synthesis of lamellarin d a novel potent inhibitor of dna topoisomerase i wenhui hao march 16 th,...

51
Synthesis of Lamell A Novel Potent Inhibitor A Topoisome Wenhui Hao March 16 th , 2006

Upload: coleen-warner

Post on 27-Dec-2015

220 views

Category:

Documents


2 download

TRANSCRIPT

Synthesis of Lamellarin D

A Novel Potent Inhibitor of DNA Topoisomerase I

Wenhui Hao

March 16th , 2006

Outline

N

OH

HO

HO

O

O

MeO

MeO

MeO

Lamellarin D

1

Biological activities

Structure-activity relationship

Identification of LAM-D as an

inhibitor of Topo I

Three synthetic routes

2

Background

•Cancer

•Normal cells-- new cell growth balance with old cells die

•Cancer cells-- loss of normal growth control

loss of ability to undergo programmed cell death

3

Cancer Treatment

•Surgery

•Radiation

•Chemotherapy : Alkylating agents

Antimetabolites

Plant alkaloids

Antitumour agents

Topoisomerase inhibitors

4

Topoisomerases

• Maintaining the topographic structure of circular DNA

• Topo I: transient single-strand break (Lam D)

Topo II: double-strand break

• Breaking--Uncoiling--Replication DNA helix

5

DNA Structure

DNA Double Strand Helix

6

•A,T, G, C bases can

extend away from chain

stack at top each other

•dA-dT, dG-dC base pairs

are the same length

•Occupy the same space

•The distance between

the two bps is 3.4Ǻ

Base Pairs

7

Topoisomerase I Activity

Topo I : 100 KD monomeric protein ,breaks single strands , by cleaving a phosphodiester bond form a phosphotyrosine topoI-DNA complex

8

Topoisomerase I Activity

Religation is faster than cleavage

→ DNA-Topo I complex

concentration remains low

Drugs stabilize the complex and

Block DNA religation, converting

Topo I into a DNA damaging agent

9

Topo Inhibitors Mechanism of Action

Covalent binding to

double-stranded DNACleavable complex by

binding to DNA-Topo I or II

Uncoiling of double-strande

DNA , prevents resealing

Replication halted at Topo-DNA complex stage

Replication fork collides with trapped complex

double strand breaks and cell death

10

•Activity does not change with growth of the cells

•Topo I levels in tumor specimens are higher than

normal tissues and Topo II

making inhibition of Topo I an attractive target for

anticancer agents

• Significant activity against a broad range of tumors

Advantages of Topo I Inhibitors

11

Camptothecin (CPT) and Its Analogs

First isolated from the Chinese tree

Camptotheca acuminata, Nyssaceae. in 1966

CPTs inhibit Topo I as cytotoxic agents

Clinical test against colon, ovarian cancers

Serious side effects , poor water solubility

N

N

O

O

OOHH3C

A B CD

E

Wall M et al J.Am.Chem.Soc 1966,88:3888-90 12

Topotecan (TPT)

N

N

O

O

OOHH3C

HO

NCH3

CH3 •Water-soluble CPT derivative

•Significant activity against tumor cell

lines (breast, lung )

•Stabilizes DNA-drug-Topo I complex

and inhibits Topo I function causing

DNA strand breakage.

•Approved in 1996, first Topo I

inhibitor treating ovarian cancer

John Nitiss Nurrent Opinion In Investigational Drugs 2002, 3 (10) :1512-1516 13

Bart Staker et al PNAS Vol. 99, No.24 2002,15387-15392

Crystal Structures of Topo I-DNA-TPT Complex

Topo 70-DNA Binary Complex Topo 70-DNA-Topotecan Ternary Complex

3.6 Ǻ 7.2 Ǻ

Mimic bp Extends bp distance

14

Hydrogen bond contact to the active site of Topo I and phosphotyrosine

Free-OH displaced 8Ǻ from phosphotyrosine of Topo I

Mechanism of Topo I Inhibitor- TPT

15

Marine Alkaloid- Lamellarins

• Isolated in 1985 from a Lamellaria sp.

