synergy between regional planning and exergy - home | agentschap nl

78
SREX REPORT 2008.1 ENERGY TRANSITION IN SOUTH LIMBURG

Upload: others

Post on 12-Sep-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL
Page 2: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

SREX REPORT 2008.1

ENERGY TRANSITION IN SOUTH LIMBURG

Page 3: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

2

SREX report 2008.1 Energy transition in South Limburg Version 1.2, 16th of March 2009 Edited by Siebe Broersma & Andy van den Dobbelsteen Delft University of Technology, Faculty of Architecture With contributions by Ferry Van Kann, Nanka Karstkarel, Gert de Roo – University of Groningen, Faculty of Spatial Sciences Sven Stremke, Jusuck Koh – Wageningen University, Landscape Centre Wouter Leduc & Ronald Rovers – Wageningen University, Urban Environments Group Rob van der Krogt, Frans Claessen – TNO/Deltares, Utrecht Leo Gommans, Andy van den Dobbelsteen – Delft University of Technology, Faculty of Architecture SREX is a research project on assignment by Paul Ramsak – SenterNovem, Sittard

Page 4: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

3

TABLE OF CONTENTS 1 PREFACE 4 2 CASE-STUDY SOUTH LIMBURG: PART TWO 5

2.1 Introduction 5 2.2 Analysis of present energy system and potentials 7

2.2.1 Present energy system South Limburg 7 2.2.2 Potentials renewable energy South Limburg 13

2.3 Regional scenarios and energy visions 21 2.3.1 Scenario based far-future base-maps 21 2.3.2 Energy visions 26

2.4 Summary and Outlook 37 3 CASE-STUDY PARKSTAD: ENERGY PLAN AT URBAN SCALE 39

3.1 Methodology Energy plan 39 3.1.1 Exergieplanning 39 3.1.2 Regionale energiepotenties, het aanbod aan restenergie 39 3.1.3 De regionale energievraag 41 3.1.4 Conversie, opslag en transport van energie 43 3.1.5 Conclusie methodiek 46

3.2 Ruimtelijk plan 47 3.2.1 Rest-energie in de parkstadregio 47 3.2.2 Conversie, opslag en distributie van reststromen 47 3.2.3 Warmtenetten en restwarmte 48

3.3 Parkstad inventory 49 3.3.1 Inventory of urban functions 49 3.3.2 Quantification of urban energy demand 50 3.3.3 Quantification of urban energy supply 55 3.3.4 Conclusions 60

3.4 Energy-space scenarios for Parkstad 61 3.4.1 Introduction on energy-space scenarios for South Limburg with the SREX approach 61 3.4.2 Scenario method 62 3.4.3 Spatial concepts for an exergetic sound Parkstad Limburg 63 3.4.4 The area of Brunsummerheide East 65 3.4.5 The area of Park Gravenrode 66 3.4.6 Parkstad Limburg Stadium 68

REFERENCES 75 APPENDIX A: ROBUSTNESS OF PROPOSED INTERVENTIONS (WORKING DOCUMENT) 77 APPENDIX B: MAPS 78

Page 5: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

4

1 PREFACE by Andy van den Dobbelsteen

SREX stands for Synergy of Regional Planning and Exergy. It is an interdisciplinary research project conducted by the universities of Groningen, Wageningen and Delft, the Hogeschool Zuyd and TNO/Deltares, funded by SenterNovem under the programme of EOS-LT (long-term energy research incentive). Why synergy of regional planning and exergy? To answer this we first need to understand the concept of exergy. Exergy is the maximum work potential of energy, i.e. the quality part of energy. According to the First Law of Thermodynamics (with capitals, yes) energy never gets lost, but the Second Law explains that all processes develop towards an increasing amount of entropy, which can be seen as the waste part of energy (waste heat). Exergy is the part that is lost in and between processes. Our current energy system is based on efficiency but requires a lot of input from primary energy sources, predominantly fossil fuel. And we know this fossil fuel is finite. In addition, we use our energy very ineffectively: a lot of the exergetic potential is lost when – for instance – burning gas at a temperature of 1200 degrees centigrade, while using it to heat up houses to 20 degrees. Thus enormous amounts of unused waste heat are produced.

heavy industry

storage

horticulture

hotel and catering

offices

dwellings

agriculture

power plant

waste heat

prim

ary

ener

gy

elec

trici

ty

CURRENT SYSTEM

into the air and water

wasteinto the environment

power plant

heavy industry

storage

horticulture

hotel and catering

offices

dwellings

agriculture

prim

ary

ener

gyw

aste

cascade of waste heat

elec

trici

ty

SUSTAINABLE, LOW-EX SYSTEM

waste

A more sustainable, low-exergetic (low-ex) system would be based on the optimal deployment of waste energy flows. For instance, waste heat from industrial processes is still high-caloric, making it useful for application in different, lower-graded functions. Houses could be served with waste heat from greenhouses, avoiding the need for the highest-quality energy source we have: natural gas or oil. We thereby could preserve these for functions that really require the best energy available. The low-ex system is not necessarily efficient but very effective, potentially leading to improvement by a factor of 6, whereas we now struggle for 5% of efficiency improvement. In order to attain such a low-ex system, spatial planners should be fully aware of the energetic consequences of their decisions, as specific functions should be located close to one another, since transport of heat comes with great losses. At the regional level all types of spatial functions can be found, making the region the optimal scale to tackle the low-ex principle. This is why SREX was organised, combined expertise from spatial planning, landscape architecture, urban planning and energy technology. SREX uses two regions in the Netherlands as a testcase for the low-ex model to be developed: South Limburg and South-East Drenthe. This report reflects the final results from the Limburg studies. We hope you enjoy reading it and learning from it. Critical reviews are very welcome as we keep learning from new ideas…

Page 6: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

5

2 CASE-STUDY SOUTH LIMBURG: PART TWO by Sven Stremke and Jusuck Koh

2.1 Introduction The present document holds the contribution of work-package five (WP5) to the report 2008.1. In accordance with the SREX research proposal, we have completed our studies on the first case-study for the region of South-Limburg. Whereas the previous report (2007.2) focused on the survey of existing conditions in the region, the present report depicts four energy visions for South Limburg. These long-term visions are based on existing scenario studies for the Netherlands and, more specifically, for the province of Limburg. The main chapter of this contribution at hand is comprised of two parts. The first part describes the present energy system in South-Limburg. In addition, a number of sustainable energy potentials are being identified and quantified. Energy system and potentials are being mapped with the help of Geographic Information System (GIS). Part two sets out with a summary of existing scenario studies which describe possible far-futures for South Limburg. Likely developments and their implication for the energy system in South Limburg are being depicted in what we refer to as far-future base-maps. Four extreme possible futures have been chosen to work on. Our task was to develop possible strategies optimizing the energy system in each possible future; all four proposals are described and illustrated in part two. Finally, the appendix holds a table illustrating the (preliminary evaluation) of robustness of the here discussed measures. The table represents our first attempt of a comparative analysis between the four energy visions and will be further elaborated throughout the coming months. Our contribution to the present report 2008.1 concludes with the 17 GIS maps which we prepared in the process of the first case-study and presented during the SREX workshop in Maastricht. Our contribution to the 2008.1 report reflects our experiences and findings working at the regional scale in South Limburg. Regional energy visions provide, first of all, inspiration and identify possible pathways towards a more sustainable energy system. However, they also represent possibly context and conditions for more detailed studies at urban scale as they have been conducted for the Parkstad. Clearly, interventions at lower scales influence regional developments and vice versa. Both, differences in scale and time-horizon may complicate but also enrich the search for a more sustainable energy system and should complement each other. South Limburg represents the first regional case-study. With ‘South Limburg’ we refer to the COROP region comprising 19 municipalities in the South of the Province Limburg. We have chosen to work with the research framework described by Carl Steinitz (2002). Steinitz has articulated a research approach to regional planning and design which is based on a number of six research questions. Although our approach relies heavily on Steinitz’s framework, we have altered the original framework to suit the specific objectives of the SREX research project. The adapted research framework is illustrated below. Question I to III have been answered in the previous report (2007.2). Question II (analysis of the regional energy system) has been further elaborated with the help of GIS maps and included in this report However, in this report we are focusing on question IV and V. The last research question addressing decision-making and implementation remains to be explored.

Page 7: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

11

energy consumption of Dutch industry, agriculture and the service sector. Based on the population number of 617.000 in South Limburg, we have estimated the regional energy demand with approximately 120 PJ. Needless to say, we would have liked to base calculations on concrete demand figures from South Limburg. Unfortunately, such figures are not available. Sectoral energy consumption: The table below illustrates the yearly energy use per resource and sector in the Netherlands as well as in the case-study region of South Limburg. Consumption (in PJ) Total (NL) Total (SL) Industrie Transport Household Service/Agr. Natural gas 911 44 10,96 0 13,44 12,08Crude oil + oil products 979 45 17,64 19,08 0,16 2,28Coal 27 1 1 0 0 0,2Electricity 357 17 5,64 0,24 3,36 5,08Others (refined oils etc.) 260 13 8 0 0,24 2,12Sum (without conversion) 2.534 120 43,28 19,28 17,24 21,76 Total energy use per sector (incl. 20% “loss”) 3.247 PJ 120 PJ 52 PJ 23 PJ 20 PJ 25 PJ

Table 2: Estimated energy use in South Limburg, calculated for each resource and sector (CBS, 2003)

Utilization of energy: Looking at the demand side, one can also distinguish the type of application in which the 120 PJ of energy are being consumed in South Limburg. Based on national figures, we estimate a demand of 45 PJ for heating/cooling, 26 PJ for transportation, 17 PJ of electricity and 32 PJ for material production as well as loss in the conversion. Main energy consumers (sinks): Obviously, industry, transport and the service sector require vast amounts of energy. The densely populated urbanized areas in South Limburg also consume large amounts of energy per unit of surface. About 30% of the region is populated with more than 1.000 inhabitants per square kilometer. Small towns and villages with a more dispersed population (70% of surface) need less energy per unit surface. Looking at the per capita energy consumption, one may expect the opposite: Remote locations and freestanding houses do require more energy per inhabitant and therefore will be taken into account during the design process. The below list specifies some of the main energy consumers in the region:

Heavy industry: Geleen (DSM/Chemelot), Heerlen "De Beitel" (Dyneema BV), Kerkrade-Eygelshoven (Laura Staalcenter) → GIS map “built-up areas”

Business park and shopping centers (retail) → see GIS map “built-up areas” Waste-water treatment plants (10 in South Limburg): up to 7.400.000 kWh/year electricity and

more than 100.000 m2 natural gas per plant → see GIS map “consumption” Hospitals: Sittard, Geleen, Maastricht, Brunssum, Kerkrade ENCI factory Maastricht Airport Maastricht-Aachen Snowworld Landgraf Gulpener beer brewery in Gulpen Brand beer brewery in Wijre Alfa beer brewery in Schinnen

Page 8: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

12

Figure 3: Present energy consumption in the area of Maastricht

Page 9: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

13

2.2.2 Potentials renewable energy South Limburg Currently, many of the potentials for renewable energy are being neglected in regional planning. Only search-areas for wind and waterpower are indicated in the respective maps. In addition, large areas are being protected from any assimilation of wind and water power. The theoretical potentials for energy assimilation, however, are hardly being mapped. This has to do with the (still) under-represented values of energy provision in present-day planning and design. In the following section, we will illustrate and quantify areas with great potentials for provision of renewable energy. All renewable energy potential maps have been used in designing the four energy visions illustrated in the consecutive chapters. P1 Solar energy potential The region of South Limburg has about 1.500 hours of sunshine per year. The differences with other parts of the country are minimal. The national maximum of 1.650 hours of sunshine has been recorded along the Western coastline. Annual solar radiation in the region is approximately 360 KJ/cm2 or 1.000 kWh/m2 (www.knmi.nl) Looking at the case-study region, one can conclude that solar radiation is distributed relatively even across the landscape. Obviously, forests and water surfaces are excluded from active assimilation of solar energy. The greatest potentials lie in the urban fabric, where passive and active energy harvest can take place. On the map, we distinguish built-up areas into residential areas (17% surface SL) and industrial parks (5.5% surface SL). The total area of buildings in South Limburg amounts to 3.387 hectares (5% surface SL). The total footprint of industrial and commercial buildings in South Limburg’s is 708 hectares. An area as large as 700 football fields (mostly flat roofs) is available for potential assimilation of solar energy without increasing land-use pressure.

708

3628

11328

0

2000

4000

6000

8000

10000

12000

residential area industrial park greenhouse

Siz

e in

hec

tare

s

Figure 4: Size of built-up areas in South Limburg with solar energy potential

buildings within industrial park

Page 10: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

14

Figure 5: Solar energy potentials in the area of Maastricht

P2 Wind energy potential The region of South of Limburg has the second lowest wind speed of the Netherlands. The yearly average wind speed above ground is between 4-4.5 m/s (www.knmi.nl). However, the wind speed at 100m above ground is significantly higher and reaches from 6.5 to 8.0 m/s (see diagram following page). Least wind speeds can be found above the urban fabric. This is due to the turbulences caused by the built structures in the cities. The highest wind speeds are present at the plateaus of the Heuvelland. The Heuvelland, however, is assigned National Landscape (+/- 50% area SL); a status which will limit potential harvest of wind energy. In the area of Aachen-Maastricht airport (82 ha), strong limitations apply for the assimilation of wind energy. Due to strong wind disturbances, forests (7.000 ha in South Limburg) have limited value for wind energy. Settlements and industrial parks, however, do have certain potentials. All these land-uses are indicated in the wind energy potential map.

Page 11: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

15

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

6.5 - 7.0 m/s 7.0 - 7.5 m/s 7.5 - 8.0 m/s

Windspeed at 100m height

Area

in h

ecta

res

Figure 6: Distribution of wind-speed 100m above ground in South Limburg (based on

www.senternovem.nl)

Figure 7: Wind energy potentials in the area of Maastricht

Page 12: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

16

P3 Water power potential Compared with the rest of the country, the region of South Limburg has great contrast in relief. The lowest areas of the region are located in the Northern Maasvalley. The highest area is the Vaalserberg in the South-east corner with an elevation of 322 m above sea level. The river Meuse cuts through the region from South to North, fed by two regional tributaries: the Geul and the Gulp. Parallel to the river Meuse, the Julianacanal was built to provide conditions for water transportation throughout the year. The total length of all regional watercourses amounts to 238 km. The water surface is estimated 1.085 hectares. Along the Meuse and the canal, we find nine locks. 14 sluices exist in the tributaries. More than 30 historical water mills still exist in South Limburg, some of which generate small amounts of electricity. Two hydro-power plants are being operated in the Province; they are both located outside the case-study region in Northern Limburg.

Figure 8: Water power potentials in the area of Maastricht

P4 Biomass potential As indicated in chapter “present energy provision”, a small number of facilities exist where biomass is being converted to electricity and heat. Considering the fact, that 75% of the area in South Limburg is covered by biomass, it becomes clear that large potentials remain unexplored. Among the most-promising possibilities are residues from fruit-growing as well as organic waste from the 600.000

Page 13: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

17

inhabitants in the region. When we talk about conversion of biomass, transportation distances and technologies remain important issues. Collecting organic waste in the densely populated cities of Maastricht, Sittard-Geleen and the Parkstad seems the most feasible solution. As indicated in the below diagram, two thirds of the region has a population density of more than 100 inhabitants/km2.

