# symmetry and the monster one of the greatest quests in mathematics

Post on 05-Jan-2016

216 views

Embed Size (px)

TRANSCRIPT

Symmetry and the MonsterOne of the greatest quests in mathematics

A little early historyEquations of degree 2meaning the highest power of x is x2: solved by the Babylonians in about 1800 BCEquations of degree 3: solved using a graphical method by Omar Khayym in about 1100 ADEquations of degrees 3 and 4: solved by Italian mathematicians in the first half of the 1500s.

The quintic equationEquations of degree 5 were a problem. No one could come up with a formula.1799 Paolo Ruffini1824 Niels Hendrik AbelEarly 1830s variste Galois

Galoiss IdeasIf the equation is irreducible any solution is equivalent to any other.The solutions can be permuted among one another.Not all permutations are possible, but those that are form the Galois group of the equation.

x4-10x2+1=0There are four solutions, a, b, c, dThe negative of a solution is a solution, so we can set: a+b=0, and c+ d=0.This restricts the possible permutations; if a goes to b then b goes to a, if a goes to c then b goes to d.

The Galois GroupGalois investigated when the solutions to a given equation can be expressed in terms of roots, and when they cant.The solutions can be deconstructed into roots precisely when the Galois group can be deconstructed into cyclic groups.

Atoms of SymmetryA group that cannot be deconstructed into simpler groups is called simple.For each prime number p the group of rotations of a regular p-gon is simple; it is a cyclic group.The structure of a non-cyclic simple group can be very complex.

Families of Simple GroupsGalois discovered the first family of non-cyclic finite simple groups.Other families were discovered in the later nineteenth century.All these families were later seen as groups of Lie type, stemming from work of Sophus Lie.

Sophus LieLie wanted to do for differential equations what Galois had done for algebraic equations.He created the concept of continuous groups, now called Lie groups.Simple Lie groups were classified into seven families, A to G, by Wilhelm Killing.

Finite groups of Lie typeFinite versions of Lie groups are called groups of Lie type.Most of them were created by Leonard Dickson in 1901.In 1955 Claude Chevalley found a uniform method yielding all families A to G.Variations on Chevalleys theme soon emerged, and by 1961 all finite groups of Lie type had been found.

The Feit-Thompson TheoremIn 1963, Walter Feit and John Thompson proved the following big theorem:A non-cyclic finite simple group must contain an element of order 2.Elements of order 2 give rise to cross-sections, and Richard Brauer had shown that knowing one cross-section of a finite simple group gave a firm handle on the group itself.

The ClassificationBy 1965 it looked as if a finite simple group must be a group of Lie type, or one of five exceptions discovered in the mid-nineteenth century.These five exceptions, the Mathieu groupscreated by mile Mathieuare very exceptional. There is nothing else quite like them.

A Cat among the PigeonsIn 1966, Zvonimir Janko in Australia produced a sixth exception.He discovered it via one of its cross-sections.This led Janko and others to search for more exceptions, and within ten years another twenty turned up.

The ExceptionsSome were found using the cross-section methodSome were found by studying groups of permutationsSome were found using geometry

The Hall-Janko group J2Janko found it using the cross-section method.Marshall Hall found it using permutation groups.Jacques Tits constructed it using geometry.

The Leech LatticeJohn Leech used the largest Mathieu group M24 to create a remarkable lattice in 24 dimensions.John Conway studied Leechs lattice and turned up three new exceptions.Had he investigated it two years earlier, he would have found two morethe Leech Lattice contains half of the exceptional symmetry atoms.

Fischers MonstersBernd Fischer in Germany discovered three intriguing and very large permutation groups, modelled on the three largest Mathieu groups.He then found a fourth one of a different type, and even larger, called the Baby Monster.Using this as a cross-section, he turned up something even bigger, called the Monster.

Computer ConstructionsWhen the exceptional groups were discovered, it was not always clear that they existed.Proving existence could be tricky, and computers were sometimes used. For example the Baby Monster was constructed on a computer.BUT the Monster was too large for computer methods.

Constructing the MonsterFischer, Livingstone and Thorne constructed the character table of the Monster, a 194-by-194 array of numbers.This showed the Monster could not live in fewer than 196,883 dimensions.196,883=475971, the three largest primes dividing the size of the Monster.Later Robert Griess constructed the Monster by hand in 196,884 dimensions.

McKays Observation196,883+1=196,884, the smallest non-trivial coefficient of the j-function.McKay wrote to Thompson who had further data on the Monster available.Thompson confirmed that other dimensions for the Monster seemed to be related to coefficients of the j-function.

Oggs ObservationShortly after evidence for the Monster was announced, Andrew Ogg attended a lecture in Paris.Jacques Tits wrote down the size of the Monster, as a product of prime numbers.Ogg noticed these were precisely the primes that appeared in connection with his own work on the j-function.

MoonshineThe mysterious connections between the Monster and the j-function were dubbed Moonshine.John Conway and Simon Norton investigated them in detail, proved they were real, and made conjectures about a deeper connection.Their paper was called Monstrous Moonshine

Vertex Algebras and String TheoryThe Moonshine connections involved the Monster acting in finite dimensional spaces.Frenkel, Leopwski and Meurman combined these in an infinite dimensional space.Their space had a vertex algebra structure, which brought in the mathematics of string theory.

Conway-Norton ConjecturesThe conjectures by Conway and Norton were later proved by Richard Borcherds, who received a Fields Medal for his work,but as he points out, there are still mysteries to resolveFor example the space of j-functions associated with the Monster has dimension 163. Is this just a coincidence?e163=262537412640768743.99999999999925... is very close to being a whole number.