synthetic population dynamicsjasss.soc.surrey.ac.uk/16/1/8/8.pdfnicholas geard, james m mccaw, alan...

12
©Copyright JASSS Nicholas Geard, James M McCaw, Alan Dorin, Kevin B Korb and Jodie McVernon (2013) Synthetic Population Dynamics: A Model of Household Demography Journal of Artificial Societies and Social Simulation 16 (1) 8 <http://jasss.soc.surrey.ac.uk/16/1/8.html> Received: 05-Jun-2012 Accepted: 03-Oct-2012 Published: 31-Jan-2013 Abstract Computer-simulated synthetic populations are used by researchers and policy makers to help understand and predict the aggregate behaviour of large numbers of individuals. Research aims include explaining the structural and dynamic characteristics of populations, and the implications of these characteristics for dynamic processes such as the spread of disease, opinions and social norms. Policy makers planning for the future economic, healthcare or infrastructure needs of a population want to be able to evaluate the possible effects of their policies. In both cases, it is desirable that the structure and dynamic behaviour of synthetic populations be statistically congruent to that of real populations. Here, we present a parsimonious individual-based model for generating synthetic population dynamics that focuses on the effects that demographic change have on the structure and composition of households. Keywords: Demography, Synthetic Populations, Household Dynamics, Individual-Based Models Introduction 1.1 The structure and dynamics of a population are the outcome of many events occurring to its individual members. Understanding and predicting trends in population structure and dynamics is challenging, but has the potential to be of great utility to researchers, planners and policy makers. Synthetic populations can be used as a testbed for a variety of purposes, from simulating disease outbreaks and interventions (Ajelli & Merler 2009), to evaluating the impact of land-use and transport policies (Iacono et al. 2008; Spielauer 2010). To conduct corresponding experiments in real populations may be costly, unethical or otherwise infeasible. 1.2 The key requirement for a useful synthetic population model is that it generates populations whose structure and dynamics match those of real populations (Gargiulo et al. 2010). It might seem that the method used to synthesise a model population should be relatively independent of the purpose to which that population is subsequently put. However, no model is a perfect simulacrum of reality and a model's intended purpose will influence decisions made in its design and construction. Pragmatics dictate that, for any question, an appropriate model must focus on accurately representing those aspects of a population most relevant to that question, while perhaps tolerating some deviation in those aspects judged less relevant (Taper et al. 2008). As such, an essential step in model building is the specification of which dimensions of a population are of greatest importance, and validation of model behaviour against these dimensions. 1.3 In this paper, we propose a parsimonious individual-based model of household composition and dynamics, developed for the purpose of exploring interaction between demographic processes and patterns of infection and immunity. To begin, we describe the specific questions that have motivated the development of our model, and the requirements that these questions impose. We review how these questions have been explored in a variety of different modelling paradigms. We then describe our own model, together with three case studies that demonstrate its ability to generate populations under a range of demographic scenarios relevant to infectious disease. We conclude by discussing the strengths and limitations of our model and its potential directions for its future development. Background Motivation 2.1 This section outlines the questions motivating the development of our model, and the requirements that these questions impose on the design of our model. The primary goal of infectious disease modelling is to understand how diseases spread and how they can be controlled, an endeavour in which modelling has long played an important role (Anderson & May 1991). A key component of infectious disease models is the representation of the population through which a disease spreads. The age structure of a population can influence patterns of susceptibility to disease (Anderson & May 1991). The social structure of a population gives rise to contact networks that affect how infection is transmitted through a population (Danon et al. 2011). Understanding the demographic processes that underlie observed populations, and how they might shape future populations, can help us explain current patterns of disease and predict how these patterns will evolve over time, insights that will aid in the design more effective strategies for disease control (John 1990). 2.2 The assumptions and approximations made when designing a model constrain the type of questions it can be used to address. One common assumption made by infectious disease models is that the composition and structure of a population is static over time. For disease outbreaks that occur over a period of weeks or months, this assumption may be appropriate, as population structure typically changes much more slowly than disease state. However, when modelling endemic diseases that may persist in a population for years or decades, this assumption becomes less appropriate, as demographic processes such as birth, death and the formation and dissolution of households will have a significant effect on population structure and composition. Households are an organisational unit of particular importance as they are a key locus of disease transmission, particularly for young infants (Jardine et al. 2010). Households are also a target for disease control strategies such as cocoon vaccination, which aims to provide a protective environment for newborns by vaccinating their parents (Coudeville et al. 2008). 2.3 In addition to the dynamics arising from individual life events, the underlying structure of global populations has undergone dramatic changes over recent centuries. The demographic transition model has been proposed to describe the long term changes to population structure associated with industrialisation, improvements in public health, education, and agriculture, and changing social values (Kirk 1996; Murphy 2011). As an example, during the twentieth century, increasing life expectancy and lower fertility rates in Australia have increased the proportion of people aged over 65 from 4% to 14% of the population, while the proportion of people aged under 15 decreased from 35% to 19%; the size of the average household has decreased from 4.5 to 2.6 people over the same period (Hayes et al. 2010; Australian Bureau of Statistics 2006b). The effects of this type of population change on patterns of disease are not yet well understood. 2.4 The questions that we would like to use models to address concern the effect of demographic changes on observed patterns of infection and immunity. What effect do shrinking household sizes have for the patterns of interaction relevant to the spread of childhood diseases? How can we assess the long-term effectiveness of vaccination strategies in a changing population? What are the implications of the rapid demographic transitions currently occurring in developing countries? A population model capable of addressing such questions must therefore capture: realistic patterns of household composition, in particular the household context of infants; the dynamic characteristics of households arising from patterns of birth, death, and household formation and dissolution; the differences in household dynamics across different demographic scenarios, corresponding to developed and developing countries; and the changes that occur to household dynamics over extended periods of time under changing demographic conditions. 2.5 This paper describes the design and validation of a synthetic population model aimed at satisfying these requirements. In the remainder of this section we briefly review how population structure, households and demography have been incorporated into existing infectious disease models. Previous approaches 2.6 Methods for generating synthetic populations based on empirical data have been developed in parallel in the fields of demography, geography and social science. Despite some recent convergence, there is no single general purpose approach (Mannion et al. 2012; Birkin & Clarke 2011). There are several recent and comprehensive overviews of various methods for population projection and modelling (e.g., Stillwell & Clarke 2011; Wilson 2011; Spielauer 2010). Rather than attempting to replicate these efforts in this section, we focus specifically on approaches taken to representing populations in infectious disease models. Mathematical models 2.7 Mathematical models of infectious disease represent populations in terms of the prevalence of infection and immunity at a given point in time. A population is divided into 'compartments' corresponding to particular disease states (e.g., susceptible, infectious, recovered). The movement of individuals between these compartments is modelled by specifying transition rates between them. The entire system can then be represented as a set of ordinary differential equations and solved (analytically or numerically) to predict future patterns of disease (Hethcote 2000; Grassly & Fraser 2008). 2.8 Demography can be included in mathematical models by further subdividing compartments according to age or sex, and by introducing additional terms for the birth and death of individuals (Anderson & May 1991). Mathematical models that incorporate household structure have also been proposed, adopting theoretical or empirical distributions for household size (e.g., Ball et al. 1997; Ball & Neal 2002; Becker et al. 2005); however, these models typically assume static populations. Glass et al. (2011) do propose a dynamic household model, however the distribution of household sizes is held fixed and the model does not include age http://jasss.soc.surrey.ac.uk/16/1/8.html 1 14/10/2015

Upload: others

Post on 08-Nov-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Synthetic Population Dynamicsjasss.soc.surrey.ac.uk/16/1/8/8.pdfNicholas Geard, James M McCaw, Alan Dorin, Kevin B Korb and Jodie McVernon (2013) Synthetic Population Dynamics: A Model

©CopyrightJASSS

NicholasGeard,JamesMMcCaw,AlanDorin,KevinBKorbandJodieMcVernon(2013)

SyntheticPopulationDynamics:AModelofHouseholdDemography

JournalofArtificialSocietiesandSocialSimulation 16(1)8<http://jasss.soc.surrey.ac.uk/16/1/8.html>

Received:05-Jun-2012Accepted:03-Oct-2012Published:31-Jan-2013

Abstract

Computer-simulatedsyntheticpopulationsareusedbyresearchersandpolicymakerstohelpunderstandandpredicttheaggregatebehaviouroflargenumbersofindividuals.Researchaimsincludeexplainingthestructuralanddynamiccharacteristicsofpopulations,andtheimplicationsofthesecharacteristicsfordynamicprocessessuchasthespreadofdisease,opinionsandsocialnorms.Policymakersplanningforthefutureeconomic,healthcareorinfrastructureneedsofapopulationwanttobeabletoevaluatethepossibleeffectsoftheirpolicies.Inbothcases,itisdesirablethatthestructureanddynamicbehaviourofsyntheticpopulationsbestatisticallycongruenttothatofrealpopulations.Here,wepresentaparsimoniousindividual-basedmodelforgeneratingsyntheticpopulationdynamicsthatfocusesontheeffectsthatdemographicchangehaveonthestructureandcompositionofhouseholds.

Keywords:Demography,SyntheticPopulations,HouseholdDynamics,Individual-BasedModels

Introduction

1.1 Thestructureanddynamicsofapopulationaretheoutcomeofmanyeventsoccurringtoitsindividualmembers.Understandingandpredictingtrendsinpopulationstructureanddynamicsischallenging,buthasthepotentialtobeofgreatutilitytoresearchers,plannersandpolicymakers.Syntheticpopulationscanbeusedasatestbedforavarietyofpurposes,fromsimulatingdiseaseoutbreaksandinterventions(Ajelli&Merler2009),toevaluatingtheimpactofland-useandtransportpolicies(Iaconoetal.2008;Spielauer2010).Toconductcorrespondingexperimentsinrealpopulationsmaybecostly,unethicalorotherwiseinfeasible.

1.2 Thekeyrequirementforausefulsyntheticpopulationmodelisthatitgeneratespopulationswhosestructureanddynamicsmatchthoseofrealpopulations(Gargiuloetal.2010).Itmightseemthatthemethodusedtosynthesiseamodelpopulationshouldberelativelyindependentofthepurposetowhichthatpopulationissubsequentlyput.However,nomodelisaperfectsimulacrumofrealityandamodel'sintendedpurposewillinfluencedecisionsmadeinitsdesignandconstruction.Pragmaticsdictatethat,foranyquestion,anappropriatemodelmustfocusonaccuratelyrepresentingthoseaspectsofapopulationmostrelevanttothatquestion,whileperhapstoleratingsomedeviationinthoseaspectsjudgedlessrelevant(Taperetal.2008).Assuch,anessentialstepinmodelbuildingisthespecificationofwhichdimensionsofapopulationareofgreatestimportance,andvalidationofmodelbehaviouragainstthesedimensions.