0

5000

10000

15000

20000

25000

30000

0-0 1 - 100 101 - 500 501 -1000

1001 -2000

2001 -4000

4001 -6000

6001 -8540

Tota

l are

a in

hec

tare

s

Figure 9: Distribution of housing densities in South Limburg (all inhabitants per km2

Another source of second generation biomass is the maintenance of public green, sport-fields and road verges, landscape maintenance as well as forestry. From an energy perspective, waste-water-treatment plants do not only consume energy, they can also provide biogas and/or electricity based on the fermentation of collected waste water. Potential land for first-generation biomass production, that is short-rotation coppice or energy crops, is limited to 18.324 hectares or 28% of the land surface. The following two tables list the length of longitudinal landscape elements as well as the total size of areas with relevance to biomass. Longitudinal landscape element with potential biomass provision Length Local road (regionale weg) 648 kmTree row (bomenrij) 534 kmHedgerow (heg/smalle houtrand) 496 kmMain road (hoofdweg) 288 kmFreeway (autosnelweg) 110 kmDike (dijk) 35 km

Table 3: Longitudinal landscape elements with potential biomass provision

Page 14: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

18

Land-uses with potential biomass provision SizeArable land (bouwland) 18.324 haPasture (weiland) 17.344 haDeciduous forest and poplars (loofbos, griend en populierenopstand) 5.658 haParks, sport fields, allotment gardens (park, plantsoen, sportterrein, volkstuin) 2.447 haCommercial fruit-growing (fruitkwekerij) 1.410 haMixed forest (gemengd bos) 1.081 haOrchard (boomgaard) 831 haBuildings outside building area (huizen buiten bebouwd gebied) 471haConiferous forest (naaldbos) 287 haNursery (boomkwekerij) 188 haLandfill (stortplaats) 130 haGreenhouses (kas/warenhuis) 8 ha

Table 4: Overview of land-uses with potential biomass provision

Figure 10: Biomass potentials in the area of Maastricht

Page 15: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

19

P5 Heat/cold and geothermal potential Clearly, the great potentials of a former mining region are not being materialized at the moment. The ‘Mijnstreek’ is as big as half the region; more than 34.000 hectares of complex, three-dimensional mining-system. Twelve mine-shafts can be identified on historical maps; all of which are being closed and no longer accessible. As indicated earlier, two new district heating projects connect to old mines and use their volume for water storage. Four of the existing district heating grids lie above former mining areas, three more outside of it. SenterNovem has estimated the potentials for heat/cold exchange across the Netherlands. In South Limburg, only seven percent of the region offers very good conditions for heat/cold exchange in the underground. About two thirds of South Limburg is designated ground-water protection area (44.208 hectares); restrictions apply for the exploitation of the underground. Potential heat/cold exchange Area in hectares Relative size in SLVery good 4.341 7 %Good 21.667 33 %Moderate 39.791 60 %

Table 5: Potential heat/cold exchange in South Limburg (based on www.SenterNovem.nl)

A number of sources for potential heat cascading have been identified in the region. Among the “hot-spots” are the ENCI waste incinerator in the South of Maastricht, two conventional power plants as well as five areas with heavy industry in the North and the East of the region. The size of all heavy industry areas amounts to 857 hectares. The total size of residential areas, in contrast, is more than 10.000 hectares. Thus, in terms of size we are estimating a ration of 1:12 between potential heat sources and sinks. Obviously, ‘other’ industries may also offer residual heat to feed energy cascades and remain to be explored.

119 8572575

10105

235 670 130 554318

77

business park: logistics

industrial park (first class)

heavy industry

other industry

residential area

shopping area

public facilities

socio-cultural facilities

landfil

extraction of raw materials

Figure 11: Distribution of land-uses with relevance to heat/cold exchange and geothermal energy (all in hectares)

Finally, large paved surfaces of the regional road system (total length 1.046 km) offer opportunities to incorporate heat assimilation and/or electricity generating devices such as the Peltier elements. 110 km of freeways, 288 km of main roads and 648 km of regional roads crisscross the case-study region of South Limburg. Currently, the ‘Ring-road’ of the Parkstad is being planned; it seems logical to explore energy assimilation as part of such large-scale infrastructural project. For more information on energy potentials of road surface please refer to Wouter Leduc’s contribution in this report.

Page 16: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

20

Figure 12: Heat/cold storage and geothermal potentials in the area of Maastricht

Page 17: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

21

2.3 Regional scenarios and energy visions In the present section, we will illustrate the findings of step three and results of step four in the conceptual framework: Far-future base-maps and energy visions. 2.3.1 Scenario based far-future base-maps The province of Limburg has composed a number of four scenarios rendering possible futures for the region (Engelen et. al. 2006). Each development has different implications for long-term energy transition and is therefore looked upon separately. In the following pages, we seek to concretize the given storylines with the help of far-future base-maps, storyline bullets and reference pictures. Each of the following four far-future base-maps depicts possible developments with relevance to sustainable energy transition. Some of the shown land-uses may not change their function but gain importance in optimizing the energy system.

Page 18: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

22

B1 Global market base-map

Possible key developments global market scenario (Source: Engelen et. al. 2006) o Continuous use of fossil fuels on a global scale o Increasing energy demand for all sectors + new industry o Concentration of functions (industry, offices, dwellings) island structure o New dwellings in Parkstad, Sittard-Geleen and Maastricht o Increasing transport: mainly via road more trucks o Intensification of cattle breeding, dairy farming and horticulture o Only attractive nature near to settlements important

Figure 13: Global market base-map illustrating possible developments in the area of Maastricht

Page 19: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

23

B2 Secure region base-map Possible key developments secure region scenario (Source: Engelen et. al. 2006) o Self-sufficiency of energy, materials & food supply reduced import o Energy demand of existing industrial areas increases o Exploitation of local energy sources: mine-gas, waste streams and sewers o Dispersed residential areas on edge of cities & in rural areas o Decreasing size farms smaller number of farms o Multifunctional land use in rural areas o Continuous separation of living and working

Figure 14: Global market base-map illustrating possible developments in the area of Maastricht

Page 20: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

24

B3 Global solidarity base-map Possible key developments global solidarity scenario (Source: Engelen et. al. 2006) o Transition to sustainable energy sources o Natural gas remains important as transition fuel o Global solutions large-scale renewable electricity worldwide network o Growing industry increasing energy demand of industry o Increasing demand for public transportation, improved int. connections o Waterways important for transport, also railway and trucks o Compact cities & industry: concentrated functions, separation conflicting functions

Figure 15: Global solidarity base-map illustrating possible developments in the area of Maastricht

Page 21: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

25

B4 Caring region base-map Possible key developments caring region scenario (Source: Engelen et. al. 2006) o Fast transition to sustainable and regional energy sources o Improved efficiency and responsible behavior decreasing energy demand o Densification of existing villages and towns o Increasing demand for public transportation o Balanced land-use, mix of intensive agriculture & ext. landscape maintenance o No construction of new dwellings or industry in natural areas

Figure 16: Caring region base-map illustrating possible developments in the area of Maastricht

Page 22: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

26

2.3.2 Energy visions Based on the present-day conditions, given scenario storylines and energy potential maps, we have articulated four energy visions which represent possible pathways into a more energy-efficient and sustainable energy system in South Limburg. Each vision is illustrated with the help of energy and space storylines, tables, photomontages and detailed GIS maps for the area of Maastricht. All four energy and space storylines, listed below, have been composed by Ferry van Kann, Wouter Leduc and Leo Gomanns. Again, the GIS energy visions maps for the entire region can be found in the appendix. V1 Global market energy vision To fulfill the continuous demand for energy in all sectors, fossil resources are used on a large scale in this scenario. The energy distribution runs via pipelines, high-voltage lines, over road and water. The main focus is on the economic efficient generation of electricity. In the Netherlands, and also in S-Limburg, a natural gas network exists, so natural gas can act as an economical profitable source for process, room and water heating. Residual heat will only be used when economically profitable, so e.g. re-use of heat within or in the vicinity of factories. Refined fossil fuels will continue to be used for transport. Energy extraction will remain outside South Limburg. Energy will be transported from all over the world to the consumers. Any new large (conventional) electricity plants are located next to large water bodies (for cooling purposes). Due to the cooling aspect and the global scale of this scenario, the researchers do not expect the construction of any (nuclear) power plants in South Limburg. Renewable energy sources are not taken into account, because they remain unprofitable. However, this may change when prices for fossil resources continue to increase. For new dwelling and other buildings stricter ‘energy performance coefficients’ (EPC) will continue to apply. There is a trend to more intensive agriculture. All spatial functions will be further concentrated. Existing industry will remain and may even grow. New road and airport infrastructure will be constructed. The quality of nature is not so much an issue; people are mostly interested in nice ‘usable’ nature (leisure landscape?). Global market energy vision Amount Length (km) Size (ha) 1 Residual heat from industry 7 2 New generation pig-farms (biogas to grid) 2 3 New office parks with low EPC 2 4 New dwelling areas with low EPC 15 5 New overhead electricity powerline 30 New residential areas 386 Extension airport 80 New heavy industry 387

Table 6: Overview of measures which support energy transition in the global market scenario

Page 23: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

27

Figure 17: Visualization future town edge of Margraten (global market scenario)

Figure 18: Visualization future rural landscape in the area of Banholt (global market scenario)

Page 24: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

28

Global marked energy vision

Figure 19: Energy vision global market scenario in the area of Maastricht

Page 25: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

29

V2 Secure region energy vision An increase of industrial energy demand is expected. No major fluctuations are expected in other sectors. An important aspect of this scenario is the regional aim for self-sufficiency; in other words, reducing the import as much as possible. Therefore, people try to use and extract locally available energy resources. Electricity is provided by combined heat and power plants (CHP); they run on fossil and regional renewable energy carriers. Large wind turbines may be economically feasible and will be located in the areas with highest wind speeds. The reduction of regional energy consumption is of importance. Buildings are well insulated and energy efficient technologies are applied as they become economically feasible. Living and working remains separated. Industrial residual heat will be used, when distances are not too large and when profitable. Dwellings have individual heating systems; new dwellings are built according to stricter EPC-standards. The underground is feasible for heat/cold-storage, especially in the former mine areas. Small-scale cascades of heat will develop, but complete heat networks are not feasible. Transport uses still mainly oil-based fuels, but the use of biomass-based fuels and electricity increases. Fewer dwellings will be built, compared with other scenarios. They will be fairly spread out. Due to the increasing relevance of (regional) biomass, biogas installations and biomass storage facilities are built. The size of industrial areas does not increase. The amount of farms decreases due to scale enlargement. Multifunctional land-use on small scale develops. Landscape and nature is being used also for recreational purposes.

Secure region energy vision Amount Size (ha) 1 Heat-cold pumps (closed system) >39 2 Large scale hydropower plant 3 3 Residual heat from industry 4 4 Mine-gas extraction & potential heat-cold storage 12 5 Combined heat-power-plant (electricity to grid) 4 6 CHP based on organic and solid waste 3 7 CHP based on biogas 2 8 Energy neutral dwellings in new residential areas 7 9 New LowEx residential areas with district heating 6 10 Water-waste treatment plant (biogas to grid) 8 11 Cold required (Snowworld) 1 12 New district heating 10 13 District heating based on biomass 5 from 20 14 Search-area wind park 4.43815 1e generation biomass

- Arable land 15.974 - Pasture 11.758

16 2e generation biomass +/- 50.000 - Forest 1.509 New residential areas 306

Table 7: Overview of measures which support energy transition in the secure region scenario

Page 26: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

30

Figure 20: Visualization future town edge of Margraten (secure region scenario)

Figure 21: Visualization future rural landscape in the area of Banholt (secure region scenario)

Page 27: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

31

Secure region energy vision

Figure 22: Energy vision secure region scenario in the area of Maastricht

Page 28: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

32

V3 Global solidarity energy vision This scenario is characterized by an increasing industrial energy demand; other sectors decrease. Economy remains to be acting on a global scale, not necessary regionally. However, solidarity and thinking on a global scale open up more possibilities. Electricity is generated on the large-scale, and sustainable, and CO2 capture is being applied. The global scale makes it possible to find the most feasible location for large-scale harvest of renewable energy. Energy is being transported across the continent via cables and pipelines. On the regional scale, waste streams are used to generate heat for heat cascading. And also for materials, re-use and recycling are applied. Existing chemical industry in Limburg will evolve into biochemical industry. The Trias Energetica also applies for this scenario. New dwellings have to fulfill very strict EPC-demands and be connected to heat networks. Natural gas use increases, compared to other fossil resources. This is because it is the cleanest fossil fuel and represents a transition fuel. The increasing importance of electricity becomes evident in the transportation sector: Public transportation will become more electrified. Biomass fuels will be used for road and water transport. Spatial functions remain spread out, partially due to the strict standards for noise protection. Large natural areas are located next to concentrated cities, large compact industrial sites and large-scale intensive agriculture. Parts of the agricultural sector will participate in landscape maintenance and/or sustainable energy generation. Global solidarity energy vision Amount Length (km) Size (ha)1 Indoor swimming pool (heat required) 20 2 Residual heat from industry 6 3 Combined heat-power plant (electricity to grid) 4 4 CHP based on solid waste 1 5 Waste-water treatment plant (biogas to grid) 10 6 Area with new dwellings with low EPC 15 7 Area with new dwelling (LowEx w/ district heating) 11 8 Electricity (renewables from region) 2 9 New district heating 10 10 New district heating (based on biomass) 3 11 Cold required (large sink) 1 12 New overhead electricity power lines 80 13 2e generation biomass +/- 50.000 New residential areas 386

Table 8: Overview of measures which support energy transition in the global solidarity scenario

Page 29: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

33

Figure 23: Visualization future town edge of Margraten (global solidarity scenario)

Figure 24: Visualization future rural landscape in the area of Banholt (global solidarity scenario)

Page 30: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

34

Global solidarity energy vision

Figure 25: Energy vision global solidarity scenario in the area of Maastricht

Page 31: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

35

V4 Caring region energy vision The energy demand decreases in all sectors. The region aims at self-sufficiency; social and environmental aspects are more important than economical profit. Reduction of energy demand is one important goal. Sustainable energy resources become more popular also because the limitation of fossil fuels becomes obvious. We see a development towards balanced agricultural land use: intensive if needed, extensive when possible. In urban areas heat/cold networks will develop and cascading will be applied. Agricultural and industrial facilities deliver goods to the city, but also use waste and recycle materials. New legislation is expected, incorporating sustainability. Building codes will be stricter: EPC, LowEx and autarkic dwellings. In general, fewer new dwellings are built and people are less interested to live in large cities. There is a trend to densification and compact building in existing towns and small cities. Nature is kept free from further developments. Individual transport decreases and interest in public transportation is expected to increases. Caring region energy vision Amount Size (ha)1 New district heating 22 2 District heating (based on biomass) 6 from 32 3 Fermentation of manure and co-fermenter 13 4 Algae production (bio-fuels) 3 5 Residual heat from industry 7 6 Areas with small wind turbines 36 7 Areas with new energy neutral dwellings 9 8 Areas with heat-cold pumps (closed system) 22 9 Small-scale hydropower 30 10 Large-scale hydropower 3 11 New heat-cold storage in mines 14 12 Waste-water treatment plant (biogas to grid) 8 13 CHP based on biogas 2 14 CHP based on organic and solid waste 3 15 Search area wind park 1.30716 Mixed areas (pv-cells, boiler, waste) 10.10517 PV-Cells in business parks 3.628 - Building footprint within business parks 70818 2e generation biomass +/- 50.000 New residential areas 159

Table 9: Overview of measures which support energy transition in the caring region scenario

Page 32: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

36

Figure 26: Visualization future town edge of Margraten (caring region scenario)

Figure 27: Visualization future rural landscape in the area of Banholt (caring region scenario)

Page 33: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

37

Caring region energy vision

Figure 28: Energy vision caring region scenario in the area of Maastricht

2.4 Summary and Outlook (by Sven Stremke) The document at hand, in combination with the GIS maps, concludes our case-study in South Limburg. Reports 2007.2 and 2008.1 focus on this region and illustrate our search for potential solutions towards sustainable energy transition in South Limburg. It can be concluded that we have identified and mapped great potentials in close collaboration with the regional stakeholders. The results of this first case-study have been presented to the interested public on the 28th of May 2008 in the provincial parliament, Maastricht.

