synthesis of tetraphosphine macrocycles using copper(i) templates aditya nathan… ·...

41
Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Bryan P. Nell, Charles D. Swor, E. Adrian Henle, Lev N. Zakharov, N. Ian Rinehart, Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA E-mail: [email protected] Table of Contents Table S1. Mass spectral data for copper macrocyclic complexes 12-17. Demetallation of Complex 16. Figure S1. Possible stereoisomers of phosphine 22 (arc = -C 3 H 6 -, box = -C 4 H 8 -). Figure S2. 31 P{ 1 H} NMR spectrum of 3 in CDCl 3 . Figure S3. 31 P{ 1 H} NMR spectrum of 4 in CDCl 3 . Figure S4. 31 P NMR spectrum of 4 in CDCl 3 . Figure S5. 31 P{ 1 H} NMR spectrum of Cu(MeOPrPE) 2 PF 6 (7) in CDCl 3 . Figure S6. 31 P{ 1 H} NMR spectrum of Cu(MeOPrPP) 2 PF 6 (8) in CDCl 3 . Figure S7. 31 P{ 1 H} NMR spectrum of Cu(MPPE) 2 OTf (9) in CDCl 3 . Figure S8. 31 P{ 1 H} NMR spectrum of Cu(MPPP) 2 OTf (10) in CDCl 3 . Figure S9. 31 P{ 1 H} NMR spectrum of 11 in CDCl 3 . Figure S10. 31 P{ 1 H} NMR spectrum of 12 in CDCl 3 . Figure S11. 31 P{ 1 H} NMR spectrum of 14 in CDCl 3 . Figure S12. 31 P{ 1 H} NMR spectrum of 15 in CDCl 3 . Figure S13. 31 P{ 1 H} NMR spectrum of 16 in CDCl 3 . Figure S14. 31 P{ 1 H} NMR spectrum of 15 from 11. Figure S15. 31 P{ 1 H} NMR spectrum of 17. Figure S16. 31 P{ 1 H} NMR spectrum of 18 in CDCl 3 . Figure S17. 31 P{ 1 H} NMR spectrum of 19 in CDCl 3 . Figure S18. 31 P{ 1 H} NMR spectrum of 20. Figure S19. 31 P NMR spectrum of 21 in CDCl 3 . Figure S20. 31 P{ 1 H} NMR spectrum of 22. Figure S21. 31 P{ 1 H} NMR spectrum of 23. Figure S22. 31 P{ 1 H} NMR spectrum of Co(23)Cl 2 . Figure S23. 1 H NMR spectrum of 3. Figure S24. 1 H NMR spectrum of 4 in CDCl 3 . Figure S25. 1 H NMR spectrum of 20. Figure S26. 1 H NMR spectrum of 21 in CDCl 3 . Figure S27. 1 H NMR spectrum of 22. Figure S28. 1 H NMR spectrum of 11 vs. 21 in CDCl 3 . 1 Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Upload: others

Post on 08-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates

Bryan P. Nell, Charles D. Swor, E. Adrian Henle, Lev N. Zakharov, N. Ian Rinehart,

Aditya Nathan, and David R. Tyler*

Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403,

USA

E-mail: [email protected]

