 + c2u

2x + c3u

2y + c4uxuy

Final density of rank 6:

ρ = u3 −3β

α(u2

x + u2y)

• Step 4: Compute the flux

Use the homotopy operator to invert Div:

J=Div−1E=(H(x)u(x,y)E, H

(y)u(x,y)E

)where

H(x)u(x,y)E =

∫ 1

0(I(x)u E)[λu]

λ

with

I(x)u E =

Mx∑k=1

My∑`=0

( k−1∑i=0

∑j=0

uix jy

(i+ji

)(k+`−i−j−1k−i−1

)(k+`k

)(−Dx)

k−i−1 (−Dy

)`−j ) ∂E

∂ukx `y

Similar formulas for H(y)u(x,y)E and I(y)

u E.

Let A = αuux + β(uxxx + uxyy) so that

E = 3u2A− 6βαuxAx − 6β

αuyAy

Then,

J =(H(x)u(x,y)E, H

(y)u(x,y)E

)=(

3α4u4 + βu2(3uxx + 2uyy)− 2βu(3u2

x + u2y)

+ 3β2

4αu(u2x2y + u4y)− β2

αux(

72uxyy + 6uxxx)

− β2

αuy(4uxxy + 3

2uyyy) + β2

α(3u2

xx + 52u2xy + 3

4u2yy)

+ 5β2

4αuxxuyy, βu2uxy − 4βuuxuy

− 3β2

4αu(ux3y + u3xy)− β2

4αux(13uxxy + 3uyyy)

− 5β2

4αuy(uxxx + 3uxyy) + 9β2

4αuxy(uxx + uyy)

)

However, Div−1E is not unique.

Indeed, J = J + K, where K = (Dyθ, −Dxθ)

is a curl term.

For example,

θ=2βu2uy+ β2

(3u(uxxy +uyyy)+10uxuxy+5uy(3uyy+uxx)

)Shorter flux:

J = J−K

=(

3u2(α4u2 + βuxx)− 6βu(u2

x + u2y) + 3β2

α

(u2xx − u2

yy

)− 6β2

α(ux(uxxx + uxyy) + uy(uxxy + uyyy)),

3βu2uxy + 6β2

αuxy(uxx + uyy)

)

Software Demonstration

Software packages in Mathematica

Codes are available via the Internet:

URL: http://inside.mines.edu/∼whereman/

Additional Examples

• Manakov-Santini system

utx + uyy + (uux)x + vxuxy − uxxvy = 0

vtx + vyy + uvxx + vxvxy − vyvxx = 0

• Conservation laws for Manakov-Santini system:

Dt

(fuxvx

)+ Dx

(f(uuxvx − uxvxvy − uyvy)

− f ′y(ut + uux − uxvy))

+ Dy

(f(uxvy + uyvx + uxv

2x)

+ f ′(u− yuy − yuxvx))

= 0

where f = f(t) is arbitrary.

Conservation laws – continued:

Dt

(f(2u+ v2

x − yuxvx))

+ Dx

(f (u2 + uv2

x + uyv

− v2y − v2

xvy − y(uuxvx − uxvxvy − uyvy))

− f ′y(vt + uvx − vxvy) + (f ′ − 2fx)y2(ut + uux − uxvy))

+ Dy

(f(v3

x + 2vxvy − uxv − y(uxv2x + uxvy + uyvx))

+f ′(v − y(2u+ vy + v2x)) + (f ′y2 − 2fx)(uxvx + uy)

)=0

where f = f(t) is arbitrary.

There are three additional conservation laws.

• (2+1)-dimensional Camassa-Holm equation

(αut + κux − utxx + 3βuux − 2uxuxx − uuxxx)x + uyy = 0

Interchange t with y

(αuy + κux− uxxy + 3βuux− 2uxuxx− uuxxx)x + utt = 0

Set v = ut to get

ut = v

vt = −αuxy − κuxx + u3xy − 3βu2x − 3βuuxx + 2u2

xx

+ 3uxuxxx + uu4x

• Conservation laws for the Camassa-Holm equation

Dt

(fu)

+ Dx

(1αf(3β

2u2 + κu− 1

2u2x − uuxx − utx)

+ (12f ′y2 − 1

αfx)(αut+ κux+ 3βuux − 2uxuxx − uuxxx

− utxx))

+ Dy

((1

2f ′y2 − 1

αfx)uy − f ′yu

)= 0

Dt

(fyu

)+ Dx

(1αfy(3β

2u2 + κu− 1

2u2x − uuxx − utx)

+ y(16f ′y2 − 1

αfx)(αut + κux + 3βuux − 2uxuxx − uuxxx

− utxx))

+ Dy

(y(1

6f ′y2 − 1

αfx)uy + ( 1

αfx− 1

2f ′y2)u

)= 0

where f = f(t) is an arbitrary function.