This contribution consists of two parts: Renewable energy potentials are being mapped and quantified. The total area of all building footprints in South Limburg, for example, amounts to 3.387 hectares (5% of SL surface) allowing both for passive and active harvest of solar energy. Similarly, potential areas for wind, water, biomass, heat-cold and geothermal energy are mapped and their size estimated. One of the tasks of the SREX case-study was to generate energy visions at above urban scale illustrating potential pathways towards a sustainable energy system in South Limburg. We have chosen to work with four possible futures outlined in the provincial scenario study: Global market, secure region,

Page 34: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

38

global solidarity and caring region. Depending on certain autonomous developments (e.g. recognition of sustainable development and scale of collaboration), certain technologies become likely to be employed. In a caring region, just to name one example, algae production for bio-fuels and cascading of residual heat are much more likely than in a global market scenario. Simultaneously, land-uses may change due to external factors; a situation which may allow or prevent greater energy harvest. We have visualized these four possible scenarios and estimated the number of locations as well as area sizes of energy relevant interventions in the long-term vision. This way, a number of “robust” strategies have been identified among the different energy visions. Such robust strategies appear in more than one scenario and therefore can be considered “low-risk” investments. The appendix holds a table where we estimate the robustness of proposed measures. However, they remain to be described in detail - along with concrete design criteria and guidelines - during the coming research phases.

Page 35: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

39

3 CASE-STUDY PARKSTAD: ENERGY PLAN AT URBAN SCALE

by Leo Gommans and Wouter Leduc

3.1 Methodology Energy plan by Leo Gommans

3.1.1 Exergieplanning Tot op heden wordt de beperking van het energiegebruik in de gebouwde omgeving voornamelijk gerealiseerd met maatregelen in of aan de gebouwen zelf. Er is weinig aandacht voor regionale potenties en exergieprincipes worden nog maar weinig gebruikt om dit energiegebruik te beperken. Er is een andere wijze van benadering nodig die naast maatregelen op gebouwniveau, meer gebruik maakt van de regionale potenties en exergieprincipes. Een werkbare definitie hiervoor ten behoeve van de ruimtelijke ontwikkeling hebben wij gevonden in de term ”exergieplanning”.Exergieplanning is het realiseren van ruimtelijke voorwaarden om beter gebruik te kunnen maken van niet gebruikte energiestromen (restenergie). Meer concreet gezien moet exergieplanning leiden tot: - Een betere benutting van de kwaliteit van energie - Het realiseren van ruimtelijke energiecascades - Gebruik maken van rest-energiestromen (afval = voedsel) - Realiseren van laag-exergetische energievraag (LowEx) - Beter gebruik van hoog-exergetisch rest-energieaanbod

3.1.2 Regionale energiepotenties, het aanbod aan restenergie Rest-energiestromen en de wijze waarop deze ruimtelijk en temporeel geschakeld worden, zijn dus belangrijke aspecten van exergieplanning. Het is dan ook belangrijk dat we weten wat we verstaan onder rest-energiestromen en dat we weten hoe we deze kunnen schakelen. De aanwezige restenergiestromen zijn hierbij de potenties die een gebied of regio heeft en is in feite de energie die er aanwezig is en (nog) niet nuttig gebruikt wordt. We kunnen hierbij denken aan: - Niet gebruikte zonne-energie in warmte uit binnenlucht, buitenlucht, de bodem of water - Niet gebruikte zonne-energie in licht, zonnestraling, waterkracht, windenergie, golfenergie,

zeestromen en zoet-zoutverschillen - Bereikbare geothermische warmte uit het binnenste van de aarde - Biomassa uit industriële en agrarische productie, uit onderhoud van parken en natuurgebieden,

huishoudelijk- en bouwafval - Afvalwarmte of -koude Uit productieprocessen of van koeling, verwarming van gebouwen, kassen

en uit riool - Organisch afval uit fabricageprocessen of uit de stad zoals GFT (GroenteFruitTuinafval) of

rioolafvoer uit gebouwde omgeving en organisch afval uit de voedingsindustrie - Afval uit fossiele bronnen zoals olie, plastics e.d. Bronnen die aantasting van de biodiversiteit en/of uitputting van grondstoffen veroorzaken zijn geen onderdeel van de exergieplanning omdat ze op de lange termijn geen alternatief zijn (lit. 1). Exergieplanning speelt zich daarom en vanwege zijn regionale karakter af binnen het hiervoor geschetste scenario van “de zorgzame regio”. De regionaal aanwezige potentiële energiebronnen kunnen geïnventariseerd en in kaart gebracht worden (Energymapping), zoals voor Zuid Limburg is gedaan in kaarten A1 (lit 2). Een uitvergroting voor biomassapotenties in de regio Parkstad is te zien in afbeelding 1. Hier zien we de locaties van parken, natuurgebieden waar door onderhoud en beheer biomassa uit vrijkomt, agrarisch gebieden, doch ook locaties voor waterzuiveringen en stortplaatsen. Al deze locaties kunnen biomassa uit reststromen leveren. Biomassa-reststromen uit de industrie zoals bijvoorbeeld de voedingsmiddelenindustrie of houtverwerking, zijn nog niet geïnventariseerd en

Page 36: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

40

ingetekend maar zijn ook potentiële bronnen. Het is belangrijk dat deze regionaal verspreide bronnen biomassa kunnen leveren wat op een punt verzameld en verwerkt kan worden. Zo zijn er ook kaarten met windpotenties, potenties voor waterkracht en industriegebieden waar mogelijk restwarmte vrijkomt (lit. 2). De zoninstraling is niet in kaart gebracht omdat deze voor de hele Parkstadregio, evenals voor Limburg nagenoeg gelijk is, namelijk ca. 1.000 kWh per jaar, op het horizontale vlak, waarvan het overgrote deel buiten het stookseizoen valt.

Figure 29: A1-kaart Biomassapotenties in Parkstadregio (Lit.2; Stremke)

Page 37: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

41

3.1.3 De regionale energievraag Al de potentiële bronnen kunnen gebruikt worden om zo veel mogelijk in de eigen energiebehoefte te voldoen. De energiebehoefte bestaat uit verschillende vormen van energie zoals warmte, koude, elektriciteit en brandstof. Zowel de vorm als de hoeveelheid van de energiebehoefte verschilt en is afhankelijk van de functies. Zo heeft een woonfunctie relatief veel (lage temperatuur) warmte nodig voor ruimte- en tapwaterverwarming en elektriciteit (hoog-exergetisch) voor apparatuur en verlichting. Ziekenhuizen zijn grote energieverbruikers met behoefte aan stoom. En in de industrie worden verschillende vormen en hoeveelheden van brandstoffen gebruikt, al naar gelang de sector. In de bijlage 1 zijn voor verschillende sectoren gegevens over de energievraag te vinden wat betreft de vorm en hoeveelheid. De A3-kaarten geven een ruimtelijk beeld van de ligging van verschillende energievragers in Zuid Limburg. Afbeelding 2 geeft een ruimtelijk beeld van de ligging van verschillende functies in de Parkstadregio en geeft daarmee ook iets aan over de energievraag. Als we gaan kijken hoe we de regionale energievraag kunnen dekken met het aanbod aan rest-energie in de regio, komen we al snel tot de ontdekking dat de vorm van de energievraag niet altijd overeenkomt met de aangeboden energievorm. Er valt dan te denken om er in de toekomst functies neer te leggen die wel iets met deze energievorm kunnen, maar dat kan om allerhande andere redenen weer minder wenselijk zijn. Een chemisch energiecomplex kan bijvoorbeeld veel stoom als restproduct hebben, waar een ziekenhuis weer behoefte aan heeft. De ligging van beide functies naast elkaar heeft echter zo zijn bezwaren. Het hoogwaardig lokaal hergebruiken van reststromen heeft weliswaar de voorkeur maar kan niet altijd gerealiseerd worden. Er kan dan gekeken worden of de aangeboden restenergie niet omgezet kan worden naar de gewenste energievorm, zonder veel exergetische (conversie)verliezen. Zo kan laagtemperatuur-restwarmte met een warmtepomp naar een hogere temperatuur gebracht worden, zonnestraling omgezet worden in warmte of elektriciteit, wind met een windmolen omgezet worden in elektriciteit en van GFT-afval kan bijvoorbeeld methaangas geproduceerd worden. Mocht dat ook allemaal niet lukken, bijvoorbeeld omdat er geen technieken bekend zijn om dit economisch te realiseren, dan kan men er aan denken om de restenergie naar een andere plek te brengen waar deze wel gebruikt kan worden. Ook kan het zijn dat de restenergie op een ander tijdstip pas nodig is waardoor we het moeten opslaan. De mogelijkheid om de energie op te slaan moet dan wel aanwezig zijn en met niet al te grote verliezen zijn te realiseren. We kunnen in de exergieplanning dus een voorkeursvolgorde aanbrengen die er als volg uitziet: 1. Hoogwaardig lokaal hergebruik van restenergie 2. Lokale conversie van restenergie naar gewenste energievorm zonder veel exergetische verliezen 3. Verplaatsen van de restenergie naar andere plekken en/of opslaan om later of elders gebruikt te

kunnen worden met zo min mogelijk exergieverliezen. Er kan ook gekozen worden om de energievraag aan het aanbod van restenergie aan te passen. Zo kan er ergens aanbod zijn van restwarmte van een lage temperatuur, bijvoorbeeld 30oC uit de kolenmijn bij Heerlerheide. We kunnen daarom bijvoorbeeld besluiten om er woningen neer te zetten die zeer goed geïsoleerd zijn en die daarom met vloerverwarming of betonkernactivering met deze lage temperaturen verwarmd kunnen worden. We kunnen zelfs de warmtevraag van hele wijken met warmtenetten cascaderen door de retourleiding van de ene wijk, de aanvoer van de andere wijk te laten zijn. Op deze wijze kunnen warmteverliezen van een warmtenet en de pompenergie beperkt worden. Het kan ook nodig zijn dat er een vraag komt naar een techniek die het mogelijk maakt om een passende conversie, transport of opslag van energie te kunnen realiseren. Zo kunnen ruimtelijke vraagstukken vragen om nieuwe technieken.

Page 38: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

42

Figure 30: A3-kaart Functies in Parkstadregio (Bron: Lit. 2; Stremke)

Page 39: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

43

3.1.4 Conversie, opslag en transport van energie In de regio kunnen al technieken (structuren, installaties e.d.) aanwezig zijn, die gebruikt kunnen worden in de exergieplanning. Voor Zuid Limburg zijn deze aangegeven op de A2-kaart (Lit. 2). We moeten hierbij denken aan conversietechnieken als windturbines, zonnecollectorinstallaties, warmtekracht-installaties, biovergistingsinstallaties, warmtepompen e.d. In de Parkstadregio staan een aantal grote windturbines opgesteld. Transportsystemen voor energie zijn het elektriciteitsnet dat fijnmazig verdeeld is en in elk gebouw komt. In Nederland hebben we voor aardgas ook een fijnmazig netwerk dat in bijna elk gebouw komt, wat op zich een bijzondere situatie is. Dan hebben we op sommige plaatsen in Nederland warmtenetten liggen die warmte transporteren naar de gebouwen. Zo zien we in de parkstadregio een warmtenet op de locaties ’t Loon, Schunckstraat en Parc Imstenrade in Heerlen. Al deze warmtenetten worden verwarmd met ketels of met de warmte uit WKK met gasmotoren op temperaturen van meer dan 70oC. Het is mogelijk om deze warmtenetten te voorzien van een andere bron zoals bijvoorbeeld restwarmte. Het is ook mogelijk om de gebouwen die aan dit warmtenet hangen, thermisch te renoveren zodat met een lagere temperatuur verwarmd kan worden. Of het warmtenet kan gekoppeld worden aan een nieuw warmtenet in de omgeving dat op een lagere temperatuur werkt en zo de retourwarmte (met lagere temperatuur) van het oudere warmtenet gebruiken waardoor een meer energie-efficiënt warmtenet ontstaat (afbeelding 3).

Figure 31: Restwarmte van de ene wijk is de bron voor de andere wijk

Tenslotte hebben we nog waterwegen of gewone wegen waar schepen en voertuigen, brandstoffen en reststromen over kunnen vervoeren. Voor de Parkstadregio is de binnenring en de nieuw te ontwikkelen buitenring een interessant transportkanaal die de losse ruimtelijke onderdelen van de regio verbindt.

70oC

50oC

90oC

STEG30oC

14oC

Verwarming ruimte- en tapwater van bestaande historische bouw (binnenstad)

Verwarming ruimte- en tapwater van gerenoveerde bestaande bouw(voor en na-oorlogse wijken)

Verwarming ruimtes van nieuwbouw en tapwater met warmte-pompboiler(Laagtemperatuurverwarming LTV)

Verwarming ruimtes van nieuwbouw en tapwater met warmtepomp en TSA(LowEx netwerk)

20oC

Page 40: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

44

Figure 32: Potenties voor warmte-koude-opslag in Parkstadregio (Bron: Lit. 2; Stremke)

Soms is het nodig om energie op te slaan. Biomassa of andere biologische reststromen, zijn reeds een vorm van (chemische) energie-opslag. Restwarmte, bijvoorbeeld in warm water is ook een vorm van energieopslag, doch verliest snel zijn exergie als het niet goed geïsoleerd wordt. De mate waarin warmte opgeslagen kan worden is beperkter en afhankelijk van de isolatie en de omgevingstemperatuur. Elektriciteit uit bijvoorbeeld windmolens of photo-voltaische cellen komt direct beschikbaar en dient direct gebruikt te worden of anders opgeslagen te worden. Opslag van elektriciteit is momenteel niet zo goedkoop te realiseren in Nederland met de huidige technieken. Op dit moment is er ook nog niet zo’n grote behoefte aan elektriciteitopslag, echter als de electriciteitvraag meer gedekt gaat worden door zonne- en windenergie, dan zal de vraag naar electriciteitopslag toenemen. Op dit moment wordt er in Zuid-Limburg gedacht over de aanleg van een Ondergrondse Pompaccumulatie-centrale (OPAC). Het plan is om een groot waterbassin op 1.400 meter diepte te

Page 41: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

45

maken, dat in verbinding staat met een bovengronds meer. Door middel van het gebruik van deze techniek zou het mogelijk moeten zijn om circa 8 GWh energie op te slaan, die met een vermogen van circa 1.400 MW op afroep beschikbaar kan worden gemaakt (gelijk aan elektriciteit voor 1,5 miljoen huishoudens per dag). Andere mogelijkheden die er in Zuid Limburg zijn, is gebruik maken van de hoogteverschillen tussen oude Maas en Julianakanaal, een voorstel dat gedaan werd tijdens de vorige SREX Limburg Workshop door Jacques Dehing (BAT ). Voor de Parkstadregio heeft het Cranenweijer meer in Parkstad een potentie om elektrische energie in op te slaan (afbeelding 5). Er is hier een (beperkte) peilfluctuatie mogelijk en er is een hoogteverschil van enkele meters aanwezig. Zoals hiervoor al vermeld is opslag van elektriciteit voorlopig nog niet echt aan de orde.