1.3 Inthispaper,weproposeaparsimoniousindividual-basedmodelofhouseholdcompositionanddynamics,developedforthepurposeofexploringinteractionbetweendemographicprocessesandpatternsofinfectionandimmunity.Tobegin,wedescribethespecificquestionsthathavemotivatedthedevelopmentofourmodel,andtherequirementsthatthesequestionsimpose.Wereviewhowthesequestionshavebeenexploredinavarietyofdifferentmodellingparadigms.Wethendescribeourownmodel,togetherwiththreecasestudiesthatdemonstrateitsabilitytogeneratepopulationsunderarangeofdemographicscenariosrelevanttoinfectiousdisease.Weconcludebydiscussingthestrengthsandlimitationsofourmodelanditspotentialdirectionsforitsfuturedevelopment.

Background

Motivation

2.1 Thissectionoutlinesthequestionsmotivatingthedevelopmentofourmodel,andtherequirementsthatthesequestionsimposeonthedesignofourmodel.Theprimarygoalofinfectiousdiseasemodellingistounderstandhowdiseasesspreadandhowtheycanbecontrolled,anendeavourinwhichmodellinghaslongplayedanimportantrole(Anderson&May1991).Akeycomponentofinfectiousdiseasemodelsistherepresentationofthepopulationthroughwhichadiseasespreads.Theagestructureofapopulationcaninfluencepatternsofsusceptibilitytodisease(Anderson&May1991).Thesocialstructureofapopulationgivesrisetocontactnetworksthataffecthowinfectionistransmittedthroughapopulation(Danonetal.2011).Understandingthedemographicprocessesthatunderlieobservedpopulations,andhowtheymightshapefuturepopulations,canhelpusexplaincurrentpatternsofdiseaseandpredicthowthesepatternswillevolveovertime,insightsthatwillaidinthedesignmoreeffectivestrategiesfordiseasecontrol(John1990).

2.2 Theassumptionsandapproximationsmadewhendesigningamodelconstrainthetypeofquestionsitcanbeusedtoaddress.Onecommonassumptionmadebyinfectiousdiseasemodelsisthatthecompositionandstructureofapopulationisstaticovertime.Fordiseaseoutbreaksthatoccuroveraperiodofweeksormonths,thisassumptionmaybeappropriate,aspopulationstructuretypicallychangesmuchmoreslowlythandiseasestate.However,whenmodellingendemicdiseasesthatmaypersistinapopulationforyearsordecades,thisassumptionbecomeslessappropriate,asdemographicprocessessuchasbirth,deathandtheformationanddissolutionofhouseholdswillhaveasignificanteffectonpopulationstructureandcomposition.Householdsareanorganisationalunitofparticularimportanceastheyareakeylocusofdiseasetransmission,particularlyforyounginfants(Jardineetal.2010).Householdsarealsoatargetfordiseasecontrolstrategiessuchascocoonvaccination,whichaimstoprovideaprotectiveenvironmentfornewbornsbyvaccinatingtheirparents(Coudevilleetal.2008).

2.3 Inadditiontothedynamicsarisingfromindividuallifeevents,theunderlyingstructureofglobalpopulationshasundergonedramaticchangesoverrecentcenturies.Thedemographictransitionmodelhasbeenproposedtodescribethelongtermchangestopopulationstructureassociatedwithindustrialisation,improvementsinpublichealth,education,andagriculture,andchangingsocialvalues(Kirk1996;Murphy2011).Asanexample,duringthetwentiethcentury,increasinglifeexpectancyandlowerfertilityratesinAustraliahaveincreasedtheproportionofpeopleagedover65from4%to14%ofthepopulation,whiletheproportionofpeopleagedunder15decreasedfrom35%to19%;thesizeoftheaveragehouseholdhasdecreasedfrom4.5to2.6peopleoverthesameperiod(Hayesetal.2010;AustralianBureauofStatistics2006b).Theeffectsofthistypeofpopulationchangeonpatternsofdiseasearenotyetwellunderstood.

2.4 Thequestionsthatwewouldliketousemodelstoaddressconcerntheeffectofdemographicchangesonobservedpatternsofinfectionandimmunity.Whateffectdoshrinkinghouseholdsizeshaveforthepatternsofinteractionrelevanttothespreadofchildhooddiseases?Howcanweassessthelong-termeffectivenessofvaccinationstrategiesinachangingpopulation?Whataretheimplicationsoftherapiddemographictransitionscurrentlyoccurringindevelopingcountries?Apopulationmodelcapableofaddressingsuchquestionsmustthereforecapture:

realisticpatternsofhouseholdcomposition,inparticularthehouseholdcontextofinfants;

thedynamiccharacteristicsofhouseholdsarisingfrompatternsofbirth,death,andhouseholdformationanddissolution;

thedifferencesinhouseholddynamicsacrossdifferentdemographicscenarios,correspondingtodevelopedanddevelopingcountries;and

thechangesthatoccurtohouseholddynamicsoverextendedperiodsoftimeunderchangingdemographicconditions.

2.5 Thispaperdescribesthedesignandvalidationofasyntheticpopulationmodelaimedatsatisfyingtheserequirements.Intheremainderofthissectionwebrieflyreviewhowpopulationstructure,householdsanddemographyhavebeenincorporatedintoexistinginfectiousdiseasemodels.

Previousapproaches

2.6 Methodsforgeneratingsyntheticpopulationsbasedonempiricaldatahavebeendevelopedinparallelinthefieldsofdemography,geographyandsocialscience.Despitesomerecentconvergence,thereisnosinglegeneralpurposeapproach(Mannionetal.2012;Birkin&Clarke2011).Thereareseveralrecentandcomprehensiveoverviewsofvariousmethodsforpopulationprojectionandmodelling(e.g.,Stillwell&Clarke2011;Wilson2011;Spielauer2010).Ratherthanattemptingtoreplicatetheseeffortsinthissection,wefocusspecificallyonapproachestakentorepresentingpopulationsininfectiousdiseasemodels.

Mathematicalmodels

2.7 Mathematicalmodelsofinfectiousdiseaserepresentpopulationsintermsoftheprevalenceofinfectionandimmunityatagivenpointintime.Apopulationisdividedinto'compartments'correspondingtoparticulardiseasestates(e.g.,susceptible,infectious,recovered).Themovementofindividualsbetweenthesecompartmentsismodelledbyspecifyingtransitionratesbetweenthem.Theentiresystemcanthenberepresentedasasetofordinarydifferentialequationsandsolved(analyticallyornumerically)topredictfuturepatternsofdisease(Hethcote2000;Grassly&Fraser2008).

2.8 Demographycanbeincludedinmathematicalmodelsbyfurthersubdividingcompartmentsaccordingtoageorsex,andbyintroducingadditionaltermsforthebirthanddeathofindividuals(Anderson&May1991).Mathematicalmodelsthatincorporatehouseholdstructurehavealsobeenproposed,adoptingtheoreticalorempiricaldistributionsforhouseholdsize(e.g.,Balletal.1997;Ball&Neal2002;Beckeretal.2005);however,thesemodelstypicallyassumestaticpopulations.Glassetal.(2011)doproposeadynamichouseholdmodel,howeverthedistributionofhouseholdsizesisheldfixedandthemodeldoesnotincludeage

http://jasss.soc.surrey.ac.uk/16/1/8.html 1 14/10/2015

Page 2: Synthetic Population Dynamicsjasss.soc.surrey.ac.uk/16/1/8/8.pdfNicholas Geard, James M McCaw, Alan Dorin, Kevin B Korb and Jodie McVernon (2013) Synthetic Population Dynamics: A Model

structure.Thesetrade-offsillustrateafundamentallimitationofmathematicalapproachestocapturingcomplexpopulationstructure.Theexplosionoftermsthatresultsfromsimultaneouslyincorporatingage,householdproperties,diseasestate,andotherfactorsofinterestresultsinmodelsthatareanalyticallyintractable.

Individual-basedmodels

2.9 Toovercomethelimitationsofmathematicalmodels,individual-basedmodels(IBMs)1havealsobeenappliedtotheproblemofunderstandingthedynamicsofinfectiousdisease.Byexplicitlymodelingeachindividual,togetherwiththeirage,location,diseasestatusandotherrelevantproperties,IBMsofferagreatdealofflexibilityinrepresentingheterogeneouspopulationstructures(Eubanketal.2004;Elvebacketal.1976;Fergusonetal.2005;Longinietal.2005).Mostofthesemodelshavebeenaimedatcapturingthedynamicsofasingleoutbreak.Hence,theirprimaryfocushasbeenonthedynamicsofindividualactivityoverthecourseofatypicalday,theresultingcontactnetworks,andthepatternsofdiseasetransmissionthatthesenetworkssupport.Thecompositionandstructureofthepopulationsthemselvesareusuallystatic.Comparedtotheproliferationofstaticpopulationmodels,fewerIBMshaveconsideredtherelationshipbetweenthelongtermdynamicsofpopulationstructureandthespreadofinfectiousdisease.

2.10 Thosemodelsthathaveconsideredlongertimeframeshaveadoptedheuristicapproachestocapturinghouseholdstructure.Ajelli&Merler(2009)andGuzzettaetal.(2011)investigatelongtermpatternsofhepatitisAandtuberculosisrespectively,usingsimulatedpopulationsthatincludebirth,deathandhouseholdformationprocesses.TheygenerateinitialhouseholddistributionsfromItaliancensusandsurveydatausingaMonteCarlosamplingmethod.Populationdemographicsareupdatedannually,usingempiricalmortalityratestodetermineindividualdeaths,andallocatingbirthsaccordingtohouseholdsizeandparentalage.Silhol&Boëlle(2011)modeltheoccurrenceofvaricellausingapopulationmodelthatincludesrealisticageandhouseholdstructureanddynamics.Theirapproachtoproducinganappropriatedistributionofhouseholdsizesistogenerateeachhouseholdasacompletedunitincludingallchildrenthatwilleventuallybebornthere.Thisfinalhouseholdisthen'rewound',resultingintheagesofyoungerchildrenbecomingnegative,andbirthsoccuroverthecourseofasimulationwhenachild'sagebecomespositive.Anadvantageofthisapproachisthathouseholdstructureisguaranteedtoaccuratelyreflectthatoftherealpopulation;however,itdoesnotgeneraliseinstraightforwardfashionbeyondavailabledata.

2.11 WhilewehavedrawnuponaspectsofthesepreviousmodelsinthedesignofthemodeldescribedinSection3,wenotethattheydonotfulfilourrequirementofcapturingthechangesinhouseholddynamicsarisingfromdemographicshifts.