Table of Contents

Table S1. Mass spectral data for copper macrocyclic complexes 12-17.Demetallation of Complex 16. Figure S1. Possible stereoisomers of phosphine 22 (arc = -C3H6-, box = -C4H8-).Figure S2. 31P{1H} NMR spectrum of 3 in CDCl3.Figure S3. 31P{1H} NMR spectrum of 4 in CDCl3.Figure S4. 31P NMR spectrum of 4 in CDCl3.Figure S5. 31P{1H} NMR spectrum of Cu(MeOPrPE)2PF6 (7) in CDCl3.Figure S6. 31P{1H} NMR spectrum of Cu(MeOPrPP)2PF6 (8) in CDCl3.Figure S7. 31P{1H} NMR spectrum of Cu(MPPE)2OTf (9) in CDCl3.Figure S8. 31P{1H} NMR spectrum of Cu(MPPP)2OTf (10) in CDCl3.Figure S9. 31P{1H} NMR spectrum of 11 in CDCl3.Figure S10. 31P{1H} NMR spectrum of 12 in CDCl3.Figure S11. 31P{1H} NMR spectrum of 14 in CDCl3.Figure S12. 31P{1H} NMR spectrum of 15 in CDCl3.Figure S13. 31P{1H} NMR spectrum of 16 in CDCl3.Figure S14. 31P{1H} NMR spectrum of 15 from 11.Figure S15. 31P{1H} NMR spectrum of 17.Figure S16. 31P{1H} NMR spectrum of 18 in CDCl3.Figure S17. 31P{1H} NMR spectrum of 19 in CDCl3.Figure S18. 31P{1H} NMR spectrum of 20.Figure S19. 31P NMR spectrum of 21 in CDCl3.Figure S20. 31P{1H} NMR spectrum of 22.Figure S21. 31P{1H} NMR spectrum of 23.Figure S22. 31P{1H} NMR spectrum of Co(23)Cl2.Figure S23. 1H NMR spectrum of 3.Figure S24. 1H NMR spectrum of 4 in CDCl3.Figure S25. 1H NMR spectrum of 20.Figure S26. 1H NMR spectrum of 21 in CDCl3.Figure S27. 1H NMR spectrum of 22.Figure S28. 1H NMR spectrum of 11 vs. 21 in CDCl3.

1

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2016

Page 2: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S29. 1H NMR spectrum of Co(21)Cl2 for Evans’ method. Figure S30. 1H NMR spectrum of 23.Figure S31. ESI-MS of Cu(MeOPrPE)2PF6 (7).Figure S32. ESI-MS of Cu(MeOPrPP)2OTf (8).Figure S33. ESI-MS of Cu(MPPE)2PF6 (9).Figure S34. ESI-MS of Cu(MPPP)2OTf (10).Figure S35. ESI-MS of Cu(4)OTf (11).Figure S36. ESI mass spectrum of 12.Figure S37. ESI mass spectrum of 13.Figure S38. ESI mass spectrum of 15.Figure S39. ESI mass spectrum of 16. Figure S40. ESI mass spectrum of 17.Figure S41. ESI mass spectrum of 15.Figure S42. ESI-MS of 18.Figure S43. ESI-MS of 19.Figure S44. ESI-MS of [Co(21)]Cl2. Figure S45. ESI-MS of [Fe(21)(CH3CN)2](BPh4)2.Figure S46. ESI mass spectrum of [Fe(21)(CH3CN)2](OTf)2. Figure S47. FAB mass spectrum of 23.Figure S48. Hi-Res FAB-MS of 23.Figure S49. ESI mass spectrum of Co(23)Cl2. Figure S50. UV-Vis spectrum of Co(21)Cl2 in dichloromethane.Figure S51. UV-Vis spectrum of Co(23)Cl2 in dichloromethane. Figure S52. Infrared spectrum of Cu(4)OTf, 11.Figure S53. Infrared spectrum of [Fe(21)(CH3CN)2](OTf)2.Figure S54. Infrared spectrum of [Fe(21)(CH3CN)2](OTf)2 made in an Ar-filled glovebox.Figure S55. Infrared spectrum of [Fe(21)(CH3CN)2](OTf)2 made in an Ar-filled glovebox, redissolved and and bubbled with N2.Figure S56. Overlay of [Fe(21)(CH3CN)2](OTf)2 made in an argon-filled glovebox vs. made in a nitrogen-filled glovebox. Figure S57. Overlay of [Fe(21)(CH3CN)2](OTf)2 made in an argon-filled glovebox vs. made in a nitrogen-filled glovebox (y-axis is absorbance). Figure S58. 31P{1H} NMR spectrum of isopropyl allyl(phenyl)phosphinate in CDCl3.Figure S59. 1H NMR spectrum of isopropyl allyl(phenyl)phosphinate in CDCl3.Figure S60. 13C NMR spectrum of isopropyl allyl(phenyl)phosphinate in CDCl3.Tables S2-S7. X-ray crystallographic data for 15.