Figure 33: Cranenweijer meer in Parkstad heeft een potentie om elektrische energie in op te slaan.

Wat betreft de opslag van exergetisch laagwaardige koude of warmte, zijn er lokaal mogelijkheden om hier al dan niet in combinatie van een warmtepomp, gebruik van te maken. Op de kaart van afbeelding 4 zijn de potenties voor de Parkstadregio te zien, wat betreft de mogelijkheden met gesloten bodemwisselaars. De oude steenkoolmijnen hebben in deze regio een aparte positie. Ze kunnen ook gebruikt worden voor de opslag van warmte en wel op hogere temperaturen omdat de omgevingstemperatuur 500 meter onder de grond zo tussen de 35 en 40oC is. Op dit moment wordt hier geboord om er vooral warmte uit te onttrekken, een soort geothermie dus. De temperatuur van deze geothermische warmte is echter laag. Over de mogelijkheden voor geothermie uit diepere (en dus warmere) bodemlagen, zijn geen gegevens bekend omdat in Zuid Limburg nooit zo diep geboord is. Voor een zogenaamde Lowex wijk voor de Parkstadregio (Stadpark Oranje Nassau), is een speciaal warmte-koudenet voorgesteld waarmee met warmtepompen en warmtewisselaars, warmte en koude wordt geconverteerd naar of van een 3-pijps netwerk (afbeelding 6). Over dit netwerk wordt de warmte of koude getransporteerd naar locaties waar dit nodig is op hetzelfde moment of direct nadat de warmte of koude vrij komt. Als de warmte of koude niet op korte termijn gebruikt kan worden, zal deze voor langere tijd opgeslagen moeten worden voor langere tijd. Dat zou lokaal kunnen in de bodem of voor de betreffende locatie, wat betreft de warmte in de oude mijngangen. Door de vraag naar warmte zoveel mogelijk op laag-temperatuur-niveau te realiseren en de vraag naar koude zoveel mogelijk op een hoog temperatuur-niveau, kan met een minimale toevoeging van (elektrische pomp)energie aan de vraag voldaan worden. Dit soort low-ex thermische netten zijn voor bestaande wijken moeilijk te realiseren, vanwege een hoog temperatuur warmtevraag en laagtemperatuur koudevraag. Voor nieuw te bouwen wijken waarbij gebouwen voorzien zijn van verwarming of koeling via wanden, vloeren en plafonds, betonkernactivering of speciale lucht-warmtewisselaars (fiwihex) is een lowex thermisch net goed inpasbaar.

Page 42: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

46

WW

Warmte-opslag

Koude-opslag

WW30oC 21oC

29oC 20oC

21oC 12oC

WP

55oC 35oC

30oC 12oC

WP

12oC 30oC

14oC19oC 8oC 18oC

Storage Passive Active

Cooling

Heating

12oC

21oC

30oC

Figure 34: Low-exegie warmte-koudenetvoor de wijk Stadspark Oranje Nassau Heerlen (Bron: Leo)

3.1.5 Conclusie methodiek Het is belangrijk om de ruimtelijke functies zodanig te plannen dat er een optimaal gebruik wordt gemaakt van de regionaal aanwezige energiepotenties en stromen restenergie. De plaats waar, de tijd wanneer en de aard van deze bronnen bepalen naast de plaats, tijd en aard van de energievraag, in welke mate er afstemming kan plaatsvinden tussen vraag en aanbod. Transport, opslag en conversiemogelijkheden van energie spelen een belangrijke rol om de afstemming in tijd, plaats en energievorm beter te realiseren. Aan de hand van de “energiepotentiekaarten”, en de kaarten met de ruimtelijke functies waaruit een bepaalde energievraag bepaald kan worden, samen met de kaarten met inventarisaties van energiedistributie-, conversie- en opslag-mogelijkheden, kunnen ruimtelijke plannen gemaakt worden waarbij zo effectief mogelijk gebruik kan worden gemaakt van de regionaal aanwezige reststromen energie. Enerzijds wordt dit bepaald door de nu aanwezige infrastructuur en ondergrond, die aanleiding kan geven tot een bepaalde planning van nieuwe ruimtelijke functies. Anderzijds kunnen ondergrond en ruimtelijke functies aanleiding geven tot een nieuwe infrastructuur. Hierbij dient opgemerkt te worden dat ruimtelijke functies soms maar tientallen jaren bestaan, terwijl infrastructuren meestal voor veel langere tijd vastliggen en daardoor meer bepalend zijn voor de structuur van een gebied. Op basis van de geïnventariseerde gegevens over energievraag, aanbod van rest-energie, energieconversie, -transport en –opslagmogelijkheden is met een exergetische bril naar de Parkstadregio gekeken en zijn ruimtelijke plannen gemaakt waarmee een beter gebruik kan worden gemaakt van energie, door gebruik te maken van reststromen, waardoor de behoefte aan primaire energie kan afnemen. Aan de hand van berekeningen kunnen keuzes gemaakt worden welke alternatieven energetisch en exergetisch gezien interessant kunnen zijn of de meeste voorkeur hebben.

Page 43: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

47

3.2 Ruimtelijk plan 3.2.1 Rest-energie in de parkstadregio Een groot deel van de energievraag in de parkstadregio bestaat uit warmtevraag (laag-exergetisch), die voor het grootste deel opgewekt wordt met brandstoffen (hoog-exergetische) die ook nog eens voor een groot deel een fossiele afkomst hebben. Het gebruik van fossiele brandstoffen dient drastisch teruggebracht te worden en brandstoffen dienen in eerste instantie gebruikt te worden voor hoogwaardige toepassingen. Zo kan er gebruik worden gemaakt van zonne- en windenergie en kan biomassa als brandstof worden gebruikt. Dat kan biomassa zijn die speciaal wordt gekweekt om brandstof van te maken, doch ook biomassa die als restproduct vrij komt uit de industrie, de agrarische sector, uit natuurbeheer of uit afval uit de stad en rioolafvoer. Vooral de reststromen zijn interessant omdat deze veel minder leiden tot extra ruimtegebruik. Bij de inzet van reststoffen voor brandstof dient gekeken te worden of de reststoffen die daar weer uit voort komen, opnieuw gebruikt kunnen worden. Warmte (energie met een lagere exergie), kan daarbij vrijkomen als restproduct en kan lokaal ingezet worden om de warmtevraag in parkstad te dekken. Ook andere reststromen kunnen weer lokaal gebruikt worden. Zo kan biomassa-afval uit de stad of het platteland ronde parkstad omgezet worden in biogas met als restproduct mest. De mest kan in de land- en tuinbouw gebruikt worden als voedingsstof voor planten en het biogas als brandstof om elektriciteit te produceren. Bij de productie van elektriciteit komt weer warmte vrij die de warmtevraag van Parkstad (voor een deel) kan dekken. Ook uit de industrie komt veel restwarmte vrij die (een deel van) deze warmtevraag kan dekken. Alleen al de totale warmtevraag van alle woningen in de Parkstadregio is ca. 6 PJ en wordt opgewekt met ca. 2.000.000.000 m3 aardgas. Dat is voor het grootste deel warmte van 60oC of minder en zou uit restwarmte kunnen komen. Die restwarmte is wellicht ergens in de buurt aanwezig of er kan ergens in Parkstad een productieproces van biomassa-reststromen gerealiseerd worden waarbij deze restwarmte vrij komt. Dit soort cascades leiden tot een beter gebruik van de energiepotenties. Eventueel moeten voorzieningen gerealiseerd worden om de reststromen te transporteren en op te slaan of kan gebruik worden gemaakt van bestaande transport- of opslagmogelijkheden om vraag en aanbod op elkaar af te stemmen. 3.2.2 Conversie, opslag en distributie van reststromen Het omzetten van biomassa-reststromen uit de parkstadregio naar methaangas of andere brandstoffen is een bedrijvigheid die moeilijk in de binnenstedelijke omgeving ingepast kan worden. Dit heeft enerzijds te maken met mogelijke gevaren of hinder en anderzijds met de extra verkeersdruk die dit soort bedrijvigheid met zich meebrengt. Ook buiten de stad, op het platte land, vaak nabij de bronnen van agrarische reststromen wordt dit soort bedrijvigheid steeds minder gewenst. De biovergistingsinstallaties die op dit moment op het platteland functioneren, gebruiken het geproduceerde biogas om elektriciteit mee op te wekken met WKK-installaties. Het elektriciteitsnet is op het platteland vaak niet zwaar genoeg om veel van deze elektriciteit aan te leveren en moet bij meerdere of grote WKK’s, verzwaard worden. Met de restwarmte kan men vaak ook niet veel doen, zodat deze verloren gaat. Indien er glastuinbouw in de buurt zou zijn, zou de warmte en ook de CO2 gebruikt kunnen worden. Het zou een reden kunnen zijn om biovergistingsinstallaties te combineren met glastuinbouw. Een andere mogelijkheid zou zijn om het biogas via een gasleiding naar elders te transporteren, waar het nodig is of te zuiveren en (groen) gas aan het lokale gasnet te leveren. Mits het niet om grote hoeveelheden methaangas gaat, heeft dit laatste alternatief als voordeel dat er ook een opslagmogelijkheid is voor het gas. Omdat er bij agrarische bedrijven op het platteland wel veel ruimte aanwezig is, kan men in plaats van verwerking van biomassa op het platteland ook denken aan (beperkte) opslag en drogen van biomassa-reststromen bij deze bedrijven en transport van deze stromen naar een andere locatie. Zo kunnen we de biovergistingsinstallaties plannen op een van de vele bedrijventerreinen in de Parkstadregio of bij locaties waar reeds biomassa-reststromen worden verzameld zoals bij rioolwaterzuiveringsinstallaties, of milieu(verzamel)parken. Ook (oude) vuilnisbelten waar al vaak methaangas wordt afgevangen, kunnen prima locaties zijn voor methaanvergistings-installaties. Deze locaties zijn meestal goed bereikbaar met transportmiddelen. Ook hier is het weer de vraag of we op

Page 44: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

48

deze plekken het gas direct moeten gebruiken om er bijvoorbeeld elektriciteit en restwarmte mee op te wekken of dat we het gas moeten transporteren of opwerken en aan het aardgasnet leveren. Men kan bijvoorbeeld denken aan methaanvergisting op bedrijventerrein Strijthagen waar een aluminiumsmelterij op dit moment smelt met aardgas. Dit kan ook biogas zijn. Verder kan gedacht worden aan levering van het biogas aan nabijgelegen woonwijken waar dan met behulp van WKK warmte en elektriciteit opgewekt kan worden. Zo zou het bestaande warmtenet van “’t Loon” verwarmd kunnen worden met een WKK, aangedreven op biogas in plaats van op aardgas, wat nu gebeurd. Opwerking van biogas tot methaangas, geschikt voor het lokale aardgasnet blijft ook een mogelijkheid op bedrijventerreinen. Het produceren van elektriciteit en warmte (WKK) uit biogas op een bedrijventerrein kan misschien wat grootschaliger plaatsvinden waardoor het aandeel elektriciteit (met veel exergie) groter kan zijn dan bij kleine WKK’s. Bedrijventerreinen hebben een zwaar elektriciteitnet, waardoor een grotere WKK minder snel een probleem is. Bij deze variant moet de warmte getransporteerd worden naar plaatsen waar warmtevraag is. Natuurlijk is er een warmtevraag op het bedrijventerrein zelf, doch de WKK zal veel meer leveren. Bovendien is er vaak ook al restwarmte uit productieprocessen. Dit maakt het misschien juist interessant, zodat naast de warmte uit de WKK, ook restwarmte uit productieprocessen benut kan worden. Daarmee kan dan ook het energieverbruik voor koeling van productieprocessen beperkt worden. In de Parkstadregio liggen de bedrijventerreinen niet zo ver van de plaatsen met warmtevraag (vooral woonwijken), zodat transport van warmte geen grote verliezen met zich mee hoeft te brengen. Eventueel kan gedacht worden aan een hoofdleiding voor warmte waar een aantal bedrijventerreinen en wijken aan geschakeld zijn, die dan zowel warmte kunnen afnemen als ook warmte kunnen leveren. Hiervoor is uitgegaan van biomassa als reststroom die omgezet wordt in biogas (methaan). Deze reststroom kan ook omgezet worden in andere brandstoffen zoals bio-ethanol of direct verbrand worden. Dit laatste gebeurt bijvoorbeeld met snoei-afval en resthout in Sittard waarmee met een WKK elektriciteit en warmte wordt geproduceerd. De warmte wordt gebruikt voor een nieuwbouwwijk in de buurt van de centrale. De gebruikte conversietechniek hangt voor een belangrijk deel af van de aard van de aanwezige reststroom. 3.2.3 Warmtenetten en restwarmte Elektriciteit, ethanol en ook methaangas is energie die goed inzetbaar is en niet al te moeilijk te transporteren. Er zijn hiervoor transportkanalen als leidingen en wegen, aanwezig, Voor warmte (en ook voor koude), wat een belangrijk deel van de energievraag is in de gebouwde omgeving, is dit heel anders. Hiervoor dienen speciale warmtedistributienetwerken aangelegd te worden, wat een aardige investering vergt en in de bestaande gebouwde omgeving moeilijker te realiseren is dan voor nieuwbouw. De aard van de warmtevraag (temperatuurniveau) wordt verder ook bepaald door de soort bebouwing (isolatie, ventilatiesysteem, functie e.d.) en toegepaste installatie (laag temperatuurverwarming warmtepomp of hoogtemperatuur-warmteafgifte). Het temperatuurniveau van de warmtevraag bepaalt ook in hoeverre we cascades kunnen realiseren om zo effectiever gebruik te kunnen maken van energie en restwarmte. Hiervoor is het nodig om op een meer gedetailleerd schaalniveau te kijken naar de gebouwde omgeving en zijn energievraag. In deze fase van het onderzoek, bij het maken van plannen voor Parkstad, is dit nog maar globaal gebeurd. Ook het gebruik van restwarmte vraagt om een meer gedetailleerde vorm van inventarisatie waarbij mogelijke leveranciers van restwarmte betrokken dienen te worden. Het is anders moeilijk een beeld te krijgen van de hoeveelheid en kwaliteit van de restwarmte en de vorm waarin deze vrij komt (bijvoorbeeld warmte in rookgassen, lucht of water). Er dient daarom naar de plannen gekeken te worden met het besef dat ze in een later stadium verfijnd en verder uitgezocht moeten worden om de uiteindelijke haalbaarheid ervan te kunnen bepalen. Onderzoek naar meer gedetailleerde informatie over de vraag en het aanbod van energie, de vorm, de tijd en de plaats waar het gevraagd, resp. aangeboden wordt is noodzakelijk voor de verdere uitwerking van de plannen. Het in kaart brengen van dit soort gegevens zal vanwege de beperkte tijd die er is, niet binnen het onderhavige onderzoek gebeuren.