Microsimulationmodels

2.12 Microsimulationisanapproachtoexperimentingwithvirtualsocietiesbymodellingtheactionsofindividualsinapopulationand(potentially)theinteractionsbetweenthemthathasitsoriginsineconomics(Orcutt1957).Thesemodelsareusedtoexplorethepotentialimpactsofpolicydecisions,wherethechoicesmadebyindividualsmaydependonpoliciesinanonlinearandcontext-dependentfashion.Dynamicmicrosimulationmodelsaddinatemporalelement,incorporatingdemographicprocessesandindividuallifecourses(Mannionetal.2012;Birkin&Clarke2011;Spielauer2010).MicrosimulationmodelsandIBMssharemanysimilarities.Theirdifferencesariseprimarilyfromhavingbeendevelopedandappliedtodifferentproblemsbydifferentresearchcommunities.Broadlyspeaking,microsimulationmodelshavebeenmoreconcernedwithempiricaldataandpredictiveaccuracy,whileIBMstendtobemoretheoreticallyoriented.Whilemanymicrosimulationmodelsaredesignedforthepurposeofforecastingfuturepopulationtrendsandpolicyinteractions,theyhavealsobeenappliedtothechallengeofelucidatinghistoricaldemographicpatterns(e.g.,Hammel2005;Murphy2011).

2.13 Giventherequirementofdiseasemodelsfordemographicallyplausiblepopulations,itseemsatfirstsurprisingthat,sofarasweareaware,onlyoneinfectiousdiseasemodel(EpiSimS,Eubanketal.2004)hasexplicitlymadeuseofapre-existingmicrosimulationmodel(TRANSIMS,Barrettetal.2000),albeitonedevelopedbythesameresearchgroup.Possiblereasonsforthisinclude:availabilityofsoftware—manymicrosimulationmodelsarenotreleasedpublicly;tightcouplingbetweenmodeldesignanddatarequirements,meaningthatifthedatarequiredtoinitialiseapopulationisnotpubliclyavailable,ornotavailableinthecorrectformforthepopulationofinterest,themodelmaynotbesuitable;limitedextensibility,makingitdifficulttoextendanexistingpopulationmodeltoincludediseasedynamics;andmodeldevelopmenteffort—dynamicmicrosimulationmodelsarenotoriouslytime-consumingandexpensivetobuild(Harding2007).

Summary

2.14 Asignificantimpedimenttomodellingthedemographicdynamicsofpopulationsisthelimitedavailabilityofdatawithwhichtoparameterisemodels.Hypothetically,ifsufficientdatawereavailabletoestimateaprobabilityforeachpossibletransitionthatanindividualorhouseholdmightundergo,usingademographicmicrosimulationmodeltoprojectapopulationforwardwouldbeatrivialexercise.Inpractice,thenumberofpossibletransitionsexplodescombinatoriallywithattributesofinterest,andavailabledatawillalwaysbeinsufficientforthisapproachtobepracticable.

2.15 Attheotherextreme,anidealindividual-basedmodelmightsimulatetheunderlyingcognitiveandsocialbehaviourofindividualsinapopulation,perhapsusingsomeinternalrepresentationofindividualutilitytogetherwithaforecastingmodelthatpredictsanindividual'sbehaviouronthebasisofitshistoryandcurrentcontext.Thisapproachhasthepotentialtofreedemographicmodelsfromtherelianceonthemassivequantitiesofdatarequiredbytransition-basedmicrosimulationmodels(Silvermanetal.2011).However,muchrestsuponthemodelusedtorepresentindividualdecisionmaking.Successfulindividual-basedmodelsofdemographicprocesseshavethusfartypicallybeenconstrainedtospecificaspectsofpopulations.Forexample,Billarietal.(2007)useanIBMofmarriagebasedonsocialinteractiontoexploretheemergenceofobservedtrendsinmarriageage.Extendingsuchanapproachtoallfacetsofhumanbehaviourremainsanopenchallenge.

2.16 Recently,therehasbeenaconvergenceoftechniquesfrommicrosimulationandindividual-basedmodelling,as(some)IBMsencounteraneedformoreempiricallyplausiblepopulations,andmicrosimulationmodulesbegintoincludemorebehaviouralaspects(Wu&Birkin2012).Theresultinghybridmodelsuseavailabledemographicdatatocalibratedistributionsofindividualattributes,andstochasticbehaviouralmodelsofindividualdecisionstogenerateparticularevents.

Ourmodel

3.1 Thebasicunitofdescriptioninourmodel2istheindividual.Individualsarecharacterisedbytheirage,sexandthehouseholdtowhichtheycurrentlybelong.Apopulationconsistsofthesetofcurrentlyaliveindividuals,structuredbyanetworkofinterpersonaltiesthatmapscouple,parent–childandhouseholdco-membershiprelations.Thefollowingsectionsdescribehowapopulationisinitialised,howitisupdatedovertime,andhowitcanbeparameterisedusingavailabledataonrealpopulations.

Initialisation

3.2 Aninitial'bootstrap'populationiscreatedbyrandomlygeneratingindividualswithagesdrawnfromaspecifiedagedistribution.Theseindividualsareassignedtohouseholdsatrandomaccordingtoaspecifiedhouseholdsizedistribution.Householdsofsizeoneortwoareassignedoneortwoadultsrespectively,whilehouseholdsofsizethreeorgreaterareassignedtwoadultsandoneormorechildren.Thisinitialpopulationstructurewilldivergeinseveralwaysfromarealpopulation;forexample,constraintsonbirthintervalandinter-generationalagedifferencewillnotberespected.Ifmoredetaileddataonhouseholdstructureisavailable,morecomplexmethods(Gargiuloetal.2010;Ajelli&Merler2009)couldbeusedtospecifyamorerealisticinitialpopulationstructure.Alternatively,theapproachweadopthereistoupdatethestateofthepopulationuntilsuchtimeasallofthesebootstrapindividualsandhouseholdshavebeenreplaced(i.e.,foratleast100years),atwhichstageinternalconstraintsonpopulationstructurewillberespected.

Updating

3.3 Thestateofapopulationisupdatedindiscretetimesteps,whereeachstepcorrespondstoaspecifiednumberofdays.Allparameterscontrollingtheoccurrenceofdemographiceventsarespecifiedasannualprobabilitiesandrates,thereforethesearescaledappropriately.

3.4 Fivetypesofdemographiceventscanoccurtoanindividual:

Death:Ageandsexspecificmortalityratesareusedtodetermineanindividual'sprobabilityofdeathduringeachtimeunit(e.g.,Figure1(a)).Ifadeathresultsinahouseholdcontainingonlychildrenthenthehouseholdisdissolved.Anyadultchildren(i.e.,aged18yearsorover)leavehomeandcreatenewsingle-personhouseholds,whileanychildrenunder18yearsarerandomlyrelocated(fostered)tootherhouseholdscontainingatleastonechild.

Birth:Age(andoptionally,parity3)specificfertilityratesareusedtodeterminetheprobabilitythatabirthoccurstoagivenindividual.Asfertilityisnotanindependentprocess,ratesaretransformedintorelativeprobabilitiesusedtodesignatethesubsetofthepopulationfromwhichtheactualmotheristhenchosen(e.g.,Figure1(b)).Upongivingbirth,amotherisexcludedfrombeingacandidateforfuturebirthsforanumberofdaysdrawnfromatruncatednormaldistribution,withaminimumdurationof270days.

Coupleformation:Anindividualwithinagivenagerangewhoiscurrentlysinglehasafixedprobabilitypertimeunitofforminganewcouple.Thenewpartnerischosenfromthepoolofindividualswhoarecurrentlysingle,oftheoppositesex,andwhoseagediffersbyanormallydistributedvalue.Thenewlycoupledindividualsmoveintoanewhousehold,togetherwithanydependents(e.g.,childrenfrompreviouscouples).

Coupledissolution:Anycurrentlycoupledindividualwithinagivenagerangehasafixedprobabilitypertimeunitofdissolvingthecouple.Upondissolution,onememberofthecouplemovesintoanewsinglepersonhousehold,whiletheotherremainsintheoriginalhouseholdtogetherwithanychildren.

Leavinghome:Individualsleavehomeautomaticallywhentheyformacouple,otherwiseanyindividualaboveaspecifiedageleaveshomewithafixedprobabilitypertimeunitandformsanewsinglepersonhousehold.

3.5 Themodelcanbeusedtosimulatepopulationsoffixedsize(i.e.,withreplacementlevelfertility),orpopulationsthatareincreasingordecreasinginsize.Changeinpopulationsizecanresultfromanimbalancebetweenthenumberofbirthsanddeaths,orbetweenthenumberofimmigrantsandemigrants.Inourmodel,growthduetoexcessbirthsisimplementedbytriggeringadditionalbirtheventsateachtimestep.Growthduetoimmigrationisimplementedbyintroducingnewindividualsandhouseholdsintothepopulationaccordingtoaspecifieddistributionofageandhouseholdstructure.Specifyingtheageandfamilycompositionofmigrantsisacomplexissue,dependingasitdoesonthecircumstancesofmigration,countryoforigin,andotherfactors.Thedefaultassumptionmadebythemodelisthatthemigrantpopulationisdemographicallysimilartothetargetpopulation.Calibratingmigrationtoreflectthedemographiccharacteristicsofspecificeventswouldberelativelystraightforwardprovidedthatsuitabledatawereavailable.

Parameterisation

3.6 TheinputparametersthatmustbespecifiedtoinitialiseandupdateapopulationaresummarisedinTable1.Ageneralprinciplefollowedindesigningthemodelwastoparameterisethemodelintermsofeventsoccurringtoindividuals,andtoallowthesizesandtypesofhouseholdsinapopulationtovaryasaconsequenceoftheseindividual-levelevents.Forexample,individualbirthswereallocatedtoparentsusingage-andparity-specificfertilityrates,butnottohouseholdsofaspecificsizeorcomposition;thus,incontrasttoexistingmodels(Silhol&Boëlle2011;Ajelli&Merler2009),householdsizedistributionswerenot

http://jasss.soc.surrey.ac.uk/16/1/8.html 2 14/10/2015

Page 3: Synthetic Population Dynamicsjasss.soc.surrey.ac.uk/16/1/8/8.pdfNicholas Geard, James M McCaw, Alan Dorin, Kevin B Korb and Jodie McVernon (2013) Synthetic Population Dynamics: A Model

controlled,butratherresultfromtheinteractionbetweenpatternsofhouseholdformationanddissolutionarisingfromindividual-levelevents.Furthercalibrationagainsthousehold-leveldatawouldofcoursebepossible,butreservingavailablehousehold-leveldataforvalidationpurposesenablesustobetterevaluatetheeffectivenessofoursimpleevent-basedmodel.

Table1:Modelparameters

Parameter DescriptionGeneral: Initialpopulationsize Numberofindividualsinpopulationatstartofsimulation.Populationgrowthrate Annualrateofchangeinpopulationsizeduetonaturalincrease.Immigrationrate Annualrateofchangeinpopulationsizeduetoimmigration.Death: Age-andsex-specificmortalityprobabilities

Annualprobabilitiesofdeathbysexandyearofage.