2

Page 3: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Table S1. Mass spectral data for copper macrocyclic complexes 12-17.

complex R n m Formula m/za

12 CH3O(C3H6) 1 1 [C26H56O4P4Cu]+ 619

13 CH3O(C3H6) 2 1 [C28H60O4P4Cu]+ 647

14 Ph 1 1 [C34H40P4Cu]+ 635

15 Ph 2 1 [C36H44P4Cu]+ 663

16 Ph 1 2 [C36H44P4Cu]+ 663

17 Ph 2 2 [C38H48P4Cu]+ 691acalculated and observed

Demetallation of Complex 16. Complex 16 was demetallated with KCN to give the free phosphine 23 as an oily, colorless residue (Scheme 13). The uncoordinated macrocycle ligand displayed a singlet in the 31P{1H} NMR spectra at -20.4 ppm. The general features of the 1H NMR spectrum are broad and do not give much structural information, but the disappearance of the P-H protons support the idea that full alkylation was achieved. A FAB mass spectrum of 19 showed the expected molecular ion peak plus a proton at 601 m/z, and high resolution mass spectrometry (HR-MS) gave a molecular formula of C36H45P4, which corresponds to [m+H]+.

3

Page 4: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S1. Possible stereoisomers of phosphine 21 (arc = -C3H6-, box = -C4H8-).

Figure S2. 31P{1H} NMR spectrum of 3 in CDCl3.

4

Page 5: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S3. 31P{1H} NMR spectrum of 4 in CDCl3.

Figure S4. 31P NMR spectrum of 4 in CDCl3.

Figure S5. 31P{1H} NMR spectrum of Cu(MeOPrPE)2PF6 (7) in CDCl3.

5

Page 6: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S6. 31P{1H} NMR spectrum of Cu(MeOPrPP)2PF6 (8) in CDCl3. Note this

spectrum is for the PF6- salt. The PF6

- resonance is at approximately -125 ppm.

Figure S7. 31P{1H} NMR spectrum of Cu(MPPE)2OTf (9) in CDCl3.

6

Page 7: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S8. 31P{1H} NMR spectrum of Cu(MPPP)2OTf (10) in CDCl3.

Figure S9. 31P{1H} NMR spectrum of 11 in CDCl3.

7

Page 8: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S10. 31P{1H} NMR spectrum of 12 in CDCl3.

8

Page 9: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S11. 31P{1H} NMR spectrum of 14 in CDCl3.

Figure S12. 31P{1H} NMR spectrum of 15 in CDCl3.

Figure S13. 31P{1H} NMR spectrum of 16 in CDCl3.

9

Page 10: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S14. 31P{1H} NMR spectrum of 15 from 11.

Figure S15. 31P{1H} NMR spectrum of 17.

10

Page 11: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S16. 31P{1H} NMR spectrum of 18 in CDCl3.

Figure S17. 31P{1H} NMR spectrum of 19 in CDCl3.

11

Page 12: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S18. 31P{1H} NMR spectrum of 20.

Figure S19. 31P NMR spectrum of 21 in CDCl3.

12

Page 13: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S20. 31P{1H} NMR spectrum of 22.

Figure S21. 31P{1H} NMR spectrum of 23.

13

Page 14: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S22. 31P{1H} NMR spectrum of Co(23)Cl2.

Figure S23. 1H NMR spectrum of 3.

14

Page 15: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S24. 1H NMR spectrum of 4 in CDCl3.

Figure S25. 1H NMR spectrum of 20.

15

Page 16: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S26. 1H NMR spectrum of 21 in CDCl3.

Figure S27. 1H NMR spectrum of 22.

16

Page 17: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S28. 1H NMR spectrum of 11 vs. 21 in CDCl3.

Figure S29. 1H NMR spectrum of Co(21)Cl2 for Evans’ method.

17

Page 18: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S30. 1H NMR spectrum of 23.