Page 45: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

49

3.3 Parkstad inventory by Wouter Leduc

In this part of the report, I will give an inventory of Parkstad. The first part will describe the urban functions in Parkstad. I made an inventory of the different functions that are part of the urban area, using the conceptual approach of the urban tissue. A second part will give an overview of energy demand for these urban functions. I try to give a broad overview of the different energy demands of the different functions. The overview shows how the functions differ in their demand for energy. Large demanders become clear and also functions that offer opportunities for improving efficiency and sustainability. The broad overview is also helpful to define/find out certain sources of residual energy that can be used in other sectors. The third part of this chapter described the possibilities to generate energy at the urban scale. The possible sources can be renewables and waste streams. The last part will wrap up this part of the report and will give some conclusions about the feasibility of using the urban scale as the optimum scale to couple energy demand and supply. It will indicate if the urban scale is the appropriate scale to fulfil the energy demand by the existing energy supply possibilities. 3.3.1 Inventory of urban functions The method that I use to describe Parkstad, a large urban area in the south of The Netherlands, is a conceptual approach that graphically and calculation-technically visualizes the functions of an urban surrounding, the urban tissue. The result is thus an urban tissue for Parkstad (UrbaT-PS). Parkstad combines seven municipalities, of which four are urban and three are classified as non-urban. The focus in this research is on urban areas, on areas with the strongest urban characteristics. Therefore, I focus on the municipalities with Statistic Netherlands-classification ‘very strongly urban’, ‘strongly urban’, and ‘moderately urban’. This classification results in the selection of four of the seven municipalities that are further studied. Those are all, mainly, located within the planned ring road. Like the name Parkstad indicates there are a lot of parks and public gardens to be found in the Park-City. Table 1 shows the combined data of the four urban municipalities. Some background data: the surface of the studied Parkstad-area is 10,965 ha; the urban surface is 6,895 ha, or 63 %. In the rest of the report, I will indicate the studied area, being the four selected municipalities together, as ring road. The areas or functions which are part of the urban area are those that consume energy, materials, etc. Thus, that can also be functions that are physically outside the, administrative, borders of a city, but because they are consuming functions they are considered part of the urban area: e.g. roads, railroads, industrial areas and harbour complexes (Rovers, 2007; Netherlands Environmental Assessment Agency, 2008). The defined functions of an urban area are: built-up areas – residential area, retail area and hotel & catering industry, public services, social/cultural services, and business area; semi built-up areas – graveyards, waste dumps, car wrecks storage, and construction sites; recreational areas – parks and public gardens, sports terrain, urban gardens, and day-recreational terrain; and roads. Table 10 gives an overview of some demographic data that can be helpful in the quantification of the Parkstad region.

Page 46: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

50

Urban function Area (m2) Residential area 4,884

Apartments 3 Semi-detached 2

Corner 3 Terraced, row 5

Detached 1

Housing density, units

per type

Unknown 1 Retail, hotel & catering industry 231

Public services 133 Social/cultural services 345

Business area 1,108 Waste dumps 113

Wrecks storage 12 Graveyards 71

Construction sites 590 Parks & public gardens 899

Sports terrain 576 Urban food gardens 35

Day recreational terrain 125 Municipal roads 814

Other roads 64

Table 10: Function surfaces Parkstad in m2 per urban hectare

Inhabitants Density Households Household size

# #/km # # Brunssum 29,623 1,726 13,423 2.18 Heerlen 91,499 2,032 44,309 2.03 Kerkrade 49,323 2,249 22,891 2.12 Landgraaf 39,189 1,593 17,055 2.25 Ring road 209,634 / 97,678 2.15

Table 11: Demographic data urban Parkstad

3.3.2 Quantification of urban energy demand The different sectors in society have different energy demands. The type of energy and the amount differ. Households demand heat, usually at low temperatures, for space and tap water heating. Besides, there is a demand for electricity. Care functions demand a large amount of heat or steam; office areas have more need for electricity and cooling. Industry demands several types of energy, such as fuels, electricity and high-temperature heat.

a. Households Older dwellings have a higher heat demand than newer dwellings. Stricter EPC-standards (Energy Performance Coefficient), resulting in more energy efficient dwellings, are used nowadays when building new dwellings. Those higher standards result in a lower dwelling demand for, e.g., space heating. Most dwellings built before 1990, have a heating system working on an incoming water temperature of 90ºC and an outgoing water temperature of 70º (90º-70º). Post 1990 the systems became somewhat more efficient and are heated with a 70º-50º-system. After 2000 newer systems were developed: 50º-30º, and passive houses or LowEx-houses are equipped with a 30º-20º-system. The human hot tap water demand is on average about 40l of water of 50º C per day. Electricity is needed for electrical appliances and lighting. Table11 shows the gas and energy demand for several dwelling types (Federation of Energy Companies in The Netherlands, 1995, 2002 & 2005; SenterNovem, 2004). Of the gas demand, 75 %

Page 47: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

51

is used for space heating and 25 % for hot tap water. The size of the dwellings types is an average of all dwellings of a certain type.

Dwelling types Gas demand (m3/y)

Electricity demand (kWh/y)1

Apartments 1,173 2,364 Semi-detached 1,920 3,645 Corner 1,836 3,535 Row houses 1,560 3,204 Detached 2,624 4,712 Unknown2 1,736 3,346 Heating + hot H2O demand per house vintage Historical dwellings (inner city) 90 – 70º Renovated existing dwellings (pre- & post-war) 70 – 50º Newly built (low temperature heating) 50 – 30º Newly built (low energy demand standards) 30 – 20º

Table11: Energy demand dwelling types 2004

b. Industry and agro sector

There is also a demand for heating in industry, but the qualities are different. Several industrial subsectors demand high-temperature heat or even steam. Besides the heat demand, industry is also a large electricity demander. Tables 12 and 13 show some data about the industrial heat and electricity demand.

Sector Heat (PJ) Electricity (PJ) Food & tobacco 58.6 24.7 Textiles 3.0 1.4 Paper 23.9 13.2 Fertilizer 21.3 3.0 Other chemical industry 223.5 41.7 Construction materials 24.3 5.2 Base metal industry 34.5 30.2 Other metal industry 17.3 15.9 Other industry 7.6 9.4

Table 12: Final energetic industrial heat and electricity demand, 2006 (Statistics Netherlands, 2006)

Chemical Metal Other industry Heat demand,

temperature % % % < 100ºC 5 15 29 100-250ºC 11 0 38 250-500ºC 27 5 13 500-750ºC 21 0 0 750-1000ºC 26 10 0 > 1000ºC 10 70 21

Table 12: Temperature distribution of heat demand, per sector (Spoelstra, 2005)

Figures 35 and 36 show the total primary energy demand for 2006 of several sectors, participating in MJA2 (SenterNovem, 2007a). Figure 1 indicates the industrial sectors and figure 2 indicates the food & tobacco industry. The transport sector also participates in this MJA2; its total primary energy demand for 2006 is 13.1 PJ. The UMC-sector indicates the primary energy demand of the university medical centres.

1 The dwelling specific electricity demand is deduced from the known values for 1994 (EnergieNed, 1995) and the increase of the average demand (EnergieNed, 2005) 2 For those dwellings, the average gas and energy demand is selected

Page 48: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

52

The three agro sectors that participate in a MJA are: the horticulture, the bulb producing sector, and the mushroom producing sector. The total primary energy demand for those sectors is:

- horticulture: about 122 PJ; - bulb production: about 4.2 PJ; - mushroom production: about 1.4 PJ.

2,93310,899

1,987

2,689

9,485

1,478

1,416

2,322

3,987

35,216

1,786

13,858

8,562

2,382

5,073

872 1,694asphaltchemicalfine ceramicsfoundriescoarse ceramicsindustrial laundryconstruction materialscool/freezer installationsmetallurgicaloil/gas extractionsurface handlingotherrubber/plasticstank storagecarpetstextilesUMC

Figure 35: Total primary energy demand of industrial sectors, in TJ (SenterNovem, 2007a)

Table 13 will indicate some energy demand data for specific industries in the studied area. The energy demand is based on Dutch total data for the different types of industry. I calculated an average demand based on that total demand and the total number of the different types of industry. Selected industries are located in the industrial site ‘Beitel’ in Heerlen. There is a concentration of chemical, metal and construction materials industry. Further selection of industries in ‘De Koumen’, Heerlen, with a concentration of metal industry and related business. In Brunssum, ‘Bouwberg’, a chemical industry and some construction materials industry. In Kerkrade, construction materials industry, chemical, metal and paper industry, and large-scale bakeries on industrial site ‘Julia and Dentgenbach’. In Landgraaf, some chemical and construction materials industry were selected, and in Simpelveld the construction materials industrial facility. Table 13 indicates the energy used by different industrial facilities. These amounts of used energy will also result in waste energy, like exhaust heat. This represents a large potential to serve as heating source for other industrial facilities, offices or dwellings.

Page 49: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

53

8,743

2,231

2,898

916

6,867

1,3644,092

17,448

potato processingcacaovegetable/fruit processingcoffee roastingmargarine/fats/oilsflour factorymeat processingdairy

Figure 36: Total primary energy demand of food & tobacco industry, in TJ (SenterNovem, 2007a)

Industrial facilities Electricity Gas Other energy

carriers Type of industry (SBI-code) GJ 103 m3 GJ

Stonecutting industry

Construction materials

266 5,800 140 195

Concrete industry ” ” 5,800 140 195 Agro-Dyn Agricultural

chemicals 2420 20,900 445 135

Scotts Europe ” ” 20,900 445 135 Nippon Carbide Base chemical 241 670,000 9,150 280,000 DSM Solutech/Dyneema

” ” 670,000 9,150 280,000

Dijconstaal Metal 2710c 530,000 1,990 420,000 Kobelco welding ” ” 530,000 1,990 420,000 TAD Inox ” ” 530,000 1,990 420,000

Beitel, Heerlen

Metal recycling Other metal handling

285 900 18 4

De Globe Metal 2710c 530,000 1,990 420,000 Schoonbroodt steel construction, smithy

” ” 530,000 1,990 420,000

Recycling Other metal handling

285 900 18 4

De Koumen, Heerlen

Wartsila propulsion Machine production

292 1,100 22 13

Urethaan chemistry Base chemical 241 670,000 9,150 280,000 Stonecutting industry

Construction materials

266 5,800 140 195

Mebin, concrete Construction materials

266 5,800 140 195

Bouwberg, Brunssum

Wienerberger poriso

Construction materials

266 5,800 140 195

Page 50: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

54

Laura metal Metal 2710c 530,000 1,990 420,000 Alcoa ” ” 530,000 1,990 420,000 Stalumex ” ” 530,000 1,990 420,000 Stork GDO Machine

production 292 1,100 22 13

Exigo EDM ” 292 1,100 22 13 Boja concrete Construction

materials 266 5,800 140 195

Brickworks Nievelsteen

” ” 5,800 140 195

Brickworks Linssen ” ” 5,800 140 195 Plalloy MTD Synthetic

materials 252 7,000 91 43

Nophadrain ” ” 7,000 91 43 Exxonmobil chemical films

” ” 7,000 91 43

Tredegar film products

” ” 7,000 91 43

Simrax Rubber 251 11,600 225 0

Julia, Kerkrade

ENR Paper, cardboard

211 328,000 9,400 495

Dyneon Synthetic materials

252 7,000 91 43

Invista ” ” 7,000 91 43 Quality bakers Bakeries 1581a 3,020 81 21

Dentgenbach, Kerkrade

Delite ” ” 3,020 81 21 Ytong Nederland, Xella

Construction materials

266 5,800 140 195

Potato processing Potato industry

1531 134,600 3,400 0

Technomax Machine production

292 1,100 22 13

Celsis Base chemical 241 670,000 9,150 280,000 MEDO Other metal

handling 285 900 18 4

Abdissenbosch, Landgraaf

Skerka steel Metal 2710c 530,000 1,990 420,000 Strijthagen, Landgraaf

Du Pont De Nemours

Synthetic fibres

2440a 44,500 1,040 142

Dautzenberg Construction materials

266 5,800 140 195 Simpelveld

S-Limburg steel Metal 2710c 530,000 1,990 420,000

Table 13: Selected industrial facilities, average energy demand (Parkstad Municipalities, PLB-numbers)

c. Other sectors

Table 14 gives an overview of the energy demand in other sectors of society, like hospitals, nursery, offices, education and shops (SenterNovem, 2007b). In the case study region, there are hospitals in: Brunssum, Heerlen and Kerkrade. Table 7 indicates the average energy demand values. Other large energy consumers, sinks, are indoor swimming pools, ice-skating rinks, the indoor ski centre, Snowworld, in Landgraaf, the zoo, Gaia Park, in Kerkrade, and ‘Wereldtuinen’, gardens and greenhouses with tropical plants. Swimming pools are located in Brunssum, Hoensbroek (Heerlen), Kerkrade, Landgraaf, and Voerendaal. One ice-skating rink is located in Strijthagen, Landgraaf. These facilities may serve as sources or storage facilities as well.

Page 51: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

55

Gas demand (m3/y) Electricity demand (kWh/y) Sector Average Per m2 surface3 Average Per m2 surface

Shops Non-food 7,743 18 44,973 81 Non-food, >19 empl. ” 7 ” 72 Supermarkets ” 16 ” 467 Education Primary 35,294 13 116,482 18 Secondary ” 14 ” 33 MBO + HBO ” 21 ” 57 Universities ” 12 ” 85 offices 200-500 m2 43,770 21 328,209 109 500-10,000 m2 ” 13 ” 85 > 10,000 m2 ” 10 ” 79 Insurance ” 15 ” 129 care Nursing + disabled 164,629 24 463,309 66 Nursing homes ” 22 ” 60 Hospitals 824,878 50 6,145,229 95 Psych care hospitals4 ” 23 ” 46

Table 14: Energy demand for several sectors, average and per space unit (m2), 2003

Figure 37 indicates total primary energy demand of 2006 for several sectors of the built-up area. Besides that, statistics indicate a primary energy demand for supermarkets in 2006 of 9.3 PJ.

5,634

8311,735

5,479 banks

HBO

insurance companies

universities

Figure 37: Total primary energy demand of built-up area sectors, in TJ (SenterNovem, 2007a)

3.3.3 Quantification of urban energy supply In the SREX-research, we try to discover the unused energy sources, exergy, and search for useful applications (Gommans & Dobbelsteen, 2007). These unused sources can be renewable energy sources as sun, wind, water, and biomass. Or can be waste products of society, like waste in general, waste heat, waste materials. When a society can find a useful application for these waste products, they can become a source again. The following will give an overview of several unused sources within the Parkstad region.

a. Solar potential Results will be described for dwellings, offices, industrial sites, care centres and roads. Both results for electrical and heat/cold energy will be stated. 3 Median of the observations, applicable for both gas and electricity demand 4 Data for 2000

Page 52: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

56

In the Benelux one m2 earth surface receives about 1,000 kWh per year. There are several kinds of PV-panels on the market and in general one m2 PV-panel generates 75 kWh/y. An angle of 20º to 60º between SE and SW is okay (Sinke, 2001). Dwellings I use five types in this research (see also contribution of WP3 to SREX 2007.1: Inventory part 2): terraced/row and corner dwellings, semi-detached dwellings, detached dwellings, and apartments. Part of the dwelling types is unknown. For those, the average values are taken. Total amount of dwellings per type is collected from Statistics Netherlands (2007).