Birth: Age-specificrelativefertilityprobabilities

Relativeprobabilities,giventhebirthofachild,thatthemotherisofaspecifiedage.

Parity-specificrelativefertilityprobabilities

(optional)Relativeprobability,giventhebirthofachild,thatitistoawomanwithaspecifiednumberofpreviouschildren.

Birthgap(meanandSD) Parametersgoverningtheminimuminter-birthinterval.Coupleformation: Coupleformationparameters Agerangethatacurrentlysingleindividualiseligibletoformacouple,andannualprobabilitythatthiswilloccur.Partneragedifference(meanandSD)

Parametersgoverningthesex-dependentagedifferencebetweenpartnersduringcoupleformation.

Coupledissolution: Coupledissolutionparameters Agerangethatacurrentlycoupledindividualiseligibledissolvethatcouple,andannualprobabilitythatthiswilloccur.Leavinghome:

Leavinghomeparameters Minimumageatwhichanindividualcurrentlylivingwithaparent/guardianwillformanewsingle-personhousehold,andannualprobabilitythatthiswilloccur.

3.7 Mortalitydataisoftenavailableintheformoflifetables,ademographictoolthatshows,foreachage,theprobabilityofanindividualofthatagedyinginthenextyear.Fertilityratesbyagearealsoavailableformostcountries.Thesefertilityratescanbeusedintwodifferentways.Oneoptionistousethemtodeterminetheprobabilitythatawomanofaparticularagewillgivebirthinagivenyear.Thenumberofbirthsthatoccurinayearwillthenemergefromtheaggregateapplicationoftheseprobabilitiesacrossthefemalepopulation.Thealternative(whichweadoptedhere)istospecifythenumberofbirthsthatoccurinayear,andthenuseage-specificfertilityratestodeterminetheagesofthewomentowhichthosebirthsoccur.Effectively,ratherthanasking“whatistheprobabilityofawomanofagexgivingbirththisyear?”,weask“giventhatabirthoccurred,whatistheprobabilitythatthemotherwasagedx?”Anadvantageofthelatterapproachwasthatitenabledustocontrolthetotalsizeofapopulation.Forexample,populationsizecouldbeheldconstantbytriggeringsufficientbirthseachyeartoreplacetheindividualsdyinginthatyear,orconstrainedtogrow(orshrink)atagivenrate.

3.8 Coupleformationanddissolution,andthedepartureofchildrenfromtheirparents'householdareallgovernedbysimplemodelsthatassumeaconstantprobabilityofaparticulareventoccurringperunitoftime.Thus,theseprobabilitiesareindependentofage,durationofrelationship,previousmaritalstatus,andotherpotentiallyrelevantfactors.Thisapproachisconsiderablysimplerthanthattakenbydynamicmicrosimulationmodels.Thesemorecomplexmodelsrelyheavilyontheavailabilityofappropriatestatisticaldatainordertoparameterisetheeffectsthatdiversefactorshaveon,forexample,marriageanddivorce.Ourprimarymotivationforadoptingthissimplerapproachwastobeabletodealwiththeavailabilityofdataacrossavarietyofdifferentcountriesandhistorictimeperiods.

3.9 Thespecificparametervalues,datasources,andestimationprocessesusedtospecifytheprobabilityofindividualeventsaredetailedatthebeginningofeachcasestudyinthefollowingsection.

Results

4.1 Asdescribedabove,theprimarymotivationforthedevelopmentofourmodelwastouseitasademographicallyplausibletestbedinwhichtoexploreinteractionsbetweenpopulationdynamicsandpatternsofdisease.Inturn,thisaimimposedrequirementsonmodelbehaviour,asdescribedinSection2.1.Inthissection,weusethreedemographicscenariostoevaluatetheextenttowhichourmodelmeetstheserequirements.Thefirsttwoscenariosconsiderpopulationscorrespondingtothoseofadevelopedandadevelopingcountry.Thethirdscenarioconsidersapopulationundergoingademographictransitionfromhightolowfertility.

4.2 Quantitativecomparisonbetweenmodeloutputandempiricaldataisanimportantcomponentofvalidation.However,suitabledataforcomparisonisnotalwaysavailable,andwealsorelyoncomparisonofmorequalitativeaspectsofmodelbehaviourtobuildconfidenceinthevalidityofamodel(Korbetal.2013;Grimmetal.2005).

Casestudy1:Adevelopedcountrypopulation

4.3 OurfirstcasestudyexploredtheabilityofourmodeltocapturepatternsofhouseholdcompositionanddynamicscomparabletothoseexhibitedbyAustralianpopulationatthebeginningofthe21stcentury.Realpopulationsareever-changing:fertilityratesthatdeviatefromreplacementandimmigrationacttoincreaseordecreasethesizeofapopulation,whilechangesinlongevityreshapeitsagestructure.Forthiscasestudy,weexploreasimplerscenarioinwhichpopulationsize,mortalityandfertilityratesandothereventprobabilitiesarefixed,andthereisnomigration.Theresultingsteadystatepopulationhasaconstantsizeand,overtime,approachesastableagestructure.Whilesuchascenarioisobviouslyofonlylimiteduseforforecastingpurposes,itdoeshavethesignificantbenefitofprovidingastablebackgroundfortheoreticalinvestigationofinteractionsbetweenthedynamicsofdemographicandepidemicprocesses(e.g.,asdescribedinGlassetal.2011).Inparticular,itallowsustoevaluatethemodelfromtheperspectiveofthefirsttworequirementsdescribedinSection2.1.Amorerealisticscenariowithtime-varyingdemographicparametersisexploredinCaseStudy3.

4.4 TheinitialpopulationwasparameterisedusingrecentAustraliandataonagestructureandhouseholds(deVaus2004;AustralianBureauofStatistics2006b).ValuesforotherparameterwereestimatedonthebasisofcensusdatareportedindeVaus(2004).Coupleformationparameterswerecalibratedagainstdataonthepercentageofindividualsbyagewhohadnevermarriednorcohabited.Coupledissolutionparameterswerecalibratedagainstdataonpercentageofmarriagessurvivingbyduration.Leavinghomeparameterswerecalibratedagainstdataonthenumberofindividualsbyagelivingathome,accountingforthosewhohadlefttomarryorcohabit.Thepopulationwassimulatedfortwohundredyears,toensurethatasteadystatehadbeenachieved,beforecompositionanddynamicswereanalysed.

Table1:CaseStudy1:Modelparameters

Parameter Value/DatasourceInitialpopulationsize 20,000Populationgrowthrate 0%Immigrationrate 0%Mortalityprobabilities Australia,2006,byyearofage(AustralianBureauofStatistics2007)(seeFigure1(a))Fertilityprobabilities Australia,2006,byyearofage(AustralianBureauofStatistics2006a)(seeFigure1(b))Birthgap mean:365days;SD:90daysCoupleformationparameters agerange:18–60years;annualprobability:7.5%Partneragedifference mean:2years;SD:2years)Coupledissolutionparameters agerange:18–60;annualprobability:1.5%Leavinghomeparameters minimumage:18;annualprobability:0.8%

http://jasss.soc.surrey.ac.uk/16/1/8.html 3 14/10/2015

Page 4: Synthetic Population Dynamicsjasss.soc.surrey.ac.uk/16/1/8/8.pdfNicholas Geard, James M McCaw, Alan Dorin, Kevin B Korb and Jodie McVernon (2013) Synthetic Population Dynamics: A Model

Figure1:AustraliancensusdatausedtoparameterisethemodelinCaseStudy1.(a)Mortalityratesbyageandsex;(b)Relativeprobabilityofabirthoccurringtoawomanbyage.DatasourcesasinTable2.

Agedistribution

4.5 Figure2(a)showsthesimulatedagestructureofthefinalpopulationfortenindependentruns,togetherwiththestartingagedistribution(basedon2006censusdata).Intheabsenceofmigration,theagestructureofapopulationisdeterminedsolelybybirthsanddeaths.Whenage-specificratesoffertilityandmortalityremainconstantoveralongperiodoftime,andthereisnomigration,theresultingpopulationiscalled'stable'.Stablepopulationsarecharacterisedbyconstantagestructureandfixedgrowthrates.Astablepopulationwithagrowthrateofzeroiscalled'stationary'.Stableandstationarypopulationstructuresarelargelytheoreticalconstructsthatarerarelyobservedinrealpopulations.Overthelastcentury,lifeexpectancyinAustraliahasincreasedsteadily,whilefertilityandmigrationhavefluctuated.OneinterpretationofthefinalagestructuresshowninFigure2(a)isthattheyrepresentwhatAustralia'spopulationcouldlooklikeafteracenturywithreplacement-levelfertility,nomigration,andconstantage-specificbirthanddeathrates.

Figure2:(a)Thefinalagedistributionsoftensimulatedpopulations(grey),comparedtotheempiricalagedistributionusedtoinitialisethepopulation(black).(b)Thefinalhouseholdsizedistribution(white),averagedoverthetensimulatedpopulations(errorbarsindicatestandarddeviation),comparedtoempiricaldata(black).

Householdsizedistribution

4.6 Householdsizesandcompositionswereallowedtovaryinresponsetotheindividuallevelprocessesofleavinghome,forminganddissolvingcouples,birthanddeath.Thefinalhouseholdsizedistributionafter200years(meanandstandarddeviationacross10independentruns)isshowninFigure2(b).Someofthevariationbetweensimulatedandempiricalagestructurecanalsobeobservedinthefinalhouseholdsizedistribution.Olderindividuals,whoareover-representedinthesimulatedpopulation,aremorelikelytoliveinhouseholdsofsizeoneandtwo,whicharealsoover-representedinthesimulatedpopulation.

4.7 Asindividualhouseholdsareformedanddissolved,thenumberofhouseholdsofaparticularsizeincreasesordecreases;however,becauseweareholdingthedemographicratesfixed,theshapeofthehouseholdsizedistributionremainsrelativelyconstant,withsomestochasticfluctuation(Figure3(a)).

http://jasss.soc.surrey.ac.uk/16/1/8.html 4 14/10/2015

Page 5: Synthetic Population Dynamicsjasss.soc.surrey.ac.uk/16/1/8/8.pdfNicholas Geard, James M McCaw, Alan Dorin, Kevin B Korb and Jodie McVernon (2013) Synthetic Population Dynamics: A Model

Figure3:Theevolutionof(a)householdsizedistributionand(b)familyhouseholdtypedistributionover100yearsunderfixeddemographicconditions,forasinglesimulationrun.