• Khoklov-Zabolotskaya equation

describes e.g., sound waves in nonlinear media

(ut − uux)x − uyy − uzz = 0

Conservation law:

Dt

(fu)−Dx

(12fu2 + (fx+ g)(ut − uux)

)+ Dy

((fx+ g)uy − (fyx+ gy)u

)+ Dz

((fx+ g)uz − (fzx+ gz)u

)= 0

under the constraints ∆f = 0 and ∆g = ft

where f = f(t, y, z) and g = g(t, y, z).

• Shallow water wave model (atmosphere)

ut + (u·∇)u + 2 Ω× u +∇(θh)− 12h∇θ = 0

θt + u·(∇θ) = 0

ht +∇·(uh) = 0

where u(x, y, t), θ(x, y, t) and h(x, y, t).

• In components:

ut + uux + vuy − 2 Ωv + 12hθx + θhx = 0

vt + uvx + vvy + 2 Ωu+ 12hθy + θhy = 0

θt + uθx + vθy = 0

ht + hux + uhx + hvy + vhy = 0

• First few conservation laws of SWW model:

ρ(1) = h J(1) = h

u

v

ρ(2) = h θ J(2) = h θ

u

v

ρ(3) = h θ2 J(3) = h θ2

u

v

ρ(4) = h (u2 + v2 + hθ) J(4) = h

u (u2 + v2 + 2hθ)

v (v2 + u2 + 2hθ)

ρ(5) = θ (2Ω + vx − uy)

J(5) = 12θ

4Ωu− 2uuy + 2uvx − hθy4Ωv + 2vvx − 2vuy + hθx

• More general conservation laws for SWW model:

Dt

(f(θ)h

)+ Dx

(f(θ)hu

)+ Dy

(f(θ)hv

)= 0

Dt

(g(θ)(2Ω + vx − ux)

)+ Dx

(12g(θ)(4Ωu− 2uuy + 2uvx − hθy)

)+ Dy

(12g(θ)(4Ωv − 2uyv + 2vvx + hθx)

)= 0

for any functions f(θ) and g(θ).

• Kadomtsev-Petviashvili (KP) equation

(ut + αuux + uxxx)x + σ2uyy = 0

parameter α ∈ IR and σ2 = ±1.

Equation be written as a conservation law

Dt(ux) + Dx(αuux + uxxx) + Dy(σ2uy) = 0.

Exchange y and t and set ut = v

ut = v

vt = −1

σ2(uxy + αu2

x + αuuxx + uxxxx)

• Examples of conservation laws for KP equation

(explicitly dependent on t, x, and y)

Dt

(xux

)+Dx

(3u2−uxx−6xuux+xuxxx

)+Dy

(αxuy

)=0

Dt

(yux

)+Dx

(y(αuux + uxxx)

)+Dy

(σ2(yuy − u)

)=0

Dt

(√tu)

+ Dx

(α2

√tu2 +

√tuxx +

σ2y2

4√tut +

σ2y2

4√tuxxx

+ασ2y2

4√tuux − x

√tut − αx

√tuux − x

√tuxxx

)+Dy

(x√tuy +

y2uy

4√t−

yu

2√t

)= 0

• More general conservation laws for KP equation:

Dt

(fu)

+ Dx

(f(α

2u2 + uxx)

+(σ2

2f ′y2 − fx)(ut + αuux + u3x)

)+Dy

((1

2f ′y2 − σ2fx)uy − f ′yu

)= 0

Dt

(fyu

)+ Dx

(fy(α

2u2 + uxx)

+y(σ2

6f ′y2 − fx)(ut + αuux + u3x)

)+Dy

(y(1

6f ′y2 − σ2fx)uy +(σ2fx− 1

2f ′y2)u

)=0

where f(t) is arbitrary function.