Figure S31. ESI-MS of Cu(MeOPrPE)2PF6 (7).

18

Page 19: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S32. ESI-MS of Cu(MeOPrPP)2OTf (8).

Figure S33. ESI-MS of Cu(MPPE)2PF6 (9).

19

Page 20: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

dec10-CuMPPP2 #1 RT: 0.02 AV: 1 NL: 2.30E9T: + c ESI Full m s [ 195.00-2000.00]

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500m /z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e Ab

unda

nce

583.02

673.76624.96 931.57 1281.92474.74 1407.761235.32723.70 764.72411.95 1024.39856.67 1499.401087.36517.47

dec10-CuMPPP2 #1 RT: 0.02 AV: 1 NL: 2.30E9T: + c ESI Full m s [ 195.00-2000.00]

545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630m /z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e Ab

unda

nce

583.02

585.03

585.98

581.12586.99 624.96600.95579.14 627.97593.91 615.81554.52

Figure S34. ESI-MS of Cu(MPPP)2OTf (10).

decem ber3-CuP4OTf #1 RT: 0.01 AV: 1 NL: 3.07E9T: + c ESI Full m s [ 150.00-2000.00]

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000m /z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e A

bund

ance

623.34

515.37639.23

549.37473.34

1396.571243.13720.89321.26 365.26 1136.66773.27 1437.851022.22838.52 1494.64901.82257.44 1750.041610.01 1906.37 1988.28

bn-02-149-CuP4OTf #1 RT: 0.00 AV: 1 NL: 1.08E7T: + c ESI Full m s [ 150.00-2000.00]

616 618 620 622 624 626 628 630 632 634 636 638 640 642 644 646 648m /z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

Rel

ativ

e Ab

unda

nce

623.28

625.27

624.37

626.18

639.17641.22

627.21642.11

647.31628.15 644.89622.31 631.28617.17

Figure S35. ESI-MS of Cu(4)OTf (11).

20

Page 21: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S36. ESI mass spectrum of 12.

Figure S37. ESI mass spectrum of 13.

21

Page 22: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S38. ESI mass spectrum of 15.

Figure S39. ESI mass spectrum of 16.

22

Page 23: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S40. ESI mass spectrum of 17.

Figure S41. ESI mass spectrum of 15.

23

Page 24: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

bn-02-CuP4OTf-DBB-fullcent #1 RT: 0.01 AV: 1 NL: 6.80E8T: + c ESI Full m s [ 225.00-1500.00]

300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500m /z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e Ab

unda

nce

677.83

693.55

1363.221165.36

1289.23829.42721.56 1125.26 1193.25 1386.94 1470.991015.30655.39571.46531.53407.59321.53 915.42259.52

bn-02-CuP4OTf-DBB-fullcent #1 RT: 0.01 AV: 1 NL: 6.80E8T: + c ESI Full m s [ 225.00-1500.00]

676 678 680 682 684 686 688 690 692 694 696 698 700m /z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rel

ativ

e Ab

unda

nce

677.83

679.79

678.81

681.05

693.55

695.59694.66

682.83 696.77683.94

684.98 686.53 698.57691.59688.78 699.87675.36 690.27

Figure S42. ESI-MS of 18.

Figure S43. ESI-MS of 19.

24

Page 25: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S44. ESI-MS of [Co(21)]Cl2.

Figure S45. ESI-MS of [Fe(21)(CH3CN)2](BPh4)2.

25

Page 26: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S46. ESI mass spectrum of [Fe(21)(CH3CN)2](OTf)2. The peak at m/z 819 is

Fe(21)OTf]+ and the peak at 335 is [Fe(21)]2+.

Figure S47. FAB mass spectrum of 23.

26

Page 27: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S48. Hi-Res FAB-MS of 23.

Figure S49. ESI mass spectrum of Co(23)Cl2.

27

Page 28: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S50. UV-Vis spectrum of Co(21)Cl2 in dichloromethane.

Figure S51. UV-Vis spectrum of Co(23)Cl2 in dichloromethane.