4.8 Totesthowthefinalhouseholdsizedistributiondependeduponthethehouseholdsizedistributionthatwasusedtocreatetheinitialbootstrappopulation(asdescribedinSection3.3)wealsoransimulationsinwhichthepopulationwasinitialisedwithuniformlydistributedhouseholdsizes.Byyear200ofthesesimulations,thedistributionofhouseholdsizesonceagainapproximatedtheempiricaldistribution.Thus,weareconfidentthatthehouseholdsizedistributionisanemergentpropertyoftheunderlyingindividual-leveldemographicprocesses,ratherthanasimpleconsequenceoftheinitialconditions.

Householdtypedistribution

4.9 Beyondlookingsimplyathouseholdsize,wealsoinvestigatedthetypesofhouseholdthatindividualstendedtobelongtoatdifferentstagesoftheirlives.Figure4showstheproportionofindividualsthatlivinginvarioustypesofhouseholdsituation(couplewithchildren,couplewithoutchildren,singleparent,loneperson,andlivingwithparents),brokendownbyagecategory(meanandstandarddeviationacross10independentruns).ThesimulationmodelproducesaplausiblerepresentationofhouseholdtypeprevalenceobservedintheAustralianpopulation.Whilethereissomevariation,generaltrendsacrossagegroupsarewellcaptured;forexample,theproportionofindividualslivinginhouseholdswithoutchildreninitiallyincreasesasindividualsformcouples,thendecreasesasthesecoupleshavechildren,beforefinallyincreasingasthesechildrenleavethefamilyhousehold.

Figure4:Typeofhouseholdbyagegroupattheendofasimulationrun(white;errorbarsindicatestandarddeviation),comparedwithempiricaldata(deVaus2004)(black).

4.10 Figure3(b)indicatesthat,aswithhouseholdsizedistributions,theproportionoffamilyhouseholdsfluctuatesstochasticallyoverthetimeperiodreported,butisgenerallystable.

Changesinhouseholdstructure

4.11 Thedistributionofhouseholdsizes(Section4.1.2)andtheprevalenceofhouseholdtypes(Section4.1.3)bothremainstableoverthecourseofaparticularsimulationrun.However,thisstabilityhidesthefactthatthetypeofhouseholdthatanyoneindividualbelongstochangesmultipletimesoverthecourseoftheirlife(seeSection4.1.5).Anindividual'shouseholdtypecanchangewhentheyleavehome,whentheyformordissolveacouple,whentheirfirstchildisbornortheirlastchildleaveshome,orwhenanothermemberoftheirhouseholddies.Whilelongitudinaldataisnottypicallycapturedinacensus,theHousehold,IncomeandLabourDynamicsinAustralia(HILDA)Survey(Wilkinsetal.2011)reportsstatisticsontheproportionofindividualswhochangehouseholdtypeoverafiveyearperiod(Table3).Collatingoutputfrommultiplesimulationrunsrevealsasimilarpatternoftransitionsbetweenhouseholdtypes(Table4).

http://jasss.soc.surrey.ac.uk/16/1/8.html 5 14/10/2015

Page 6: Synthetic Population Dynamicsjasss.soc.surrey.ac.uk/16/1/8/8.pdfNicholas Geard, James M McCaw, Alan Dorin, Kevin B Korb and Jodie McVernon (2013) Synthetic Population Dynamics: A Model

Table3:Changesinhouseholdstructure,2003to2008(HILDA)(%)

Coupleonly Couplewithchildren

Singlewithchildren

Singleperson

Coupleonly 75.3 14.0 0.8 8.4Couplewithchildren 10.1 76.8 6.0 4.9Singlewithchildren 6.4 18.0 59.5 13.0Singleperson 11.1 8.8 3.5 74.9

Table4:Changesinhouseholdstructure,meanandstandarddeviationover10runs(%)

Coupleonly Couplewithchildren

Singlewithchildren

Singleperson

Coupleonly 78.2(0.6) 11.3(0.4) 0.6(0.1) 9.8(0.3)Couplewithchildren 14.8(1.3) 77.4(1.8) 5.2(0.8) 2.6(0.2)Singlewithchildren 9.5(0.6) 41.6(3.0) 42.6(2.4) 6.3(0.9)Singleperson 8.8(0.7) 11.6(0.9) 1.2(0.3) 78.3(1.0)

4.12 Giventhatmodelbehaviourwasnotexplicitlycalibratedagainstthesetransitionrates,thereisaremarkablelevelofagreementbetweenthedynamicsofrealandsimulatedhouseholds.Theprimarypointofdisagreementisthetransitionfrom'singlewithchildren'to'couplewithchildren',whichisover-representedinsimulatedpopulations,suggestingapossibledirectionforfuturerefinement.

Familylifecycle

4.13 Thefamilylifecycleisademographicpatternthatcapturesthelifeexperienceofalargeproportionofthedevelopedworld'spast,current,andmostprobablyfuturepopulation:“mostpersonswillgrowup,establishfamilies,rearandlaunchtheirchildren,experienceanemptynestperiodandeventuallyreachtheendoftheirlife.”(Glick1989,p.123).Figure5illustratestwodifferentviewsofthefamilylifecyclefromtheperspectiveofanindividual,showingtheagedistributionatwhichvarioussignificanteventsoccur.Exploringthesequencesofeventsthatconstituteasimulatedindividual'sfamilylifecycleatbothanindividualandaggregatelevelprovidesastraightforwardwaytoverifythattheselifecoursesappearplausible.

Figure5:Theagedistributionof(a)majorlifeevents(marriage,birthoffirstchildanddeath)and(b)birthoffirstandsubsequentchildrenoverthetotalsamplepopulation.

4.14 TheapproachtakeninFigure5toexploringthedistributionofsignificanteventsoveranindividual'slifespancanalsobeappliedtohouseholds.Anissuethatarisesishowbesttodefineahousehold's'age'.Theapproachtakenhereistodefinethecreationofahouseholdasoccurringwheneither(a)anindividualleavesherparents'householdtoformanewsinglepersonhousehold;(b)twoindividualsleavetheirparents'householdstoformanewcouplehousehold;or(c)anindividualleaveshisspouse'shouseholdafterdivorceandformsanewsinglepersonhousehold.Otherinter-householdmovementsdonotresultinthecreationofanewhousehold;forexample,theformationofacouplewhereatleastoneindividualcurrentlyresidesinasinglepersonhousehold.Inthesecases,onehouseholdmergeswithanother,butnonewhousehold(i.e.,ofagezero)iscreated.Ahouseholdisdissolvedwhenthelastindividualinthathouseholddiesorleaves;forexample,iftwoindividuals,eachlivinginasinglepersonhousehold,formacouple,thenoneofthesehouseholdswillcontinue,andtheotherwillbedissolved.

4.15 Assigninghouseholdsanageasdescribedabovethenallowsustolookatthedistributionofparticularindividualorhouseholdleveleventsbyhouseholdage.Figure6representsthefamilylife-cycleintermsofhouseholdsize:householdstypicallybegintheirlifewithoneortwoindividuals(e.g.,anewcouplewhohavejustlefttheirownparents'households).Householdsizeincreasessteadily,peakingbetweentwentyandtwenty-fiveyears(whenourexamplecoupleareintheirfortiesandhavehadallthechildrenthattheywillhave).Thereafter,householdsizedeclinesbacktoameanoftwobyaroundforty-fiveyears(withourexamplecouplebeing'emptynesters'intheirsixties).Theperiodofpeaksizerepresentsthestagewhenmostorallofthechildrenthatwillbebornintothathouseholdhavebeenborn,butnoneorfewofthemhaveyetlefthome.

http://jasss.soc.surrey.ac.uk/16/1/8.html 6 14/10/2015

Page 7: Synthetic Population Dynamicsjasss.soc.surrey.ac.uk/16/1/8/8.pdfNicholas Geard, James M McCaw, Alan Dorin, Kevin B Korb and Jodie McVernon (2013) Synthetic Population Dynamics: A Model

Figure6:Householdsizebyage.Boldlineindicatesmeanhouseholdsize.Boxplotsshowmediansize(redbars),inter-quartilerange(box),minimum/maximumwithin1.5oftheinter-quartilerange(whiskers)andoutliers.Thesamplepopulationofhouseholdsusedwasthesetof

householdsthatwerebothcreatedanddissolvedduringthetimeframeofthesimulationrun;thatis,householdscreatedatthebeginningandhouseholdsstillexistingattheendoftherunwereexcluded.

Householdcomposition

4.16 Wesimplifytheissueofdescribinghouseholdcompositionbydividingindividualsintodiscreteagecategoriesrelevantfordiseasetransmission:infantsunderfiveyears;school-childrenbetweenfiveandseventeenyears;adultsfromeighteentosixty-fouryears;andelderlyindividualssixty-fiveyearsandover.Moreordifferentcategoriescouldbechosendependingupontheagegroupsthatareofmostinterestinaparticularapplicationofthemodel.Figures7(a)and7(b)showthedistributionofindividualagesbyhouseholdageandhouseholdsizerespectivelyinasinglepopulationatagivenpointintime.Thesefiguresmatchobservedtrendsofthehouseholdlocationsofdifferenttypesofindividuals(deVaus2004).Elderlyindividualstendtobefoundprimarilyinsmallerandolderhouseholds.Childrenarefoundprimarilyinhouseholdsofintermediateageandintermediate-to-largesize.

Figure7:Agedistributionofindividualsgiven(a)householdageand(b)householdsize.Individualsaregroupedaccordingtoagecategories:<5years;5-17years;18-64years; 65years.

4.17 Figure7(b)depictshowindividualsofvariousagesareallocatedacrosshouseholdsofdifferentsizes,butprovidesnoinformationontheco-occurrenceofindividualsfromdifferentagegroupsinhouseholds.Figure8showsanovelapproachtovisualisingthetypesofhouseholdsthatappearinapopulationandtheirrelativefrequency.Asabove,thisfigurerepresentsasnapshotofapopulationatagivenpointintime,ratherthananaggregationacrosstime.Eachclusterofncirclesrepresentsauniquetypeofhouseholdcontainingnindividuals,withthecountofhouseholdsofthattypeappendedbelow.Eachcircleiscolouredaccordingtotheagecategoryoftheindividualinthathouseholdtype,andcirclesizereflectshouseholdtypefrequency,withlargercirclesindicatingmorecommonhouseholdtypes.4Householdtypesarefurtherarrangedbyhouseholdsize(increasinglefttoright)andfrequency(morefrequenthouseholdtypesappearatthetop).TherepresentationshowninFigure8providesaconvenientoverviewofthediversehouseholdstructuresthatariseinsimulatedpopulations.Atthesametime,itisstraightforwardtogainanimpressionofwhichhouseholdtypesaremostlikelytocontaininfantsandtheirfrequencyinthepopulation.

http://jasss.soc.surrey.ac.uk/16/1/8.html 7 14/10/2015

Page 8: Synthetic Population Dynamicsjasss.soc.surrey.ac.uk/16/1/8/8.pdfNicholas Geard, James M McCaw, Alan Dorin, Kevin B Korb and Jodie McVernon (2013) Synthetic Population Dynamics: A Model

Figure8:Achartofhouseholdtypesappearinginapopulationatagivenpointintime.Eachcirclerepresentsanindividual(colouredbyagecategory).Eachclusterofcirclesrepresentsahouseholdtype.Thefrequencywithwhichaparticularhouseholdtypeoccursinapopulationiswrittenbeneath,andrepresentedvisuallybysize(largercircles

indicatemorecommonhouseholdtypes).