• Potential KP equation

Replace u by ux and integrate with respect to x.

uxt + αuxuxx + uxxxx + σ2uyy = 0

• Examples of conservation laws

(not explicitly dependent on x, y, t):

Dt

(ux)

+ Dx

(α2u2x + uxxx

)+ Dy

(σ2uy

)= 0

Dt

(u2x

)+ Dx

(2α3u3x − u2

xx + 2uxuxxx − σ2uyy)

+Dy

(2σ2uxuy

)= 0

Conservation laws for pKP equation – continued:

Dt

(uxuy

)+ Dx

(αu2

xuy + utuy + 2uxxxuy − 2uxxuxy)

+Dy

(σ2u2

y − 13u3x − utux + u2

xx

)= 0

Dt

(2αuuxuxx + 3uu4x − 3σ2u2

y

)+ Dx

(2αutu

2x + 3u2

t

− 2αuuxutx − 3utxuxx + 3utuxxx + 3uxut xx − 3uut xxx)

+Dy

(6σ2utuy

)= 0

Various generalizations exist.

• Generalized Zakharov-Kuznetsov equation

ut + αunux + β(uxx + uyy)x = 0

where n is rational, n 6= 0.

Conservation laws:

Dt

(u)

+ Dx

(αn+1

un+1 + βuxx)

+ Dy

(βuxy

)= 0

Dt

(u2)

+ Dx

(2αn+2

un+2 − β(u2x − u2

y) + 2βu(uxx + uyy))

+ Dy

(− 2βuxuy

)= 0

• Third conservation law for gZK equation:

Dt

(un+2 − (n+1)(n+2)β

2α(u2

x + u2y))

+ Dx

((n+2)α2(n+1)

u2(n+1) + (n+ 2)βun+1uxx

− (n+ 1)(n+ 2)βun(u2x + u2

y) + (n+1)(n+2)β2

2α(u2

xx − u2yy)

− (n+1)(n+2)β2

α(ux(uxxx + uxyy) + uy(uxxy + uyyy))

)+ Dy

((n+ 2)βun+1uxy + (n+1)(n+2)β2

αuxy(uxx + uyy)

)= 0.

Conclusions and Future Work

• The power of Euler and homotopy operators:

I Testing exactness

I Integration by parts: D−1x and Div−1

• Integration of non-exact expressions

Example: f = uxv + uvx + u2uxx∫fdx = uv +

∫u2uxx dx

• Use other homotopy formulas (moving terms

amongst the components of the flux; prevent curl

terms)

• Broader class of PDEs (beyond evolution type)

Example: short pulse equation (nonlinear optics)

uxt = u+ (u3)xx = u+ 6uu2x + 3u2uxx

with non-polynomial conservation law

Dt

(√1 + 6u2

x

)−Dx

(3u2√

1 + 6u2x

)= 0

• Continue the implementation in Mathematica

• Software: http://inside.mines.edu/∼whereman

Thank You

Publications

1. D. Poole and W. Hereman, Symbolic computation

of conservation laws for nonlinear partial

differential equations in multiple space dimensions,

Journal of Symbolic Computation (2011), 26

pages, in press.

2. W. Hereman, P. J. Adams, H. L. Eklund, M. S.

Hickman, and B. M. Herbst, Direct Methods and

Symbolic Software for Conservation Laws of

Nonlinear Equations, In: Advances of Nonlinear

Waves and Symbolic Computation, Ed.: Z. Yan,

Nova Science Publishers, New York (2009),

Chapter 2, pp. 19-79.

3. W. Hereman, M. Colagrosso, R. Sayers, A.

Ringler, B. Deconinck, M. Nivala, and M. S.

Hickman, Continuous and Discrete Homotopy

Operators and the Computation of Conservation

Laws. In: Differential Equations with Symbolic

Computation, Eds.: D. Wang and Z. Zheng,

Birkhauser Verlag, Basel (2005), Chapter 15, pp.

249-285.

4. W. Hereman, B. Deconinck, and L. D. Poole,

Continuous and discrete homotopy operators:

A theoretical approach made concrete, Math.

Comput. Simul. 74(4-5), 352-360 (2007).

5. W. Hereman, Symbolic computation of

conservation laws of nonlinear partial differential

equations in multi-dimensions, Int. J. Quan.

Chem. 106(1), 278-299 (2006).