I calculate the roof surface of dwellings according to research by SenterNovem (2006). Some assumptions have to be made about the type of roofs, the roof surface of apartment blocks, and the available roof surface. First, for all dwellings except apartment blocks, three types of roofs are taken into account: saddle roofs, lectern roofs and flat roofs. The most common type of roof for all kind of dwellings, except apartments, is the saddle roof. I choose saddle roofs for all dwelling types. An important aspect for this kind of roofs is that only one side will be oriented in a good direction for gaining solar energy. This means that only half of the roof surface is available for PV-use. I define eight orientations: north(N)-south(S)/SN, east(E)-west(W)/WE, NE-SW/SW-NE, NW-SE/SE-NW. Like mentioned above, all roofs with an orientation between SE and SW are suitable. If one side of the saddle roof is oriented to the SE to SW, it is okay. So, only the EW and WE orientation are not suitable. The result is that six out of eight orientations are okay, meaning 75 %. Of the total available roof surface in the urban areas, 75 % is available for the generation of solar energy, using PV-cells or solar collectors. This assumption is probably at the safe side, because lectern and flat roofs have more surface available. For flat roofs, orientation is no point of trouble because the panels can always be placed according to the orientation that is most profitable. So, if flat roofs would be taken into account, the available roof surface would be larger. The situation is somewhat different in case of lectern roofs. Their roof surface is only available when the steep side is oriented to the SE to SW, which is only in three of the eight orientations. So, maybe I assume some lectern roofs to be in the good direction, looking at them as a saddle roof, when not, but at the other side a lectern roof surface is almost double the surface of one side of a saddle roof. So, a lectern roof that has a good orientation will thus generate more and compensate for the cases where the lectern roof has not the good orientation. These explanations confirm that using only the saddle roof for the calculations is no bad option.

Second, the studied literature did not give a conclusive answer about the available roof surface for apartment blocks. Therefore, I assume that two types of apartment blocks could be found in cities: one type consisting of one block of five apartments, with one apartment per floor, and a surface of 105 m2 per apartment (SenterNovem, 2006) resulting in a roof surface of the same size (apartment I). I assume that 75 % of the apartments will be of this type. A second type of apartment blocks, consisting of one block of 100 apartments, with 10 apartments per floor, and a surface of 80 m2 per apartment resulting in a roof surface of 800 m2 (apartment II). 25 % of all apartments will be of this type.

Third, I assume that of the remaining roof surface, taken into account the above mentioned assumptions, a part will be occupied by other applications. The shadow effect of other buildings and high elements limits the available surface as well. I assume that 80 % will be available. Table 8 resumes the available roof surface for several types of dwellings, according to the above mentioned assumptions.

Dwelling types Total roof surface (m2) Available roof surface (m2) Apartments I5 105 84 Apartments II6 800 640 Semi-detached 44.2 26.5 Corner 37.2 22.3 Row houses 37.2 22.3 Detached 44.7 26.8 Unknown (average) 40 24

Table 15: Roof surface for several dwelling types

5 Roof surface for 5 apartments; each dwelling 105 m2/5 available (84/5) 6 Roof surface for 100 apartments; each dwelling 800 m2/100 available (640/100)

Page 53: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

57

Table 16 gives an overview of the technological maximum, and possible urban technological maximum (Rovers, 2007; contribution of WP3 to SREX-report 2007.2), harvestable from dwellings. PV1 gives the yield when the available roof surface is covered with PV-cells only. PV2 indicates the yield when 5 m2 of the available roof surface is covered by a solar collector for the generation of hot water. For apartment buildings 3 m2 per apartment is covered. 3 m2 is about the minimum surface needed to foresee an average Parkstad-household, which consists of a bit more than two people, with the daily needed amount of hot water (40l of 50º water/day/person demands 1.1-1.5 m2 collector surface (Eandis, 2007))

Brunssum PV1 PV2 Heerlen PV1 PV2 Kerkrade PV1 PV2 Dwelling types # kWh/y kWh/y # kWh/y kWh/y # kWh/y kWh/y

Apartments 3 16,200 10,575 4 21,600 14,100 3 16,200 10,575 Semi-detached 2 3,975 3,225 1 1,987 1,612 2 3,975 3,225 Corner 2 3,351 2,601 2 3,351 2,601 3 5,026 3,901 Row houses 4 6,701 5,201 6 10,052 7,802 5 8,377 6,502 Detached 1 2,013 1,638 1 2,013 1,638 1 2,013 1,638 Unknown 1 1,800 1,425 1 1,800 1,425 1 1,800 1,425

Landgraaf PV1 PV2 Ring road PV1 PV2 Dwelling types

# kWh/y kWh/y # kWh/y kWh/y Apartments 2 10,800 7,050 3 16,200 10,575 Semi-detached 2 3,975 3,225 2 3,975 3,225 Corner 3 5,026 3,901 3 5,026 3,901 Row houses 5 8,377 6,502 5 8,377 6,502 Detached 1 2,013 1,638 1 2,013 1,638 Unknown 1 1,800 1,425 1 1,800 1,425

Table 16: Solar yield of UrbaT-PS dwellings

Offices, retail and hotel & catering industry, and educational facilities Statistical research resulted in a business area surface of about 1,110 m2/ha. Earlier research found that this business area surface for the Netherlands is 1,400 m2/ha. Further research found an amount of 89 m2/ha office area, part of the business area surface. To calculate the office area of the Parkstad case, I assume that the proportion will be the same as in case of the Dutch average. This results in an office area for urban Parkstad of about 70 m2/ha. To calculate the possible PV-yield, I assume a yield of 50 kWh/m2 PV-cell. When doing that, limiting factors as orientation, shadowing, type of roof, other roof structures, etc., are taken into account. I also assume that the complete surface is available as roof surface. This results in a PV-yield of about 3,500 kWh/y. For the retail and hotel & catering industry, statistical research resulted in an area of 209 m2/ha for urban Parkstad. The Dutch average is 129 m2/ha, distributed as 86 m2/ha retail area and 43 m2/ha hotel & catering industry. I assume again that the proportion will be the same in Parkstad, resulting in 139 m2/ha retail area and 70 m2/ha hotel & catering industry. The assumptions about the yield are the same as for offices. The surfaces are gross ground surfaces (GGS), including all the indoor facilities. The PV-yields are about 6,950 kWh/y and 3,500 kWh/y respectively. Table 17 indicates several types of education and the occupied surfaces (GGS) per type, in total and on urban hectare. The available roof surface will not be as large as the total available surface for the school types. Most buildings will be layered. In order to tackle this uncertainty, I assume that only half the surface will be available for PV-cells. The last line for each municipality shows the results for PV, on urban hectare, taking the assumptions into account.

Page 54: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

58

Municipalities Education Primary ‘Beroeps’ Secondary HBO University

# 2,650 940 1,550 450 100 Surface (m2) 9,275 8,366 9,610 / / m2/ha 8 8 9 / /

Brunssum

kWh/y 200 200 225 / / # 7,760 2,730 4,550 1,810 350

Surface (m2) 27,160 24,297 28,210 55,500 345,000 m2/ha 8 9 10 19 117

Heerlen

kWh/y 200 225 250 475 2,925 # 3,310 1,490 2,200 680 160

Surface (m2) 11,655 13,261 13,640 / / m2/ha 8 9 9 / /

Kerkrade

kWh/y 200 225 225 / / # 3,210 1,160 2,150 640 150

Surface (m2) 11,235 10,324 13,330 / / m2/ha 8 9 10 / /

Landgraaf

kWh/y 200 225 250 / / # 16,950 6,320 10,450 3,580 760

Surface (m2) 59,325 56,248 64,790 55,500 345,000 m2/ha 9 8 9 8 50

Ring road

kWh/y 225 200 225 200 1,250

Table 17: Number of pupil/students, educational surface and potential PV-yield

Table 18 gives an overview of some selected office, educational and shopping areas in Heerlen. It indicates the potential PV-yield for the total available roof surface.

Surface (m2) Solar yield (MWh/y) ‘t Loon 10,275 514 Hogeschool Zuyd 6,470 324 Open Universiteit 3,640 182 Woonboulevard 41,100 2,055

Table 18: Potential PV-yield of selected office/education buildings and shopping malls, Heerlen

Industry Statistical research resulted in a surface for business of about 1,110 m2/ha. Both offices and industry are part of this industry. Research of Dutch average statistics resulted in an area occupied by industrial buildings of about 56 m2/ha. To calculate the area of the Parkstad case occupied by industrial buildings, I assume that the proportion will be the same as in case of the Dutch average. This results in an, industrial building, area for urban Parkstad of about 44 m2/ha. In order to calculate the possible PV-yield, I assume a yield of 50 kWh/m2 PV-cell. When doing that, limiting factors as orientation, shadowing, type of roof, other roof structures, etc., are taken into account. I also assume that the complete surface is available as roof surface. This results in a PV-yield of about 2,200 kWh/y. Roads The results indicate the technological maximum yield for extracting electricity and heat/cold (H/C) via roads. I studied two quite new technologies: Peltier-elements to extract electricity and the ‘road energy system’ to extract H/C (see contributions of WP3 in SREX-report 2007.1 & 2007.2). The results indicate a technological maximum for the whole existing road surface. But this whole surface is of course not available to install these technologies. It is not possible to demolish all roads, install the technologies and construct the roads again. The technologies can play a role when new roads will be constructed or older roads will be renewed. The plans for the building of a ring road/beltway in Parkstad can prove to be a good opportunity to install new technologies. This outer ring road will be 26 km in length and built in a 2-by-2-lanes structure, with a total width of 14 m (7-by-7). This results in a total road surface of 36,400 m2. Table 12 shows the road surface and the technological maximum for both stated technologies per urban Parkstad municipality, for the total urban Parkstad and the results for the surface of the ring

Page 55: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

59

road infrastructure (RR infra). The yields are calculated for the complete road surface and not per urban hectare.

Surface ha

Surface m2/Uha

Elec. yield kWh/a

Heat yield GJ/a

Cold yield GJ/a

Brunssum 80 721 18,035 483 151 Heerlen 240 816 20,398 547 171 Kerkrade 124 801 20,030 537 168 Landgraaf 118 906 22,657 607 190 Ring road 562 814 20,280 544 170 RR infra 3.64 / 910,000 24,388 7,644

Table 18: Surfaces and solar yield of roads in urban Parkstad

b. Wind potential

There are not so many available locations for the construction of large wind turbines, due to other infrastructure and non-favourable locations. The wind potential map of S-Limburg (see map of Sven) shows that the most favourable, highest wind speeds, location is next to the highway between Simpelveld en Voerendaal (Zone A). According to the wind potential (WP) map of S-Limburg, detail for Parkstad (Stremke, 2008), this zone is approximately 3,200 m long. Another favourable location may be a zone a bit higher along the highway, between the edge of Voerendaal centre and the upper left corner of the ring road. Because a small settlement is located in the middle of the second location, the last selected zone is split up in two, equal zones: Zones B and C. Again according to the WP-map of S-Limburg (Stremke, 2008), these both zones are approximately 1,600 m long. I study two types of wind turbines: one with a rotor diameter of 126 m and one with a diameter of 90 m. The distance between two turbines needs to be about five times the rotor diameter. Table 18 shows the possible yields of the studied wind turbines (WT).

Length WT rotor Ø WT/zone Yield/WT Total yield m m # GWh/y GWh

3,200 126 5 15 75 Zone A 90 7 3.9 27.3

1,600 126 3 15 45 Zone B 90 4 3.9 15.6

1,600 126 3 15 45 Zone C 90 4 3.9 15.6

Table 18: Electrical yield of wind turbines

c. Waste and biomass

Table 19 gives an overview of the available waste in urban Parkstad and the possible energy yield. The other, non-selected waste categories are types of waste that can be recycled. Rest waste is incinerated in a waste incinerator. The yield is about 600 kWh/ton waste (Federation of Waste Processing Companies, 2006). The second part of the table indicates the green and wood residuals. The yield for a ton green waste is about 3.4 GJ, and for residual wood about 10.2 GJ (Hoeven, 2007).

Page 56: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

60

Total Rest Rest, coarse (grof) kg/inh ton kg/inh ton MWh kg/inh ton MWh

Brunssum 544 16,115 239 7,080 4,248 26 770 462 Heerlen 559 51,148 280 25,620 15,372 26 2,379 1,427 Kerkrade 572 28,213 278 13,712 8,227 27 1,332 799 Landgraaf 557 21,828 238 9,327 5,596 26 1,019 611 Green (GFT) Garden, coarse Wood kg/inh ton GJ kg/inh ton GJ kg/inh ton GJ Brunssum 95 2,814 9,568 20 592 6,043 34 1,007 10,273Heerlen 77 7,045 23,954 20 1,830 18,666 31 2,836 28,932Kerkrade 79 3,897 13,248 20 986 10,062 36 1,776 18,111Landgraaf 103 4,036 13,724 21 823 8,394 35 1,372 13,990

Table 19: Amount of household waste for urban Parkstad and possible yields

Table 20 shows the results of the collection of biomass from parks and public gardens, sports terrains, and urban food gardens in the urban area and the forests that belong to the different municipalities. For the green zones in the urban area, I assume all the biomass to be grass, with a yield of 3.5 ton/ha, resulting in an energy yield of 5.3 GJ/ton. For the wood residues from the forest, I assume all forest to be mixed: annual yield of 1 ton/ha, energy yield of 10.2 GJ/ton (SenterNovem, 2007b).