Casestudy2:Adevelopingcountrypopulation

4.18 Thethirdrequirementofourmodelwasthatitbeabletoproduceplausiblepatternsofhouseholddynamicsacrossavarietyofdemographicscenarios.Inparticular,weareinterestedinexploringthedynamicsofinfectionandimmunityinadevelopingcountrysetting.Asdiscussedabove,thedemographictransitionmodeldescribesacountry'stransitionfromaphaseinwhichbothfertilityandmortalityarehigh,throughaphasewheremortalityfalls,butfertilityremainshigh,toaphasewherebothfertilityandmortalityhavefallen.Duringthefirstandlastphases,fertilityandmortalityarebalanced,andpopulationsizeisstable.Bycontrast,inthemiddlephase,fertilityexceedsmortality,andpopulationsizeincreases.WechoseZambiaasacountryrepresentativeofthismiddlephaseofdemographictransition:bothmortalityandfertilityratesarehigherthanAustralia's,andpopulationgrowthofapproximately2.5%perannumisalmostentirelyduetonaturalincrease(ratherthanimmigration).ComparedtoAustralia,lessdataisavailableontheZambianpopulation,restrictingtheamountofvalidationpossible.Here,wefocusonageandhouseholdsizedistribution.

4.19 Wesimulatedaninitialpopulationof500individuals,growingatanannualrateof2.5%(givingafinalpopulationsizeofapproximately70,000after200years).Age-specificmortalityrateswereobtainedfrom(Lopezetal.2000),andage-specificfertilityrateswereobtainedfromtheUNdatawebsite(data.un.org).Insufficientresourceswereavailabletoestimateprecisevaluesforcoupleformationanddissolutionparameters.WethereforeestimatedvaluesbasedoncomparisonwithvaluesusedinCaseStudy1.Namely,wespecifiedanearlierageforcoupleeligibility,alowerrateofdivorceandalowerrateofleavinghomeasasingleindividual(RepublicofZambiaCentralStatisticalOffice2000).Aswiththefirstcasestudy,wemodelthehypotheticalscenarioinwhichdemographicratesareconstantovertime.

Table5:CaseStudy2:Modelparameters

Parameter Value/DatasourceInitialpopulationsize 500Populationgrowthrate 2.5%Immigrationrate 0%Mortalityprobabilities Zambia,2000,5-yearagegroupsLopezetal.(2000)Fertilityprobabilities Zambia,2000,byyearofage(data.un.org)Birthgap mean:270days,SD:0days(i.e.,uniform)Coupleformationparameters agerange:15–60years;annualprobability:8%Partneragedifference mean:2years;SD:2yearsCoupledissolutionparameters agerange:18–60years;annualprobability:0.1%Leavinghomeparameters minimumage:18years;0.5%

4.20 AsdepictedinFigure9(a),theagestructureoftheZambianpopulationiscapturedwithahighdegreeofaccuracy.Householdsizedistribution(Figure9(b))isreproducedlessaccurately:smallhouseholdsizes(1–4people)areover-represented,whileverylargehouseholds(>8)peopleareunder-represented.Onepossibleexplanationisthatourparametervalueswerepoorlychosen.However,wealsonotethatZambiahasareasonablyhighlevelofmulti-generationalandmulti-nucleushouseholds(RepublicofZambiaCentralStatisticalOffice2000).Neitherofthesearecurrentlyrepresentedinourmodel,whichmayexplainsomeofthediscrepancy.ComparingFigures10and11withthecorrespondingfiguresfromthefirstcasestudy(Figures7and8)demonstratestheconsiderabledifferencesinpatternsofhouseholdcompositionthatexistbetweencountrieswithdifferentdemographicproperties.

http://jasss.soc.surrey.ac.uk/16/1/8.html 8 14/10/2015

Page 9: Synthetic Population Dynamicsjasss.soc.surrey.ac.uk/16/1/8/8.pdfNicholas Geard, James M McCaw, Alan Dorin, Kevin B Korb and Jodie McVernon (2013) Synthetic Population Dynamics: A Model

Figure9:(a)Thefinalagedistributionsoftensimulatedpopulations(grey),comparedtotheempiricalagedistributionusedtoinitialisethepopulation(black).(b)Thefinalhouseholdsizedistribution(white),averagedoverthetensimulatedpopulations(errorbarsindicatestandarddeviation),comparedtoempiricaldata(black).

Figure10:Agedistributionofindividualsgiven(a)householdageand(b)householdsize.Individualsaregroupedaccordingtoagecategories:<5years;5-17years;18-64years; 65years.

http://jasss.soc.surrey.ac.uk/16/1/8.html 9 14/10/2015

Page 10: Synthetic Population Dynamicsjasss.soc.surrey.ac.uk/16/1/8/8.pdfNicholas Geard, James M McCaw, Alan Dorin, Kevin B Korb and Jodie McVernon (2013) Synthetic Population Dynamics: A Model

Figure11:HouseholdcompositionforZambia.

CaseStudy3:Apopulationundergoingdemographicchange

4.21 Thetwopreviouscasestudiesdepictstabledemographicscenarios:thereisnochangetofertilityandmortalityratesoverthesimulatedperiod.Thefinalrequirementofourmodelwasthatitproducehouseholddynamicsofapopulationacrossaperiodofdemographicchange.AsdiscussedinSection2,patternsofinfectionandimmunityemergeoverlongtime-frames,duringwhichtimepopulationstructureisneitherstaticnorchanginginauniformfashion.Rather,underlyingdemographicrateschangeaslifeexpectancyincreasesduetoimprovementsinhealthandmedicine,andfertilitypatternschangeinresponsetoavailabilityofbirthcontrolandshiftingsocialnorms.Asatestcase,weparameterisedourmodelwith100yearsofAustraliancensusdata,coveringtheperiodfrom1910-2010.Duringthisperiod,Australia'spopulationincreasedfromalmost4.5milliontoover22million.Whilenaturalincrease(i.e.,resultingfrombirthratesbeinghigherthandeathrates)accountsforaroundtwo-thirdsofthisgrowth,immigrationhasalsoplayedasignificantrole.AttheconclusionofWorldWarII,Australiainitiatedalargeimmigrationprogrammeinanefforttoboostpopulationnumbers(DepartmentofImmigrationandMulticulturalAffairs2001).Toapproximatethisdemographichistory,weusedastartingpopulationsizeof500individuals,growingatarateof2.5%peryearduringtheinitial100yearinitialisationperiod,andatadecreasingrateduringthefollowing100years.Weusedanimmigrationrateof0%priorto1950and1%peryearafter1950.Theresultingfinalpopulationscontainedapproximately30,000peopleafter200yearsofsimulation.Weestimatedtime-varyingcoupleformationanddissolutionratesonthebasisofhistoricaltrendsofincreasingmarriageage,andincreasingdivorcerate(deVaus2004).

Table6:CaseStudy6:Modelparameters

Parameter Value/DatasourceInitialpopulationsize 500Populationgrowthrate 2.5%decreasingto0.5%over100yearsImmigrationrate 0%until1950,1%thereafterMortalityprobabilities Australia,1910-2008,varyingfrequency,byyearofage(AustralianBureauofStatistics2008)Fertilityprobabilities Australia,1910-2008,varyingfrequency,5yearagegroups(AustralianBureauofStatistics2008)Birthgap mean:365days;SD:90daysCoupleformationparameters agerange:(15increasingto18over100years)–60;annualprobability:7.5%Partneragedifference mean:2years;SD:2yearsCoupledissolutionparameters agerange:18–60;annualprobability:0.1%increasingto1.5%over100yearsLeavinghomeparameters minimumage:18;annualprobability:0.8%

4.22 Thekeydemographictrendsthatwerereproducedinthesimulatedpopulationsweretheeffectsthattime-varyingdemographicrateshaveonhouseholds.Figure12(a)showshowaveragehouseholdsizedecreasesataratecomparabletothatobservedintheempiricaldata.Figure12(b)showshowthe(rescaled)numberofhouseholdschangesoverthesametimeperiod,againcomparedtotheempiricaltrend.

4.23 Figure13showstwofurtherperspectivesonhowhouseholdsevolveoverthecourseofthesimulation:theprevalenceofhouseholdsofsizeoneandtwoincreasesrelativetolargerhouseholds(Figure13(a)),andtheprevalenceofhouseholdscontainingcoupleswithoutchildrenincreases(Figure13(b)).Onlylimiteddataisavailabletovalidatethesetrendsacrossthefulltimeperiod;however,ratesofchangeacrossthemostrecentdecadesareinagreementwithcensusdata.Empiricalvaluesfortwotimepoints(1981and2001)areoverlaidontheplotshowingtheevolutionofhouseholdsizedistributionovertime(Figure13(a)).Evenafterseventyyearsofsimulatedpopulationevolution,themodelreproducescomparableratesofincreaseanddecreaseintheoccurrenceofhouseholdsofagivensize.Withrespecttothedistributionofhouseholdtypes(Figure13(b)),inourtensimulatedpopulations,theproportionoffamilyhouseholdscontainingacouplewithchildrendecreasedbyanaverageof23%(SD1.5%)overthepenultimatetwodecades,whiletheproportioncontainingonlyacoupleincreasedbyanaverage28%(SD3.8%).ThecorrespondingchangesintheAustralianpopulationbetween1981and2001werea20%decreaseand28%increaserespectively(deVaus2004).

Figure12:(a)Averagehouseholdsizeover100years.(b)Numberofhouseholdsover100years(Numberofhouseholdsin1910=100).Bothfiguresshowtheoutputfrom10simulationrunscomparedwithhistoricalAustraliancensusdata(bold).

http://jasss.soc.surrey.ac.uk/16/1/8.html 10 14/10/2015

Page 11: Synthetic Population Dynamicsjasss.soc.surrey.ac.uk/16/1/8/8.pdfNicholas Geard, James M McCaw, Alan Dorin, Kevin B Korb and Jodie McVernon (2013) Synthetic Population Dynamics: A Model

Figure13:(a)Evolutionofhouseholdsizedistributionover100years.(b)Evolutionoffamilyhouseholdtypedistributionover100years.Familyhouseholds,inourmodel,includeanyhouseholdcontainingatleasttwopeople(i.e.,singlepersonhouseholdsareexcluded).Eachfigureshowstheoutputfromasinglerepresentativesimulationrun.