of marine prosobranch mollusc

• Lam A,B,C,D were obtained

• C and D inhibition of cell division

• A and B were inactive

Raymond J. Andenen et al J. Am. Chem. Soc. 1985, 107, 5492-5495

N

OH

HO

HO

O

O

MeO

MeO

MeO

Lamellarin D

1

16

•The main pentacyclic array is essentially planar

•The aromatic ring attached to C1 is rotated 90°to the main plane

Structure properties

N

OHHO

O

O

MeO

MeO

MeO

Lamellarin A

MeO

MeO

OH

17

A Growing Family --Three Groups

N

O

O

1

R4

R3

14

13

3

68R1

R2 9

2021

R6R5

5

Open Chain

Fused: S or D

* 35 lamellarins have been isolated,

from ascidian and sponge species

* A pentacyclic core, variation from

hydroxy, methoxy substitution

N CO2Me

OHHO

OX

MeO

LAM O, X=H LAM P, X=OH

N CO2Me

OHHO

R

LAM Q, R=H LAM R, R=p-HOC6H418

Biological ActivitiesCommon activities

Inhibition of cell division

Cytotoxicity

Immunomodulatory activity

Recent findings

Lamellarin D :

Antitumor activity against MDR cell lines

Selective cytotoxicity for prostate cancer cells

19

Ishibashi’s Synthesis of LAM-D

NO

HO

MeO

MeO

HO

O

OH

OMe

NOEt

OBn

OH

O

O

Br

N

OEt

O

O

MeO

OBn

OMOM

Br

MeO

BnO

MeO

MeO

BnO

MeO

BnO

MeO

MeO

BnO1

2

3

4

Fumito Ishibashi et al. Tetrahedron, 1997, 53(17): 5951-5962

N-ylide- mediated pyrrole ring formation of a quaternary ammonium salt followed by lactonization

20

N

CO2Me

OMOM

N

H

HO

OMOM

NH

O

H

OMOM

BrCH2CO2Et

N

O

OMOM

CO2Et

Br

Et3N, CH2CI2N

O

O

MeO

MeO

MeO

MeO

MeO

MeO

MeO

MeO

MeO

MeO

MeO

MeO

1) LDA, THF

2)

3

1

3

MeO

MeO

MeO

MeO

MeO

MeO

MeO

MeO

5 6 7a 7b

8 R=MOM9 R=H

10

33%, 3 steps

Model Study

7a:7b = 92:8

21

Ishibashi’s Synthesis of LAM-D

6-Benzyloxy-l-(4-benlzyloxy-3-methoxybenzyl)-7-methoxyisoquinoline(3)

CHO NO2

NO2

CO2H

OMe

NHN

BnO

MeO

BnO

MeO

BnO

MeO

BnO

MeO

BnO

MeO

BnO

MeO

BnO

BnO

MeOMeO

11 12 13

15

3

CH3NO2, NH4OAc, AcOH

81%MeONa, MeOH-CH2Cl2

74%

LiAlH4ether-THF

NH2

BnO

MeO

14

DCC, CH2Cl2, 76% 2steps

POCl3, Benzene

57%

OMe

OMe

O

22

Ishibashi’s Synthesis of LAM-D

Methyl 4-Benzyloxy-5-methoxy-2-methoxymethoxybenzoate(4)