Surf forest Yield Surf green Yield Surf green/ha Yield ha GJ ha GJ m2/ha MJ

Brunssum 385 3,927 143 2,653 1,293 2,399 Heerlen 476 4,855 471 8,737 1,601 2,970 Kerkrade 156 1,591 229 4,248 1,477 2,740 Landgraaf 305 3,111 198 3,673 1,526 2,831 Ring road 1,322 13,484 1,041 19,311 1,510 2,800

Table 20: Biomass energy yield

d. Water

There is a reservoir (‘stuwmeer’) located in Kerkrade, called Cranenweyer. It has a surface of 20 ha. This can serve as a storage facility. 3.3.4 Conclusions The described study shows that it will be difficult to fulfil the demand with local energy sources. The results can become more promising if there would be more known about the amount of residual heat. The renewable potentials can fulfil parts of the demand of the household sector, but it will be difficult for the other sectors. If all available roof surfaces would be used to generate renewable energy, the odds can become more positive. The industry is the largest energy demander and it is difficult to grasp the exact amounts of energy needed. That makes it also difficult to find out amounts of residual heat that will be available from the industrial processes. For renewables to have a larger contribution, we need locations for large scale applications of, e.g., wind or solar energy. Empty sites, filled with solar collectors, can be used to generate energy. In the region, former mining sites can serve for this. Across the border, in Belgian Limburg, there are plans to build a large solar collector field on a former mining site. The soil is too contaminated to use it for other purposes; the costs for cleaning are too high. This is an example of re-use of surface. These types of former mining sites are probably also to be found in our case-study area. The possibilities for large wind turbines should not be forgotten. Along the highway, there is a feasible spot, according to wind maps (Stremke, 2008). The positive responses may be higher for this site, because it is an open location, not close to built-up areas, and the wind turbines can serve as a symbol for the region. Because I could not find appropriate data about the amounts of residual heat from industry, I can not say anything about the potential for this source. If the industrial processes result in heat of different temperatures, the residual heat can be used for several purposes. Some industries, hospitals, small

Page 57: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

61

enterprises need lower temperature heat. The residual heat may fulfil this demand. Dwellings need a lot of heat to fulfil heating and hot water demand. This can be done with low temperatures. In order to use the residual heat in an efficient way, a complete network, a heat grid, should be developed. This network will connect possible sources, e.g. industries, with sinks, e.g. hospitals, offices, dwellings. Next to the heat grid there should also be a way to store the heat, because the heat will not always be generated in times it is needed. It should be a grid to which everybody, every industry can connect, so the amount of residual heat will always be sufficient. If several industries are connected to the system, it does not matter if one industry does/can not deliver heat anymore, or in lower quantities and qualities. Another sector that needs further research is the transport sector. When trying to work to an energy neutral future, the transport sector, and the needed fuels, may not be forgotten. The described study shows that we can generate electricity and heat, but generating fuels in large quantities is more difficult. One way to make the transport sector more sustainable is a change to more biofuels. But the raw material to produce this biofuel has to come from somewhere. If it competes with the biomass used for heat generation, it becomes more difficult for the region to reach energy neutrality in the future. More emphasis on rail transport or other electrified modes of transportation can be a solution. But in that case, a source of electricity has to be identified. If people are thinking of generating this locally, this can again compete with the local demand for other purposes. So, potentials for the generation of local, renewable energy exist, but the full potential is not clear yet. The described potentials can help the region towards an energy neutral future. But, it demands effort and commitment.

3.4 Energy-space scenarios for Parkstad by Ferry Van Kann

This chapter describes the energy-space scenarios for South Limburg based on the SREX approach and the case of Parkstad, Limburg. 3.4.1 Introduction on energy-space scenarios for South Limburg with the

SREX approach Based on an inventory made on the relationship between spatial planning and energy we take here a next research step. In this step our goal is to understand how an energy-space vision might evolve in a certain area. South Limburg has been choosen as one of our case study areas in our research design. As we take 2030 or 2040 as our time horizon it is obvious, that quite some uncertainties emerge regarding both energy and the spatial developments in the area. Scenarios are a way of dealing with uncertainties related to future developments. Here we present our joint outcome of a scenario exercise. South Limburg is an area in the south of the Netherlands. For this specific region we come up with energy visions in which a transition towards a sustainable energy system through synergy between exergy and spatial planning is at stake. Our regional focus means that both the rural, the urban, as the interlinkages are relevant. As we try to understand the conditions under which the energy-space relationship behaves, a goal driven and qualitative scenario exercise is appropriate. That means our approach is based on critical uncertainties, that are translated into four possible storylines in connection with four visions. In the next paragraph we give more detailed information and arguments regarding choices made with respect to scenarios. The specific area of South Limburg is certainly unique in the Netherlands. Nevertheless from a regional perspective it contains an interesting spatial structure. The structure has a heavily populated area with cities at the edges and a green middle with a strong focus on agriculture and tourism. Moreover a characteristic to be mentioned is the regions long borders with abroad, Flanders, the Walloon Region and Germany. The region backs in the north to other parts of the Netherlands only 5 kilometer wide. As crossborder energy links, not considering gas and oil, are still exceptional, it is not hard to imagine South Limburg as one energy region. The region also differs from a spatial point of view. Crossing the regions border gives you immediately the idea, maybe except the eastern part of Parkstad Limburg, you are in another country as is also actually true. This clearly marked region is our play field for a scenario exercise, which results are shown in other parts of this SREX contribution. Finally, we already mention the use of a case within South Limburg. Starting from time horizon now and a even smaller scale we explore possibilities there are to reach synergies between regional

Page 58: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

62

planning and exergy. Parkstad Limburg is choosen as a kind of mini South-Limburg. Parkstad Limburg also has both a rural and urban character. Its boundaries have been made clear in their own regional spatial plan. In this plan, still in process, the regional authority defines the preferred spatial developments in the near future. Considering the past as relevant to, the regions identity was energy. As a former mine area (coal) it would like to become known again as a hub of energy, now sustainable energy. We take it as a challenge to look for possibilities to combine spatial planning and our exergy approach in order to reach a more sustainable sound area.

3.4.2 Scenario method As at the end of the day we would like to argue for planning policies based on the exergy principle it is necessary to realize that policy making for the long term is at least dynamic may be even complex. Also regarding energy and spatial planning lots of stakeholders are involved in a policy process. Interaction between those stakeholders causes moreover the possibility of new linkages between topics like spatial planning, environment, transportation, water, and for instance energy. Next to it CPB (2003) argues that society becomes more complex. It is illustrated by social, technological, economical, and institutional developments that are dynamic, unpredictable and uncertain. Therefore the future is uncertain. Scenarios are a way of dealing with the complex and dynamic nature of future developments or in terms of Ringland (2006) managing the future. But, what is a scenario? A scenario can be thought of as a fairy tale of story (Ringland, 2006). Porter (1985) defined scenarios as “An internally consitent view of what the future might turn out to be – not a forecast, but one possible future outcome.” This means that the goal of a scenario is not to predict the future, but to discover possible alternatives. Each of those alternatives is not more likely than another one. So it is also not about chances. It is about understanding. That is what we like to do regarding the future of a combined energy and space system. In a previous contribution (Van Kann in SREX 2007.2) an inventory has been made on trends, developments, and changes or transitions in both the world of energy and the world of spatial design. Stremke focusses in another part of this document more on the discussion on near-future change and far-future transitions. An outcome of the inventory is for instance that it is not certain what energy sources will be used when and on what scale. In addition it would be inaccurate to state that the technological development with respect to energy conversion techniques (like fuel cells, hydrogen technology, or lithium batteries) are clear right now. Dealing with uncertanties means for scenarios that they only answer what-if questions. If case A happens, then it is likely that B also takes place. In order to limit the amount of scenarios, as you could make one for each question you can think of, it is useful to categorise some possible futures in a scenario framework. Such a framework includes two so called critical uncertanties. Moreover it is usual in scenario studies all over the world. In fact, all scenario studies use almost similar uncertanties, like for instance the CPB in Four Possible Futures for Europe and the WLO (Welvaart en Leefomgeving) study of the Netherlands. On the one hand it is unclear on what scale mayor changes will happen or being initiated. Is a global scale, a local scale, or sometimes both scales together (think globally, act locally) the main focus of your scenario study? Both an even more globalizing world, also in terms of energy, as a more fragmented world are possibilities of how the future might look like. On the other hand there is a distinction between focussing on single processes or on multiple processes. Mostly the categorisation is illustrated by terms like economy versus sustainability. Nevertheless we argue for a distinction between a monofunctional focus versus a multifunctional one. Mono means that there is one main driver or simple rule, that determines the world, like economy, efficiency or for instance security. Opposite multi refers to a concept in which the world will develop in a more integral and comprehensive way. Terms like sustainability (as a combination of economy, ecology and social) and also solidarity are used in scenario studies to identify this kind of developments. So next to scale (global versus local) we have a second critical uncertainty, which can be showed like in figure 38.

Page 59: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

63

Figure 38: scenario framework used in South Limburg study

The scenario framework above is used within our research. It indicates four general possible futures. As it is not our goal to make scenarios itself, it is only a tool, we have linked our scenarios to other ones to get a context. From the context on we argued for possible energy-space developments, especially in South Limburg. That means that our story lines are both a translation and an interpretation of the WLO-scenario of the Dutch planning agencies. As the province of Limburg has made an own translation (Limburg, een generatie verder) of the general Dutch report, we take that translated data as input for numbers and facts. The names used for the four different storylines are also based on the Limburg report. Interpretation refers to our step to focus only on energy and spatial issues. Advantages of this approach are that we have on the one hand general possible futures for energy and space and on the other hand more specific trends for Limburg regarding population and land-use developments. Moreover from an energy point of view we have both the extremes of new coal-fired power stations, large scale offshore wind parks, micro-CHP developments, as small scale biomass challenges. If we focus on spatial developments, then is it useful to know that Limburg sometimes differs from the overall picture of the Netherlands. A shrinkage of the population goes hand in hand with an aging one. Having consequences for hospitals, schools, other service sectors, it is a relevant input for our four energy-space stories on South Limburg. In other parts of this report the four scenarios are explained in more detail. Here we continue with a discussion about the case Parkstad Limburg and arguing for spatial concepts.

3.4.3 Spatial concepts for an exergetic sound Parkstad Limburg In this part of the document we focus on a case on time is zero. The scale of the region is different next to the time frame. Until yet we discussed about the region as South Limburg. Here it becomes Parkstad Limburg, as a part of South Limburg. It is not longer about understanding possible futures, but now path dependency is crucial. Given the historical developments of the region, also given the area specific circumstances, is it then possible to create plans for a more exergetic sound Parkstad Limburg. What chances are there and how might they look like? Could they emerge itself, or is an intervention needed? Question, that will be a guide line in this paragraph.

Page 60: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

64

First let us briefly introduce the region itself. Parkstad Limburg refers to the area in South Limburg, that was previously known as the Mijnstreek or in English Mine Area. Today it is also an official government body, as it is a so called ‘plusregio’. That means it is a region in which municipalities have quite some common interest and therefore this body deals with regional planning for instance. But a more aquarate description of the region contains that is a fragmented one. This does not only refer to the seven municipalities, but also to the small villages that still exist within almost one large rurban (rural and urban) area. This so called amorpheus urbanization is a consequence of the regions history, which is heavily characterized by coal mining. Small but dense neighbourhoods emerged on top of the mines close to the shafts. Fragmentation was and still is a result of it, as can be seen in figure 39. Therefore it is an example of an energy landscape in which land-use and settlements are already based on energy, fossil energy. Nowadays it is a region with 238,000 citizens (trend is shrinkage) and both a urban and rural look. Moreover Parkstad Limburg becomes a relevant big player in tourism, next to being already an industrial area. Summarizing the spatial structure of Parkstad Limburg we should state: - urban area with sometimes very high building densities, but also green belts within the built-up

areas; - rural area with both a natural landscape and agriculture with a high level of services; - a mix of spatial functions, per square kilometer you can almost everywhere find a enormeous

variety of spatial functions; - historically seen an energy supplier, but at the moment an energy demander;

Figure 39: spatial structure of Parkstad Limburg, urban with green belts and rural areas (source: Regional Spatial Plan, 2005)

Like in other places a transition towards a more sustainable energy system is possible with help of technical solutions. Options are for instance the construction of zero energy houses, applying low exergy design, isolation, make use of heat recovery, heatpump systems, solar boilers, and so on. The question is here, are there also options on a larger scale. What if we take our exergy focus as a guiding principle? Refering to exergy as non-used energy provides us with the insight to look for regional potentials like, sun, wind, water, biomass, heat-cold storage, but also re-using energy flows. Those potentials need on the one hand techniques for distribution, storage and conversion. On the other hand all those techniques are related to a level of scale and have their own possibilities and

Page 61: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

65

characteristics. Crucial elements in this are the principle of a low-exergetic thermical network and the idea of cascading heat grids (see contribution of Leo Gommans). That is a necessary condition to make better use of waste flows of energy in terms of biomass, heat and cold. Spatial structure itself is also a condition. Understanding that structure in relationship to making better use of non-used energy, might give the floor to synergies that emerge in the integral combination of energy and regional planning. Biomass potentials (as seen in this discussion) are remaining wood parts from forests, green waste, waste from sewer systems, manure from cattle breeding, and for instance remaining flows in the food industry. An overview of potentials from waste flows in Parkstad Limburg is listed below: - storing facilities for biomass in rural areas; - transportation of biomass to urban edges; - production of methane gas at the edge of the urban; - reprocessing methane gas for supply to gas network; - conversion of methane gas in heat and electricity in CHP’s; - distribution of that electricity to the national grid and heat to a local heat network; - storing facilities for heat and cold in the coal mines; - waste heat delivering to the local network and mines for storage. Knowing what kind of energy potentials there are or could be in Parkstad Limburg, makes it easier to look for spatial features with accompanying exergetic options. Before we make the step towards general concepts, let us first introduce chances there are in some examples: Brunssumerheide East, Park Gravenrode, Parkstad Limburg Stadium, N281 Boulevard. 3.4.4 The area of Brunsummerheide East The area of Brunsummerheide East, as shown in figure 40, is an example to start with. It is an area characterized with heath, a land fill site, a forest in construction, various housing areas, and some services like a swimming pool and a nursing home.

Figure 40: exergy planning example of Brunssumerheide East (source: Gommans and Van Kann,

2009 – forthcoming Sasbe 2009 paper) A relevant design principle for exergy planning is to identify sources and sinks and subsequently to connect them energetically. This design principle is explained in more detail in a previous contribution by Sven Stremke (2007.1). It actually means that we look for spatial functions as if it are sources of non-used energy or a sink for energy. For the case Brussumerheide East the heath in the north can be seen as a source in terms of manure. The same is true for urban waste (landfill site related) and the landfill gas as well. Finally the woods in the south are a source of biomass waste (wood) as well. Sinks are a swimming pool, a nursing home, and various housing areas. In order to connect sources and sinks there is a need for distribution, storage, and conversion techniques. Both the energetic

Page 62: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

66

characteristics of the sources as the spatial distribution of the sinks give arguments for an energy-space system. Waste with a low-energetic value can from an efficiency point of view better locally be converted in biogas or maybe oil. This is for instance relevant for the low-energetic manure. Together with the fact that the landfill gas is already produced in the north, we suggest to gasify the low-energetic valued sources in the north. The opposite is true for the wood from the woods in the south. As it contains more energy, it is more energy efficient to transport it. Therefore we argue for a CHP in the center of the area, burning the transported gas from the north and/or wood from the south and delivering both electricity and heat to a grid. As the CHP is likely to be the spot with heat at the highest temperature in the area, it should be seen as the top of a local heat cascade. Users of the heat are the swimming pool, the nursing home, and various housing areas. Differences in age of the houses makes it possible to heat the houses with heat of different temperatures. For this way of reasoning it is assumed that age of a house is a good indicator for the quality of the construction of the building, like the categorization of SenterNovem (in Cijfers en Tabellen 2007). If we visualize this discussion on a map, then the schematic representation on the right of figure 3 appears. 3.4.5 The area of Park Gravenrode The area of park Gravenrode can be described as an area with a dual look, both industry and leisure determine the region. Spatial elements of importance for our story are the industrial site Dentgenbach with chemical industry and bakeries, a sewage treatment, a large ice hall (Snowworld), a zoo, and some housing areas. Figure 4 shows the relevant elements for exergy planning to begin with.