Evaluation

5.1 Manydifferentforcesactuponpopulationstoproducetheircharacteristicageandhouseholdstructure.Overthelastcentury,improvementstohealthcare,governmentpoliciesaroundmigrationandfertility,changingsocialnorms,aswellasunpredictableeventssuchaswarsandnaturaldisastershaveallplayedarole.Capturingallofthesecomplexandinteractingforcesinamodelischallenging,andwehavefavouredageneralandflexibleapproachtomechanismdesign.Thatsaid,webelievethat,forourresearchagenda,themodeldescribedinSection3representsagoodbalancebetweensimplicityandplausibility.Currently,thedatasourcesrequiredtoparameterisethemodelarerelativelymodest,henceitcanbeusedtomodelpopulationsforwhichonlylimiteddataareavailable(e.g.,theinternationalandhistoricalpopulationsconsideredinthesecondandthirdcasestudies)andhypotheticalscenarios.Undoubtedlyacloserfittoempiricaldatacouldbeachieved,butthiswouldinevitablycomeatthecostofintroducingfurtherdatadependenceintothemodel.

5.2 Initscurrentform,ourmodelmeetsthefourrequirementssetoutinSection2.1;namely,itcanproducerealisticpatternsofhouseholdcompositionandhouseholddynamics,whilebeingflexibleenoughtocaptureavarietyofdemographicscenariosandtransitions.Inendeavouringtodesignaparsimoniousmodel,wehavemadeseveralsimplifyingapproximations.Webrieflydiscussrefinementstobeconsideredinfuturemodeldevelopment:Firsttheabsenceofextendedfamilyhouseholds,asnotedabove,isanomissionthatmustbeaddressedinordertomoreaccuratelycapturehouseholdcompositionincertainpopulations.Theculturalandeconomicconditionsunderwhichextendedfamilyhouseholdsarisevarybycountryandacrosstime(Hammel&Laslett1974).AswiththemodeldescribedbyMurphy(2011),ourmodelcontainsagreatdealofinformationonkinshiprelationshipsbetweenindividualsthatcouldbeusedtoconstructmorecomplexhouseholdstructures.Fromanepidemiologicalperspective,multi-generationalmayhaveimplicationsforpatternsofsocialcontactanddiseasetransmission(Mossongetal.2008).Second,themodeldoesnotcurrentlydistinguishbetweenmarriageandcohabitation.Wejudgedthat,fromtheperspectiveofhouseholdstructuresrelevanttoinfectiousdiseasetransmission,marriageandcohabitationareeffectivelyindistinguishable;however,householdsinwhichpartnersaremarriedasopposedtocohabitingdoappeartohavedifferentcharacteristics(suchasdurationofcouplerelationship)thatmayinfluencehouseholddynamics(deVaus2004).Finally,amorerealisticmodelofimmigrationiscertainlypossible.Specifically,immigrantpopulationsarelikelytohavedifferentdemographiccharacteristicstothepopulationstheyjoin(Haugetal.2002),andtheirarrivalisthereforelikelytoinfluenceageandhouseholdstructureinnon-trivialways.Iannelli&Manfredi(2007)haveshownhowchangestotheagestructureofapopulationcanhaveimplicationsfordiseasedynamics.

5.3 Toconclude,mathematicalandnetworkmodelsthatworkwithstylisedpopulationstructureswillcontinuetoprovideimportantinsightsintothedynamicsandcontrolofinfectiousdiseases.However,manyopenquestionsininfectiousdiseaseepidemiologyconcerntherolesplayedbyspecifictypesofpopulationheterogeneity.Toanswerthesequestions,morerealisticpopulationmodels,suchasthatdescribedhere,willproveinvaluable.Asdiscussedatthebeginningofthispaper,syntheticpopulationmodelsfindapplicationinmanydomains,andthereisnoreasonwhytheutilityofourmodelcouldnotextendbeyondthedomainofinfectiousdiseases.Forexample,asimilarapproachisbeingusedtoexploreissuesaroundtheprovisionofsocialcareinageingpopulations(Silvermanetal.2012),anotherissueforwhichchangingpatternsofhouseholddemographyhaveimportantimplications.However,therequirementsguidingthedevelopmentofourmodelwerebasedonourparticularresearchagenda,anditiscriticaltoensurethat,forotherapplications,modelbehaviourissuitedtotheproblemathand.

Appendix

1. Createinitialpopulation,accordingtoinitialagedistributionandhouseholdsizedistribution.2. Scaleallannualprobabilitiesandratestogiveratespertimestep.3. Ateachtimestep,eachindividualhasthepossibilityofexperiencingalifeeventasfollows(individualattributesthataffecteventprobabilitiesarelistedinparentheses):

1. Testfordeath(age,sex).Ifdeathoccurs,thefollowingoccurs:1. Thedeadindividualisremovedfromthepopulation.Ifthisresultsinahouseholdcontainingorphanedchildren,anychildrenwhoareoldenough(e.g.,>18years)leavehome,asper

below,whileanyyoungerchildrenarerandomlyallocatedtoanotherfamilyhouseholdcontainingatleastonechild.2. Thebirthofareplacementindividualistriggered,andamotherischosen(age,sex,parity,timesincelastbirth).

2. Testforcoupleformation(age,sex).Ifcoupleformationistooccur,selectapartnerfromthepopulationwithanappropriateagedifferenceandupdatetheirhouseholdsasfollows:1. Ifbothindividualsliveathome,theymoveintoanewlycreatedhousehold.2. Ifeither(orboth)oftheindividualshavetheirownhousehold,theotherpartner(togetherwithanydependents)joinstheminthishousehold.

3. Testforleavinghome(age).Ifanindividualleaveshome,theyformasinglepersonhousehold.4. Testforcoupleseparation(age).Ifacoupleseparate,oneindividualremainsintheirformerhousehold,togetherwithanydependents,whiletheotherindividualleavestoformanewsingleperson

household.4. Calculatethenumberofadditionalbirthsduetonaturalincrease.Mothersarechosenforeachofthesenewindividualsasabove.5. Calculatethenumberofnewarrivalsduetoimmigration.Immigrantsarriveasahouseholdunit,withthesizeofthehouseholdandtheageofitsoccupantsdrawnfromthecurrentpopulationageand

householdsizedistributions.6. RepeatfromStep3.

Notes

1Theterms'agent-basedmodels'and'individual-basedmodels'arefrequentlyusedinterchangeablytodescribemodelsinwhicheachunitinapopulationisexplicitlyrepresented.Whereadistinctionismade,thetermagentsisusedtorefertoentitieswhosebehaviourisdeterminedonthebasisofcognitivefunctions,whilethebehaviourofindividualsisgovernedbylesscomplexbehaviouralrules(Parrottetal.2011).Wehavechosentouse'individual-basedmodels'throughout.

2AconciseoutlineofthemodelisprovidedintheAppendix.ThemodelisimplementedinPythonandsourcecodeisavailablefromhttp://github.com/nlgn/sim-demog.

3Parityreferstothenumberofchildrenborntoaparticularwoman.Forexample,awomanwhohasgivenbirthtotwopreviouschildrenhasaparityoftwo.

4Representinghouseholdfrequencybysizehelpstocounteractthevisualbiasthatotherwiseresultsfromthedominanceoflargerbutlesscommonhouseholdtypes.

References

AJELLI,M.&MERLER,S.(2009).Anindividual-basedmodelofhepatitisAtransmission.JournalofTheoreticalBiology259(3),478-88.[doi:10.1016/j.jtbi.2009.03.038]

ANDERSON,R.M.&MAY,R.M.(eds.)(1991).InfectiousDiseasesofHumans:DynamicsandControl.Oxford,UK:OxfordUniversityPress.

AUSTRALIANBUREAUOFSTATISTICS(2006a).Births,Australia,2006,cat.no.3301.0.

AUSTRALIANBUREAUOFSTATISTICS(2006b).PopulationbyAgeandSex,AustralianStatesandTerritories,Jun2006,Table9.EstimatedResidentPopulationBySingleYearofAge,Australia.

AUSTRALIANBUREAUOFSTATISTICS(2007).LifeTables,Australia,2005-2007,cat.no.3302.0.55.001.

AUSTRALIANBUREAUOFSTATISTICS(2008).AustralianHistoricalPopulationStatistics,2008,cat.no.3105.0.65.001.

BALL,F.,MOLLISON,D.&SCALIATOMBA,G.(1997).Epidemicswithtwolevelsofmixing.TheAnnalsofAppliedProbability7(1),46-89.[doi:10.1214/aoap/1034625252]

http://jasss.soc.surrey.ac.uk/16/1/8.html 11 14/10/2015

Page 12: Synthetic Population Dynamicsjasss.soc.surrey.ac.uk/16/1/8/8.pdfNicholas Geard, James M McCaw, Alan Dorin, Kevin B Korb and Jodie McVernon (2013) Synthetic Population Dynamics: A Model

BALL,F.&NEAL,P.(2002).AgeneralmodelforstochasticSIRepidemicswithtwolevelsofmixing.MathematicalBiosciences180,73-102.[doi:10.1016/S0025-5564(02)00125-6]

BARRETT,C.L.,BECKMAN,R.J.,BERKBIGLER,K.P.,EUBANK,S.G.,HENSON,K.M.,ROMERO,P.R.&SMITH,J.P.(2000).TRANSIMS:Transportationanalysissimulation.Tech.Rep.00-1725,LosAlamosNationalLaboratory.

BECKER,N.G.,GLASS,K.,LI,Z.&ALDIS,G.K.(2005).ControllingemerginginfectiousdiseaseslikeSARS.MathematicalBiosciences193(2),205-21.[doi:10.1016/j.mbs.2004.07.006]

BILLARI,F.,FENT,T.,PRSKAWETZ,A.&APARICIODIAZ,B.(2007).The''wedding-ring'':anagent-basedmarriagemodelbasedonsocialinteraction.DemographicResearch17,59-82.[doi:10.4054/DemRes.2007.17.3]

BIRKIN,M.H.&CLARKE,M.(2011).Spatialmicrosimulationmodels:Areviewandaglimpseintothefuture.In:PopulationDynamicsandProjectionMethods.Springer,pp.193-208.[doi:10.1007/978-90-481-8930-4_9]

COUDEVILLE,L.,VANRIE,A.&ANDRE,P.(2008).Adultpertussisvaccinationstrategiesandtheirimpactonpertussisintheunitedstates:evaluationofroutineandtargeted(cocoon)strategies.Epidemiologyandinfection136(5),604-20.[doi:10.1017/S0950268807009041]

DANON,L.,FORD,A.P.,HOUSE,T.,JEWELL,C.P.,KEELING,M.J.,ROBERTS,G.O.,ROSS,J.V.&VERNON,M.C.(2011).Networksandtheepidemiologyofinfectiousdisease.InterdisciplinaryPerspectivesonInfectiousDiseases2011,284909.[doi:10.1155/2011/284909]

DEVAUS,D.(2004).DiversityandchangeinAustralianfamilies:Statisticalprofiles.Melbourne,Australia:AustralianInstituteofFamilyStudies.