28

Page 29: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S52. Infrared spectrum (ATR method) of Cu(4)OTf, 11.

Figure S53. Infrared spectrum (ATR method) of [Fe(21)(CH3CN)2](OTf)2.

29

Page 30: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S54. Infrared spectrum (ATR method) of [Fe(21)(CH3CN)2](OTf)2 prepared in an Ar-filled glovebox.

Figure S55. Infrared spectrum (ATR method) of [Fe(21)(CH3CN)2](OTf)2 prepared in an Ar-filled glovebox, redissolved and and bubbled with N2.

30

Page 31: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S56. Overlay of [Fe(21)(CH3CN)2](OTf)2 prepared in an argon-filled glovebox vs. the same complex prepared in a nitrogen-filled glovebox.

Figure S57. Overlay of [Fe(21)(CH3CN)2](OTf)2 prepared in an argon-filled glovebox vs. the same complex prepared in a nitrogen-filled glovebox (y-axis is absorbance).

31

Page 32: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S58. 31P{1H} NMR spectrum of isopropyl allyl(phenyl)phosphinate in CDCl3.

Figure S59. 1H NMR spectrum of isopropyl allyl(phenyl)phosphinate in CDCl3.

32

Page 33: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Figure S60. 13C NMR spectrum of isopropyl allyl(phenyl)phosphinate in CDCl3.

33

Page 34: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Table S2. Crystal data and structure refinement for 15.

C37H44CuF3O3P4S, M = 813.20, 0.21 x 0.12 x 0.06 mm, T = 150 K, Tetragonal, space group I-4, a = 13.207(4) Å, b = 13.207(4) Å, c = 10.681(4) Å, V = 1862.9(14) Å3, Z = 2, Dc = 1.450 Mg/m3, μ(Mo) = 0.865 mm-1, F(000) = 844, 2θmax = 50.0°, 3231 reflections, 1536 independent reflections [Rint = 0.0696], R1 = 0.0822, wR2 = 0.2187 and GOF = 1.081 for 1536 reflections (94 parameters) with I>2(I), R1 = 0.1026, wR2 = 0.2337 and GOF = 1.081 for all reflections, max/min residual electron density +2.147/-0.489 eÅ-3.

34

Page 35: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Table S3. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103)

for mo_dtr26_0m_a. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

________________________________________________________________________________

x y z U(eq)

________________________________________________________________________________

Cu(1) 10000 10000 5000 38(1)

P(1) 8571(2) 9590(2) 4019(3) 38(1)

C(1) 8399(6) 8230(7) 3766(10) 46(3)

C(2) 8800(7) 7563(6) 4842(13) 52(3)

C(3) 9991(6) 7516(6) 5004(13) 46(2)

C(4) 8168(6) 10086(6) 2495(12) 48(3)

C(5) 7234(7) 9832(6) 2005(11) 46(3)

C(6) 6950(9) 10216(8) 874(14) 66(3)

C(7) 7570(8) 10877(8) 227(13) 58(3)

C(8) 8476(9) 11157(9) 698(12) 62(3)

C(9) 8794(7) 10772(6) 1874(11) 48(3)

O(1S) 10000 10000 690(30) 500(90)

________________________________________________________________________________

35

Page 36: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Table S4. Bond lengths [Å] and angles [°] for mo_dtr26_0m_a.

_____________________________________________________

Cu(1)-P(1) 2.225(2)

Cu(1)-P(1)#1 2.225(2)

Cu(1)-P(1)#2 2.225(2)

Cu(1)-P(1)#3 2.225(2)

P(1)-C(3)#2 1.827(10)

P(1)-C(1) 1.831(9)

P(1)-C(4) 1.834(12)

C(1)-C(2) 1.542(15)

C(1)-H(1A) 0.9900

C(1)-H(1B) 0.9900

C(2)-C(3) 1.584(13)

C(2)-H(2A) 0.9900

C(2)-H(2B) 0.9900

C(3)-P(1)#3 1.827(10)