OH

CO2Me

OMOM

CO2MeMeO

BnO

OH

CO2Me

BnO OH

CO2Me

BnO

Br

OH

CO2Me

BnO

MeO

16 17 18

194

BnBr, K2CO3

91% 91%

DMF-MeOH63%

MOMCl, t-BuOK, THF

94%

Br2, CHCl3

MeONa

HO

23

Ishibashi’s Synthesis of LAM-D

N

O

OMOM

CO2Et

OBn

Br

MeO

MeO

MeO

BnO

BnO

BrCH2CO2Et

21

N

O

OMOM

OBn

NH

O

OMOM

N

OBn

MeO

MeO

MeO

MeOMeO

MeO

BnO

BnO

BnO

BnO

MeO

BnO

BnO

MeO3

20a 20b

LDA, THF, 63%

OMOM

CO2MeMeO

BnO

4

24

Ishibashi’s Synthesis of LAM-D

4% 14 steps

N

O

OMOM

CO2Et

OBn

Br

NO

O

OBn

OMe

MeO

MeO

MeO

MeO

MeO

BnO

BnO

21

N

O

OH

CO2Et

OBn

Br

MeO

MeO

MeO

BnO

BnO

2

HCl, MeOH

22

BnO

BnO

34% 3 steps

H2, Pd/C, EtOAc

82%

NO

O

OH

OMe

MeO

MeO

LAM-D

HO

HO

Et3N, CH2Cl2

25

26

Activity of Lam D and Lam 11

N

H

O

O

HMeO

MeO

MeO

MeO

Lam 11

Cytotoxicities against tumor Cell Lines, IC50 (μM)  

compound Hella XC

lamellarin D 0.0105 0.0124

Lam 11 5.7 5.6

mitomycin C 68.0 NDa

N

OH

HO

HO

O

O

MeO

MeO

MeO

Lam D IC50(¦Ìm) 0.0105

1

8

9

14

13

2021

26

27

Structure-Activity Relationship Study of

Lamellarin Derivatives

Fumito Ishibashi et al. J. Nat. Prod. 2002, 65, 500-504

OH at C-8

C-20 essential

OH at C-14

MeO at C-13 ,

C-21 less important

N

OH

HO

HO

O

O

MeO

MeO

MeO

Lam D IC50(¦Ìm) 0.0105

1

8

9

14

13

2021

N

O

O

HOH

MeO

MeO

Lam 3 0.0395

HO

HO

N

O

O

OHMeO

MeO

Lam 6 0.0380

HO

HO

H

N

O

O

OH

MeO

Lam 7 0.0700HO

H

MeO

MeO

27

28

Effect of OH at C-20

N

O

O

HMeO

MeO

HO

Lam 4 0.8500

HO

MeO

N

O

O

OHMeOMeO

MeO

MeO

Lam 5 2.5

MeO

N

O

O

MeO

MeO

Lam 12 >100

MeO OO

MeO

N

OH

HO

HO

O

O

MeO

MeO

MeO

Lam D IC50(¦Ìm) 0.0105

1

8

9

14

13

2021

28

29

Effect of OH at C-8

N

O

O

OHMeOMeO

MeO

MeO

Lam 5 2.5

MeO

C-8 OH, lacks C-14 OH, maintains high activity

Methylation of OH at C-8 , C-14

decrease activity

N

OH

HO

HO

O

O

MeO

MeO

MeO

Lam D IC50(¦Ìm) 0.0105

1

8

9

14

13

2021

N

O

O

OH

MeO

Lam 7 0.0700HO

H

MeO

MeO

29

30

Banwell’s Synthesis-

Lamellarin Parent Ring System

An intramolecular [3 + 2] cycloaddition between an isoquinoline-based azomethine ylide and a tethered tolan

Martin Banwell, et al. Chem. Commun. 1997: 2259-2260

N

O

O

AcO

OO

NBr

+Pd(PPh3)4 , CuI

Et3 N, 99%

AcO HO

18oC, 4h

O

1 2 3 4

5CCH2BrO

K2CO3, MeOH

BrCH2COBr CH2Cl291% 2 steps

67

i. Et3N, THF, 66C, 4h

ii. DDQ, CH2Cl2,

92% 2 stepsTHF

N

30

31

OMe

OH

CHO

OMe

Oi-Pr

CHO

OMe

Oi-Pr

Br

Br

OMe

Oi-Pr

OMe

Oi-Pr

CHO

I

12 3

54

OMe

Oi-Pr

OMe

Oi-Pr

OHC

i-PrBr, K2CO3, DMF

CBr4, Zn0-25oC, 4h

n-BuLi, THF

AgOCOCF3, I2, CH2Cl2

Pd(PPh3)4, CuI, NEt3

PPh3, CH2Cl2

6

94% 95%

80% 2 steps

66%

Christian P. Ridley, et al. Bioorg. Med. Chem., 2002, 10: 3285-3290.