DEPARTMENTOFIMMIGRATIONANDMULTICULTURALAFFAIRS(2001).Immigration:Federationtocentury'send.

ELVEBACK,L.R.,FOX,J.P.,ACKERMAN,E.,LANGWORTHY,A.,BOYD,M.&GATEWOOD,L.(1976).Aninfluenzasimulationmodelforimmunizationstudies.AmericanJournalofEpidemiology103(2),152-65.

EUBANK,S.,GUCLU,H.,KUMAR,V.S.A.,MARATHE,M.V.,SRINIVASAN,A.,TOROCZKAI,Z.&WANG,N.(2004).Modellingdiseaseoutbreaksinrealisticurbansocialnetworks.Nature429(6988),180-4.[doi:10.1038/nature02541]

FERGUSON,N.M.,CUMMINGS,D.A.T.,CAUCHEMEZ,S.,FRASER,C.,RILEY,S.,MEEYAI,A.,IAMSIRITHAWORN,S.&BURKE,D.S.(2005).StrategiesforcontaininganemerginginfluenzapandemicinSoutheastAsia.Nature437(7056),209-14.[doi:10.1038/nature04017]

GARGIULO,F.,TERNES,S.,HUET,S.&DEFFUANT,G.(2010).Aniterativeapproachforgeneratingstatisticallyrealisticpopulationsofhouseholds.PloSone5(1),e8828.[doi:10.1371/journal.pone.0008828]

GLASS,K.,MCCAW,J.&MCVERNON,J.(2011).Incorporatingpopulationdynamicsintohouseholdmodelsofinfectiousdiseasetransmission.Epidemics3,152-158.[doi:10.1016/j.epidem.2011.05.001]

GLICK,P.C.(1989).Thefamilylifecycleandsocialchange.FamilyRelations38,123-129.[doi:10.2307/583663]

GRASSLY,N.C.&FRASER,C.(2008).Mathematicalmodelsofinfectiousdiseasetransmission.NatureReviewsMicrobiology6(6),477-87.[doi:10.1038/nrmicro1845]

GRIMM,V.,REVILLA,E.,BERGER,U.,JELTSCH,F.,MOOIJ,W.M.,RAILSBACK,S.F.,THULKE,H.,WEINER,J.,WIEGAND,T.&DEANGELIS,D.L.(2005).Pattern-orientedmodelingofagent-basedcomplexsystems:Lessonsfromecology.Science310,987-991.[doi:10.1126/science.1116681]

GUZZETTA,G.,AJELLI,M.,YANG,Z.,MERLER,S.,FURLANELLO,C.&KIRSCHNER,D.(2011).Modelingsocio-demographytocapturetuberculosistransmissiondynamicsinalowburdensetting.JournalofTheoreticalBiology289,197-205.[doi:10.1016/j.jtbi.2011.08.032]

HAMMEL,E.A.(2005).Demographicdynamicsandkinshipinanthropologicalpopulations.ProceedingsoftheNationalAcademyofScience,USA102(6),2248-2253.[doi:10.1073/pnas.0409762102]

HAMMEL,E.A.&LASLETT,P.(1974).Comparinghouseholdstructureovertimeandbetweencultures.ComparativeStudiesinSocietyandHistory16(1),73-109.[doi:10.1017/S0010417500007362]

HARDING,A.(2007).ChallengesandOpportunitiesofDynamicMicrosimulationModelling,Plenarypaperpresentedtothe1stGeneralConferenceoftheInternationalMicrosimulationAssociation,Vienna,21August.

HAUG,W.,COMPTON,P.&COURBAGE,Y.(eds.)(2002).TheDemographicCharacteristicsofImmigrantPopulations.No.38inPopulationStudies.CouncilofEuropePublishing.

HAYES,A.,WESTON,R.,QU,L.&GRAY,M.(2010).Familiesthenandnow:1980-2010.Factsheet,AustralianInstituteofFamilyStudies.

HETHCOTE,H.W.(2000).Themathematicsofinfectiousdiseases.SIAMReview42(4),599-653.[doi:10.1137/S0036144500371907]

IACONO,M.,LEVINSON,D.&EL-GENEIDY,A.(2008).Modelsoftransportationandlandusechange:aguidetotheterritory.JournalofPlanningLiterature22(4),323-340.[doi:10.1177/0885412207314010]

IANNELLI,M.&MANFREDI,P.(2007).Demographicchangeandimmigrationinage-structuredepidemicmodels.MathematicalPopulationStudies14(3),161-191.[doi:10.1080/08898480701426241]

JARDINE,A.,CONATY,S.J.,LOWBRIDGE,C.,STAFF,M.&VALLY,H.(2010).Whogivespertussistoinfants?Sourceofinfectionforlaboratoryconfirmedcaseslessthan12monthsofageduringanepidemic,Sydney,2009.CommunicableDiseasesIntelligence34(2),116-121.

JOHN,A.M.(1990).Transmissionandcontrolofchildhoodinfectiousdiseases:Doesdemographymatter.PopulationStudies44(2),195-215.[doi:10.1080/0032472031000144556]

KIRK,D.(1996).Demographictransitiontheory.PopulationStudies:AJournalofDemography50(3),361-387.[doi:10.1080/0032472031000149536]

KORB,K.B.,GEARD,N.&DORIN,A.(2013).ABayesianapproachtothevalidationofagent-basedmodels.In:Ontology,Epistemology,andTeleologyofModelingandSimulation(TOLK,A.,ed.).Germany:Springer-Verlag,pp.255-269.[doi:10.1007/978-3-642-31140-6_14]

LONGINI,I.M.,NIZAM,A.,XU,S.,UNGCHUSAK,K.,HANSHAOWORAKUL,W.,CUMMINGS,D.A.T.&HALLORAN,M.E.(2005).Containingpandemicinfluenzaatthesource.Science309(5737),1083-7.[doi:10.1126/science.1115717]

LOPEZ,A.D.,SALOMON,J.,AHMAD,O.,MURRAY,C.J.L.&MAFAT,D.(2000).Lifetablesfor191countries:data,methodsandresults.GPEDiscussionPaper9,WorldHealthOrganisation,Geneva.

MANNION,O.,LAY-YEE,R.,WRAPSON,W.,DAVIS,P.&PEARSON,J.(2012).JAMSIM:amicrosimulationmodellingpolicytool.JournalofArtificialSocietiesandSocialSimulation15(1),8.http://jasss.soc.surrey.ac.uk/15/1/8.html

MOSSONG,J.,HENS,N.,JIT,M.,BEUTELS,P.,AURANEN,K.,MIKOLAJCZYK,R.,MASSARI,M.,SALMASO,S.,TOMBA,G.S.,WALLINGA,J.,HEIJNE,J.,SADKOWSKA-TODYS,M.,ROSINSKA,M.&EDMUNDS,W.J.(2008).Socialcontactsandmixingpatternsrelevanttothespreadofinfectiousdiseases.PLoSMedicine5(3),e74.[doi:10.1371/journal.pmed.0050074]

MURPHY,M.J.(2011).Long-termeffectsofthedemographictransitiononfamilyandkinshipnetworksinbritain.PopulationandDevelopmentReview37(S1),55-80.[doi:10.1111/j.1728-4457.2011.00378.x]

ORCUTT,G.H.(1957).Anewtypeofsocio-economicsystem.TheReviewofEconomicsandStatistics39(2),116-123.[doi:10.2307/1928528]

PARROTT,L.,CHION,C.,MARTINS,C.C.A.,LAMONTAGNE,P.,TURGEON,S.,LANDRY,J.A.,ZHENS,B.,MARCEAU,D.J.,MICHAUD,R.,CANTIN,G.,MéNARD,N.&DIONNE,S.(2011).Adecisionsupportsystemtoassistthesustainablemanagementofnavigationactivitesinthest.lawrenceriverestuary,canada.EnvironmentalModelling&Software26,1403-1418.[doi:10.1016/j.envsoft.2011.08.009]

REPUBLICOFZAMBIACENTRALSTATISTICALOFFICE(2000).HousingandHouseholdCharacteristics:AnalyticalReport.

SILHOL,R.&BOëLLE,P.-Y.(2011).Modellingtheeffectsofpopulationstructureonchildhooddisease:Thecaseofvaricella.PLoSComputationalBiology7(7),e1002105.[doi:10.1371/journal.pcbi.1002105]

SILVERMAN,E.,BIJAK,J.&NOBLE,J.(2011).Feedingthebeast:cancomputationaldemographicmodelsfreeusfromthetyrannyofdata?In:AdvancesinArtificialLife,ECAL2011:ProceedingsoftheEleventhEuropeanConferenceontheSynthesisandSimulationofLivingSystems.MITPress.

SILVERMAN,E.,BIJAK,J.,NOBLE,J.,CAO,V.&HILTON,J.(2012).Semi-artificialmodelsofpopulations:connectingdemographywithagent-basedmodelling.In:4thWorldCongressonSocialSimulation.

SPIELAUER,M.(2010).Whatissocialsciencemicrosimulation?SocialScienceComputerReview29(1),9-20.[doi:10.1177/0894439310370085]

STILLWELL,J.&CLARKE,M.(eds.)(2011).PopulationDynamicsandProjectionMethods,vol.4ofUnderstandingPopulationTrendsandProcesses.Springer.[doi:10.1007/978-90-481-8930-4]

TAPER,M.L.,STAPLES,D.F.&SHEPARD,B.B.(2008).Modelstructureadequacyanalysis:selectingmodelsonthebasisoftheirabilitytoanswerscientificquestions.Synthese163,357-370.[doi:10.1007/s11229-007-9299-x]

WILKINS,R.,WARREN,D.,HAHN,M.&HOUNG,B.(2011).Families,IncomesandJobs,Volume6:AStatisticalReportonWaves1to8oftheHousehold,IncomeandLabourDynamicsinAustraliaSurvey.Melbourne,Australia:MelbourneInstituteofAppliedEconomicandSocialResearch.

WILSON,T.(2011).Areviewofsub-regionalpopulationprojectionmethods.Tech.rep.,QueenslandCentreforPopulationResearch,SchoolofGeography,PlanningandEnvironmentalManagement,TheUniversityofQueensland.

WU,B.M.&BIRKIN,M.H.(2012).Agent-basedextensionstoaspatialmicrosimulationmodelofdemographicchange.In:Agent-BasedModelsofGeographicSystems(HEPPENSTALL,A.J.,CROOKS,A.T.,SEE,L.M.&BATTY,M.,eds.).Springer,pp.347-360.[doi:10.1007/978-90-481-8927-4_16]

http://jasss.soc.surrey.ac.uk/16/1/8.html 12 14/10/2015