C(3)-H(3A) 0.9900

C(3)-H(3B) 0.9900

C(4)-C(9) 1.394(13)

C(4)-C(5) 1.382(13)

C(5)-C(6) 1.363(16)

C(5)-H(5A) 0.9500

C(6)-C(7) 1.382(17)

C(6)-H(6A) 0.9500

C(7)-C(8) 1.349(17)

C(7)-H(7A) 0.9500

C(8)-C(9) 1.418(18)

C(8)-H(8A) 0.9500

C(9)-H(9A) 0.9500

O(1S)-O(1S)#4 1.48(7)

P(1)-Cu(1)-P(1)#1 123.82(14)

P(1)-Cu(1)-P(1)#2 102.81(6)

P(1)#1-Cu(1)-P(1)#2 102.81(6)

P(1)-Cu(1)-P(1)#3 102.81(6)

P(1)#1-Cu(1)-P(1)#3 102.81(6)

36

Page 37: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

P(1)#2-Cu(1)-P(1)#3 123.82(14)

C(3)#2-P(1)-C(1) 106.7(4)

C(3)#2-P(1)-C(4) 100.2(5)

C(1)-P(1)-C(4) 100.6(5)

C(3)#2-P(1)-Cu(1) 107.7(4)

C(1)-P(1)-Cu(1) 114.4(3)

C(4)-P(1)-Cu(1) 125.3(3)

C(2)-C(1)-P(1) 114.1(7)

C(2)-C(1)-H(1A) 108.7

P(1)-C(1)-H(1A) 108.8

C(2)-C(1)-H(1B) 108.7

P(1)-C(1)-H(1B) 108.7

H(1A)-C(1)-H(1B) 107.6

C(1)-C(2)-C(3) 116.4(9)

C(1)-C(2)-H(2A) 108.2

C(3)-C(2)-H(2A) 108.2

C(1)-C(2)-H(2B) 108.1

C(3)-C(2)-H(2B) 108.3

H(2A)-C(2)-H(2B) 107.3

C(2)-C(3)-P(1)#3 109.5(6)

C(2)-C(3)-H(3A) 109.9

P(1)#3-C(3)-H(3A) 109.8

C(2)-C(3)-H(3B) 109.8

P(1)#3-C(3)-H(3B) 109.7

H(3A)-C(3)-H(3B) 108.2

C(9)-C(4)-C(5) 120.5(11)

C(9)-C(4)-P(1) 118.8(8)

C(5)-C(4)-P(1) 120.6(8)

C(6)-C(5)-C(4) 119.4(10)

C(6)-C(5)-H(5A) 120.3

C(4)-C(5)-H(5A) 120.4

C(5)-C(6)-C(7) 121.1(11)

C(5)-C(6)-H(6A) 119.5

C(7)-C(6)-H(6A) 119.4

C(8)-C(7)-C(6) 120.8(12)

C(8)-C(7)-H(7A) 119.6

37

Page 38: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

C(6)-C(7)-H(7A) 119.6

C(7)-C(8)-C(9) 119.7(11)

C(7)-C(8)-H(8A) 120.2

C(9)-C(8)-H(8A) 120.1

C(4)-C(9)-C(8) 118.6(10)

C(4)-C(9)-H(9A) 120.7

C(8)-C(9)-H(9A) 120.7

_____________________________________________________________

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+2,z #2 y,-x+2,-z+1 #3 -y+2,x,-z+1

#4 y,-x+2,-z

38

Page 39: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Table S5. Anisotropic displacement parameters (Å2x 103)for mo_dtr26_0m_a. The anisotropic

displacement factor exponent takes the form: -22[ h2a*2U11 + ... + 2 h k a* b* U12 ]

______________________________________________________________________________

U11 U22 U33 U23 U13 U12

______________________________________________________________________________

Cu(1) 25(1) 25(1) 63(2) 0 0 0

P(1) 28(1) 29(1) 58(2) 2(1) 0(1) -5(1)

C(1) 29(4) 37(5) 71(8) -3(4) 2(5) 0(3)