Application of Banwell’s Approach

31

32

N

MeO

MeO

OMe

Oi-Pr

ON

O

I

i-PrO

MeO

MeO

MeO 8

i. MCPBA, KHCO3, CH2Cl2

ii. NH3, CH2Cl2/MeOH(1:1)

iii. ICH2COOH, DCC, DMAP, CH2Cl2

ClCH2CH2Cl

OMe

Oi-Pr

OI

O

i-PrO

MeO

7

OMe

Oi-Pr

i-PrO

MeO

OHC

89%

98%

90%

6

Application of Banwell’s Approach

32

33

OMe

Oi-Pr

ON

O

I

i-PrO

MeO

MeO

MeO

N

O

O

Oi-PrMeOMeO

MeO

MeO

i-PrO

N

O

O

Oi-PrMeOMeO

MeO

MeO

i-PrO

N

O

O

OHHO

HO

HO

HO

HO

8

11 Lam H

E t3N

54% 2 steps

DDQ, CH2Cl2/EtOH(1:1)

93%

BBr3, CHCl3

88%

9 Lam U diisopropyl ether

10 Lam ¦Á diisopropyl ether

Application of Banwell’s Approach

17% 12 steps33

34

Identification of LAM-D as an Inhibitor of TopoI

Michael Facompre et al. Cancer Research 2003, 63,7392-7399

N

OH

HO

HO

O

O

MeO

MeO

MeO

LAM-D

1

N

OH

HO

HO

O

O

MeO

MeO

MeO

LAM-501

34

35

DNA Relaxation Experiment – Topo I Inhibition Efficacy

c

Nck:nicked form II,single-strand break35

a

d

b

36

Detectation of the Extents of Cleavage

LAM D induced dose dependent stimulation

of DNA cleavage by topo I

Equally effective at 2 μM70% of the DNA

single-strand breaks

36

37

Topo I Inhibition: Site Selectivity

Cleavage of DNA fragment by Topo I

(increasing concentrations of LAM-D)

Common site

Side numbers of gels show nucleotide positions

determined with reference to guanine(G) tracks 37

38

Topo I Inhibition: Site Selectivity

CPT specific

38

39

Topo I Inhibition: Site Selectivity

LAM D specific

39

40

Molecular Modeling

Theoretical model of LAM-D covalently bound to topoisomerase I–DNA complex. 40

41

Summary of the Study of SAR

N

OH

HO

HO

O

O

MeO

MeO

MeO

LAM-D

8

9

202114

13

5

6

6

Planar conformation of LAM-D

suited for intercalation into DNA

OH at C-8 , C-20 : Essential

OH at C-14 , MeO at C-13, C-21 :

Less important

Essential

Essential Essential

41

42

Olsen-Pla’s Open Chain-Modular

Synthetic Route to Lamellarins

Christian A. Olsen, et al. Tetrahedron Letters, 2005, 46: 2041-2044

N

R2R1

R2

R1

R2

R1

CO2Me

N CO2MeR2

R1

XBrR2

R1

CO2MeNH

R1 = Oi-Pr, R2 = OMe

1

N-alkylation with p-toluenesulfonate and intramolecular Heck cyclization from Methyl pyrrole-2-carboxylate to Scaffold 1