Figure 41: example of exergy planning Park Gravenrode

Again, we can define some sources and sinks for energy. The energy users, chemical industries and bakeries, can be seen as a source of residual heat as well. Further the sewage treatment plant is a source for biogas, or electricity and heat. Moreover we identify the local zoo as a producer of manure and food waste. As a sink for energy we see the business park, the tropical greenhouses (world gardens), energy exchange on the industrial site itself, various housing areas like in the previous example, and the zoo for accommodation of tropical animals in heated shelters. In this example the energy-space system is also depending on choices regarding distribution (distance), storage, and conversion. The sewage treatment plant can be seen as an energy roundabout, like a roundabout collects and distributes various flows of traffic. It is located on a remote place for obvious reasons. Therefore it might be an useful spot for collecting biomass from the zoo and sewer (top of energy cascade). Subsequently the produced gas can be transported to the local industrial site where factories can use the gas for producing process heat (high temparture heat). After a first use residual heat can be used in other sinks in the surrounding. A second heat source (top of heat cascade) is

Page 63: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

67

Snowworld (large fridge, kind of heatpump). The heat that is produced with cooling the indoor ski resort can successively be used in housing areas, the business park, and the tropical greenhouses. A link is suggested between both systems to make it more robust and efficient. Figure 5 shows schematically the overall picture.

Figure 42: exergy planning based concept for Park Gravenrode

In this example the sewage treatment plant is referred to as an energy roundabout. Due to its relatively remote location, it can be argued for reasons of energy efficiency to produce only biofuels (in casu gas) at this spot. In addition it is an argument that heavy industry is nearby for a biowaste to gas conversion. Assumed is that those heavy industries can use high temperature heat, which is easier to produce on the industry location itself by means of combustion then to transport it as high temperature heat. In addition, the spatial structure of the Park Gravenrode makes it possible to use waste heat more often by means of a heat cascade. That is an extra reason for not combining biowaste collection and combustion. In that case it would be harder to reuse the same amount of heat more often, due to longer distances to spatial functions with a heat demand in the lower range of temperatures. The used example provides in the left part of the design scheme an option to cascade heat grids, related to the idea of using different qualities of heat in neighbourhoods with various dates of construction. So, it can be concluded that even the way how an energy sources is used as a source depends on spatial issues like variety of functions, and distances between them.

Page 64: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

68

3.4.6 Parkstad Limburg Stadium Parkstad Limburg Stadium is our third example. The most eye-catching spatial feature in this area is the football stadium. This area can be characterized as heavily fragmented. It can be demonstrated with the almost unbelievable mix of spatial functions that is located in this small area. Moreover the area has good connections by means of motorways, main roads, a railway, and a high voltage power line with other parts of Parkstad Limburg and South Limburg. Nevertheless fragmentation is also a valid classification for the institutional situation here. Both representations of a fragmented area are indicicated in figure 43.

Figure 43: area of Parkstad Limburg stadium, fragmentation

For our exergy planning approach we start also in this example the same way. We identify sources and sinks within the mix of spatial functions. Although this area has only energy users, we categorize the users of high qualities of energy as sources or residual energy flows. Those sources are the heavy industry, like paper factories and plastic factories, and a brickyard. Reasonable amounts of residual heat on relatively high temperatures disappear on the moment into the air. Figure 44 shows our division of sources and sinks for the Parkstad Limburg stadium area.

Figure 44: example of exergy planning Parkstad Limburg stadium

In this example with mainly residual heat as a source of non-used energy, there are still possibilities for exergy planning. The concept of heat cascading could be a useful one overhere. That implies that there is a need for a heat network with water pipes of different temperatures. Figure 8 illustrates this energy-space concept applied to the area of the Parkstad Limburg stadium. The energy-space concept actually means that there is need to work institutionally wise together on a heat grid. Reason

Page 65: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

69

for that is that the heat cascades cross municipal borders, which demonstrates the need that can exist to tackle exergy issues on a regional scale. At the same time figure 8 shows a high degree of dependency on some specific spatial functions in the local heat grid. So, although these areas with multiple spatial functions are appropriate for heat cascading, without a real energy source on top there is a need to make the system more robust.

Figure 45: concept of heat cascading applied to Parkstad Limburg stadium

Parkstad City N281 Boulevard, is our fourth and last example. It contains also more or less the city center of this whole area, Heerlen as Parkstad City Center. The same approach like already discussed three times is used again. Figure 46 to 48 tell the story themselves.

Figure 46: overview of Parkstad City, inventory of spatial functions

Page 66: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

70

Figure 47: identifying sources and sinks – new feature is storage

Page 67: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

71

Figure 48: exergy planning based concept for Parkstad City – N281 Boulevard

This final example is a very interesting one. On the one hand we have again an useful mix of spatial functions. That is not new any more in the discussion on Parkstad Limburg, and is more or less expected in a city center. On the other hand this example has area specific potentials for storage of heat and cold in former mines. That is a new feature and relevant regarding our earlier discussion on storage capacity and robustness of energy networks. Further is it conceptually wise a combination of both energy cascading (like Brunssumerheide East) and heat cascading (Parkstad Limburg stadium). Therefore we consider the example of Parkstad City as the most integral and comprehensive one. The question that emerges out this example is, what arguments do we have to crop our exergy planning based concepts at the borders of the shown figures? From small concepts to the regional scale of Parkstad Limburg After discussing four examples it becomes clear, that there are more than enough interesting options for the combination of energy and space in Parkstad Limburg. It is clear, that the energy-space concepts depend on how you crop the area. That means there is a link between spatial structure (in terms of multiple land-uses), size, and distances. Therefore let us consider the Parkstad Limburg region as one single unit. At the same time we concluded that the last example, Parkstad City, is the most integral one. That means that within a certain spatial area all energy system compenents (production-conversion-storage+distribution-consumption) are available. This does not argue with the fact that for each option security of supply, back-up system, and flexibility are key features of the system. Nevertheless, in each case where we think of a residual energy flow connection between spatial functions, you can

Page 68: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

72

raise the question – why is there not a link already? A plausible explanation exist in the idea that people and also companies do not like to make agreements for a long period. At the same time those long periods are necessary to recover investment costs. A company does not know whether it will be on that same spot in ten years. This makes it hard to become both a supplier of energy and user of energy as stressed in the Parkstad Limburg stadium example. Although it might seem like it are all complete different issues discussed in this paragraph, they have in common a need for robustness of the system. Can we think of a more robust system? And does the spatial structure of an area provides some suggestion? Let’s have a look on Parkstad Limburg again.

Figure 49: an overview of Parkstad Limburg as one region

As stated before, Parkstad Limburg can be characterized by means of a lack on a clear structure. This observation is also done by the regional planning authority in it’s own spatial plan. It is even used as a

Page 69: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

73

main argument for one of the main desired spatial interventions, a new ring road. That new road is seen as a structuring component for the region, not as a ring road does in most of other urban areas, where it is a circle around the city center. But the road structures like a string of beads does. The beads are here housing areas, and especially industrial sites. Remembering our design principle in the examples it connects therefore various sources of energy and sinks for energy. The idea to use this ring road also as the backbone of a heat grid is therefore an interesting one. As illustrated in the figure below the ring actually connects also the previously shown examples.

Figure 50: a ring – structuring element of Parkstad Limburg

Refering to the ring road as an energy ring means that we have a real spatial concept, a ring. It obviously has some advantages with respect to security of supply. In case an energy company would run the system then spatial functions (as sources and sinks) should be able to earn or save money

Page 70: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

74

with a connection to the main grid. It should be possible to both deliver and take heat to and from the grid. In such a situation a company has a contract and relationship with an energy company, that probably doesn’t differ from the current situation. It could also be an argument for both developing new industrial sites (creating sources) and for instance warehouses (sinks) along the energy ring. If an energy ring has the same amount of attraction as a ring road has for spatial functions, then there is no doubt about new developments. Synergies between the energy ring and the ring road might even evolve in a stronger argument for spatial development. In addition a large ring road is a backup system itself, but can relatively easy be linked up to other storing facilities. The closed coal mines can be used as a source for heat-cold storage in the Parkstad Limburg case. It means that it is also possible to link a general concept like an energy ring to area specific circumstances like the existence of a natural storing facility. It also makes it possible to connect our four separately discussed examples. Therefore we conclude that for an exergetic design of Parkstad Limburg the concept of an energy ring perfectly fits.

Page 71: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

75

REFERENCES Atlas van Nederland: http://avn.geog.uu.nl/, January 2008 CBS (2003). Energie en water. Centraal Bureau voor de Statistiek CBS (2005). Energie en water. Centraal Bureau voor de Statistiek CBS (2006). Energie en water Centraal Bureau voor de Statistiek Centraal bureau of statistics: http://www.cbs.nl, April 2006-January 2008 Eandis. (2007). De Zonneboiler. Merelbeke: Eandis. EnergieNed (1994, 2000, 2004). Basisonderzoek Elektriciteitsverbruik Kleinverbruikers. Arnhem: EnergieNed. Engelen R, Cimmermans R, Levels P, 2006, Limburg, een generatie verder Ed. Provincie Limburg

(Provincie Limburg, Maastricht) pp. 48 Essent: http://www.essent.nl, January 2008 Federation of Energy Companies in The Netherlands (EnergieNed) (1995, 2002, 2005). Gommans, L.J.J.H.M. & Dobbelsteen, A.A.J.F. van den. (2007). Synergy between exergy and regional planning. In Energy Conference. The New Forest, UK, June 20-22. Gommans, Leduc, Van Kann and Stremke (february 2008) Synergy between regional planning and Exergy – report 2; Delft, Groningen and Wageningen,. Hoeven, D. van der. (2007). Groenboek Energietransitie. Sittard: SenterNovem (Platform Groene Grondstoffen, 8ET-07.01). International Energy Agency: http://www.iea.org, January 2008 Kerkstra, K., P. Vrijland, et al. (2007). Landschapsvisie Zuid-Limburg. Maastricht: Koninklijk Nederlands Meteorologisch Instituut (KNMI): http://www.knmi.nl, January 2008 Ministerie van Landbouw, Natuur en Voedselkwaliteit: http://www.nationalelandschappen.nl Natuur- en Milieucompendium: http://www.milieuennatuurcompendium.nl/indicatoren/nl1192-Beschrijving-van-stedelijk-gebied.html?i=4-34, 13 June 2008 Nederlands molendatabase: http://www.molendatabase.nl, November 2007 Netherlands Environmental Assessment Agency. (2008). Milieu & Natuur Compendium: Beschrijving van stedelijk gebied. PriceWaterHouseCoopers-Ecofys (2003). Kansenstudie Duurzame Energie Limburg. Utrecht:

PriceWaterHouseCoopers-Ecofys Rovers, R. (2007). Urban Harvest, and the hidden building resources. In CIB World Congress. Cape Town, South Africa, May 14-18. SenterNovem. (2004). EPC en energieverbruik Nieuwbouwwoningen. Utrecht: SenterNovem (nr. 1 KPWB 04.04). SenterNovem. (2006). Referentiewoningen nieuwbouw. Sittard: SenterNovem.

Page 72: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

76

SenterNovem. (2007a). Meerjarenafspraken energie-efficiency, resultaten 2006. Utrecht: SenterNovem. (2007b). Cijfers en tabellen 2007. Utrecht: SenterNovem. SenterNovem: http://www.SenterNovem.nl, December 2006 Sinke, W.C. (2007). Veelgestelde vragen over zonne-energie. Petten: ECN (ECN-P—01-011, 2) Spoelstra, S. (2005). Nederlandse en Industriële Energiehuishouding. Petten: ECN (ECN-I—05-004). Statistics Netherlands, Industry and Energy. (2006). Finaal energetisch verbruik van warmte en elektriciteit in de industrie in 2006. Voorburg: SenterNovem. Statistics Netherlands. (2007). Duurzame energie in Nederland – PV/zonnestroom. http://www.senternovem.nl/duurzameenergie/DE-technieken/Zonnestroom/Index.asp (access date: 14.09.2007) Steinitz, C. (2002). On Teaching Ecological Principles to Designers. Ecology and design: Frameworks

for learning. B. Johnson and K. Hill. Washington, DC: Island Press: 231-244 Stremke, S. (2008). Wind potential map S-Limburg. SREX-research: energy potentials case-study area. Stremke (july 2008) Case-Study South Limburg (Part 2), Wageningen, The present energy system of South Limburg. The system is being illustrated in three maps (A1) energy provision, (A2) conversion, storage and transport, and (A3) consumption. Stremke, S. and R. v. Etteger, Eds. (2007). ReEnergize South Limburg: Designing sustainable energy

landscapes. Wageningen: Landscape Architecture Chairgroup UNEP (2007). GEO4 Global environmental outlook. Nairobi: United Nations Environment Programme

VROM: http://www2.minvrom.nl, November 2007

Page 73: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

APPENDIX A: ROBUSTNESS OF PROPOSED INTERVENTIONS (WORKING DOCUMENT) Specification Global market Secure region Global solidarity Caring region “Robustness” (Space figures) New residential areas 386 ha 306 ha 386 ha 159 ha New heavy industry 387 ha Extension airport 80 ha (Energy figures) Residual heat from industry 7x 4x 6x 7x 4 2e generation biomass +/- 50.000 ha +/- 50.000 ha +/- 50.000 ha 3 New district heating 10x 10x 22x 3 Water-waste treatment plant (biogas to grid) 8x 10x 8x 3 District heating based on biomass 5x from 20x 3x 6x from 32x 3 CHP based on organic and solid waste 3x 1x 3x 3 Search-area wind park 4.438 ha 1.307 ha 2 Areas with heat-cold pumps (closed system) >39x 22x 2 New areas with low EPC dwellings 15x 15x 2 New areas with LowEx dwellings and district heating 6x 11x 2 New areas with energy neutral dwellings 7x 9x 2 CHP based on (solid) biomass 4x 4x 2 CHP based on biogas (from waste-water-plant) 2x 2x 2 Large scale hydropower plant 3x 3x 2 New overhead electricity power lines 30 km 80 km 2 Cold required (Snowworld) 1x 1x 2 1e generation biomass (only arable land) 15.974 ha 1 Mixed areas (PV-cells, boiler, waste) 10.105 ha 1 PV-Cells in business parks / Building footprint 3.628 ha / 708 ha 1 Areas with small wind turbines 36x 1 Small-scale hydropower 30x 1 Indoor swimming pool (heat required) 20x 1 New heat-cold storage in mines 14x 1 Fermentation of manure and co-fermenter 13x 1 Mine-gas extraction & potential heat-cold storage 12x 1 Algae production (bio-fuels) 3x 1 Power plant (based on regional renewables) 2x 1 New generation pig-farms (biogas to grid) 2x 1 New office parks with low EPC 2x 1

Page 74: SynERgy bEtwEEn REgional Planning and EXERgy - Home | Agentschap NL

78

APPENDIX B: MAPS All listed maps have been assembled in GIS; they are available at scale 1:50.000 on the SREX website (as PDF document). All maps in this report are downscaled to be printed on A3, landscape format. Link: http://www.exergieplanning.nl/documents/10/WP5%20contribution%20to%202008-1%20(GIS%20maps).pdf Analysis Present Energy System

A1 Present energy provision A2 Present energy conversion, storage and transport A3 Present energy consumption

Potentials Renewable Energy P1 Solar energy potential P2 Wind energy potential P3 Water power potential P4 Biomass potential P5 Heat/cold and geothermal potential

Near-Future and Far-Future Base Maps

B0 Topographic base-map near-future B1 Global market base-map B2 Secure region base-map B3 Global solidarity base-map B4 Caring region base-map

Energy-Vision South Limburg

V1 Global market energy vision V2 Secure region energy vision V3 Global solidarity energy vision V4 Caring region energy vision