C(2) 47(5) 38(4) 72(8) 3(5) -1(6) -6(3)

C(3) 44(4) 31(4) 64(6) 0(6) 6(6) 9(3)

C(4) 26(4) 32(5) 84(8) -8(5) 2(5) 3(3)

C(5) 40(5) 25(4) 73(8) 7(4) 0(5) -2(3)

C(6) 66(7) 43(6) 88(9) -9(6) -9(7) -6(5)

C(7) 57(6) 58(6) 60(8) 8(6) 3(6) 15(4)

C(8) 71(8) 53(6) 61(8) -2(6) 9(6) 12(6)

C(9) 40(5) 27(4) 75(8) 2(5) 6(5) -3(3)

O(1S) 900(200) 550(110) 25(19) 0 0 -400(140)

______________________________________________________________________________

39

Page 40: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Table S6. Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103)

for mo_dtr26_0m_a.

________________________________________________________________________________

x y z U(eq)

________________________________________________________________________________

H(1A) 7668 8092 3651 55

H(1B) 8749 8036 2983 55

H(2A) 8548 6864 4711 63

H(2B) 8503 7812 5636 63

H(3A) 10321 7555 4174 56

H(3B) 10185 6867 5400 56

H(5A) 6793 9392 2452 55

H(6A) 6316 10027 525 79

H(7A) 7356 11138 -558 70

H(8A) 8898 11609 244 74

H(9A) 9420 10977 2230 57

________________________________________________________________________________

40

Page 41: Synthesis Of Tetraphosphine Macrocycles Using Copper(I) Templates Aditya Nathan… · 2016-04-15 · Aditya Nathan, and David R. Tyler* Department of Chemistry and Biochemistry, University

Table S7. Torsion angles [°] for mo_dtr26_0m_a.

________________________________________________________________

P(1)#1-Cu(1)-P(1)-C(3)#2 -148.2(3)

P(1)#2-Cu(1)-P(1)-C(3)#2 -33.0(3)

P(1)#3-Cu(1)-P(1)-C(3)#2 96.6(3)

P(1)#1-Cu(1)-P(1)-C(1) 93.4(4)

P(1)#2-Cu(1)-P(1)-C(1) -151.4(4)

P(1)#3-Cu(1)-P(1)-C(1) -21.9(4)

P(1)#1-Cu(1)-P(1)-C(4) -31.2(4)

P(1)#2-Cu(1)-P(1)-C(4) 84.0(4)

P(1)#3-Cu(1)-P(1)-C(4) -146.5(4)

C(3)#2-P(1)-C(1)-C(2) -82.9(8)

C(4)-P(1)-C(1)-C(2) 173.0(7)

Cu(1)-P(1)-C(1)-C(2) 36.1(8)

P(1)-C(1)-C(2)-C(3) -69.8(11)

C(1)-C(2)-C(3)-P(1)#3 86.3(11)

C(3)#2-P(1)-C(4)-C(9) 120.9(8)

C(1)-P(1)-C(4)-C(9) -129.9(8)

Cu(1)-P(1)-C(4)-C(9) 0.4(9)

C(3)#2-P(1)-C(4)-C(5) -55.4(8)

C(1)-P(1)-C(4)-C(5) 53.9(8)

Cu(1)-P(1)-C(4)-C(5) -175.8(6)

C(9)-C(4)-C(5)-C(6) 3.4(14)

P(1)-C(4)-C(5)-C(6) 179.6(8)

C(4)-C(5)-C(6)-C(7) -1.7(15)

C(5)-C(6)-C(7)-C(8) 0.2(17)

C(6)-C(7)-C(8)-C(9) -0.3(17)

C(5)-C(4)-C(9)-C(8) -3.4(14)

P(1)-C(4)-C(9)-C(8) -179.7(7)

C(7)-C(8)-C(9)-C(4) 1.9(15)

________________________________________________________________

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+2,z #2 y,-x+2,-z+1 #3 -y+2,x,-z+1

#4 y,-x+2,-z

41