42

43

For all compounds

R1=Oi-Pr,R2=OMe

Olsen-Pla’s Open Chain-Modular

Synthetic Route to Lamellarins

R1

R2

Br

R2

R1

Br

N CO2Me

NCO2MeR2

R1

NCO2MeR2

R1

Br

NCO2MeR2

R1

BrBr

TsO

101

3

5

NBS, THF

CO2MeNH

2

Pd(PPh3)4, NaOAc

1

95%

4

5

3

NaH, DMF

50%

94%

92%

43

Synthesis of open chain analogues

44

NCO2MeR2

R1

N CO2MeR2

R1

B(OH)2

HO

B

O

O

iPrO

MeO

NCO2MeR2

NCO2MeR2

HO

OH

10

11

HO

HO

AlCl3,CH2Cl26

7

NCO2MeR2

R1

Br

4Pd(PPh3)4, Na2CO3, DMF

Pd(PPh3)4, Na2CO3, DMF

NCO2MeR2

R1

Br Br

5

78% 2 steps

AlCl3,CH2Cl2

62% 2 steps

HO8

iPrO

OH

OMe

MeO

HO

MeO

OMe

9

27% 9 steps

35% 9 steps

Olsen-Pla’s Open Chain-Modular

Synthetic Route to Lamellarins

44

45

N

O

O

OH

HO

HO

N CO2Me

N

OH

HO

HO

OMe

CO2Me

N CO2Me

HO

HO

MeO

MeO

MeO

MeO

MeO

MeO

i-PrO

MeO

MeO

2

3

1

Lamellarin D

Daniel Pla, et al. J.Org.Chem.2005,70:8231-8234

Modular Synthesis of Lamellarin D

45

Two sequential and regio-selective bromination and cross-coupling reactions using different substituted arylboronic ester

46

N CO2Me

BrN CO2Me

HO

B

O

O

H

TsOi-PrO

MeO

MeO

i-PrO

MeO

Pd(PPh3)4 Na2CO3 DMF 78%

4

1

N CO2MeMeO

i-PrO5

Br

NBS, THF

6

N CO2Me

HO

MeO

MeO

i-PrO7

1)NaH, DMF

2)PdCI2(PPh3)2,PPh3, K2CO3

50%

94%

1

3

Modular Synthesis of Lamellarin D

46

47

NCO2Me

i-PrO

MeO

MeO

i-PrO

8

N CO2Me

BrMeO

MeO

i-PrO

i-PrO

9

N CO2Me

HO

MeO

MeO

i-PrO 7

B

O

O

Oi-Pr

MeO

Pd(PPh3)4, , DMF 87%

i-PrO

10

N

Oi-Pr

CO2Me

Oi-Pr

MeO

MeO

i-PrO

i-PrO MeO

11

NBS THF

90%

i Pr-Br,K2CO3,DMF

84%

K2CO3

Modular Synthesis of Lamellarin D

47

48

N

Oi-Pr

i-PrO

i-PrO

CO2Me

Oi-Pr

N

OH

HO

HO

O

O

DDQ, CHCI3, MWMeO

MeO

MeO

NaH, THFMeO

MeO

MeO

Lamellarin D

N

Oi-Pr

CO2Me

Oi-Pr

MeO

MeO

i-PrO

i-PrOMeO

1112

N

OH

CO2Me

OH

MeO

MeO

MeOHO

HO

AlCl3, CH2Cl2

13

38% 3 steps

9% 13 steps

Modular Synthesis of Lamellarin D

48

49

Comparison of Three Synthesis

1. Ishibashi’s N-ylide approach · Prepared and evaluated 10 derivatives ·  Lam D: 14 steps, overall yield 4% ·  Ring substitution limited

2. Banwell’s Intermolecular 3+2 approach ·  Most direct method to the lamellarins ·  12 steps, overall yield 17% ·  Prepared Lam D and Lam 501  3. Olsen-Pla’s Open chain-Modular synthesis approach ·  More flexible, effective method ·  Open chain analogues:  9 steps, 27-35% yield ·  Lam D: 13 steps, overall yield 9%

49

50

Conclusion

• A novel class of marine alkaloids – Lamellarins isolated

• Lamellarin D

•Identified as a lead candidate for Topo I targeted

antitumor agent

•Structure-activity relationship studied

• Three different synthetic methods compared

•Ishibashi’s synthesis

•Banwell’s synthesis

•Olsen-Pla’s synthesis

50

51

Acknowledgment

Dr.Wang Hadizad Tayebeh

Dr. Jane Gao Shidi Xun

Dr. Hongding Tang Xun Sun

Dr. Xianzhen Li Xianguo Wu

Yuxing Cui Ying Xiong

Gaetan LeClair

51