system of pyro reprocessing raw treatment...mikhail kormilitsyn, andrew lizin, alexander osipenko,...

29
1 System of Pyro Reprocessing RAW Treatment Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1

Upload: others

Post on 03-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

1

System of Pyro Reprocessing

RAW Treatment

Mikhail Kormilitsyn Andrew Lizin Alexander Osipenko

Research Institute of Atomic Reactors

Dimitrovgrad Russia

1

UNF

2wwwrosatomru

INTERACTION OF TERMAL AND FAST REACTORrsquoS FUEL CYCLES

Thermal reactors Fast Reactors

Model of RUSSIANIntegrated UNF Management System for 2025-2030

RBMK7 units

VVER-10001200

30 units(in Russia)

U fuel fab HLW Disposal

Fast Reactor FuelsReprocessing amp Fab

600 t

400 t

MOX-VVER Pu + U

Centralized UNF Storage(up to 30 000 MT HM)

RT-2 LWR UNFReprocessing plant

1000-1700 t of UNFyear

amp MOX Fab

UNF

UNF 250 t

UNF FR (W-Pu)

U-Pu-fuel

UNF

BN-800

BN-1200andor BREST-

1200

Several units

VVER-10001200

20 units(abroad)

U

UNF FR

Dimitrovgrad dry Process (DDP) MOXMOX flow sheet

Cathode(pyrographite)

Stirrer

UO22+

+

Pu4+

UO22+

UO2 PuO2

Cl2 Cl2+O2+ArStirrerCathode

Na3PO4

Fuel chlorination650 оС

pyrographite bathNaCl -2CsCl

Electrolysis-additional 630 оС

Melt purification650 оС

Cl-

(MAREE)RW4

MAREE

UO22+

UO2 +NpO2

Ar (Cl2)

+

Preliminaryelectrolysis

630 оС

NpO2+

UO22+

MOX

Cl2+O2+Ar

+

Main MOXelectrolysis

630 оС

PuO2+

PuO2+

MOX

4

Integrated flow sheet of spent MOX-fuel reprocessing

Freezing ofchlorine

Chlorination Electrolysis of therecovered melt

Precipitativecrystallization

Electrolysis of theoxidized melt

Melt purificationwith phosphate

Removal of captured salts

Cleaning of sublima

Excesschlorine

Off gases

UO2-1 PuO2 UO2-2 Phosphateprecipitate

UO2-1 PuO2 forfabrication of

fuel rods

UO2-2 Phosphateprecipitate

STORAGE STORAGE STORAGE

Spentelectrolyte

Solutions

Concentration of

solutions by

evaporation

Disposal Immobilizationon glass and

ceramics surfaces

Cl2

Off gas

Cl2 absorptionRemoval of

aerosols

Cl2

Off gas

Resultant solution goesinto radioactive drain

Salts

Water

Contaminatedvacuum cleaning

through filters

Gases to the airduct system

Offgases

Sublimates

Cl2

Off Gases

Incineration ofpyrographite

ashes

FuelMechanicaldecladding

Fuel rods

Treatment inthe resin

Decontamination

Disposal

Pyrographitecomponents

Units ofequipment

Metalequipmen

t

Solution

Burnable waste

Resultantsolution goes

into radioactivedrain

Resin

5

Summary of the MOX-fuel reprocessing process andmain types of radioactive waste

The MOX-fuel to be reprocessed is subjected to mechanical decladdinggrinding to a powder and loaded into the head device- chlorator - electrolyserAll the operations of pyroelectrochemical reprocessing are carried out in thedevice The sequence of operations is as follows

Fuel chlorination in molten NaCl-KCl LiCl-NaCl-KCl-СsCl

Electrolysis for removal of UO2-1 with some fission products (FPs)captured by cathodic deposit

Precipitative crystallization of PuO2 decontaminated from FPs and otherimpurities

Additional electrolysis for removal of UO2-2 with deposited FPs and otherimpurities

Molten salt purification by introduction of phosphates into the melt

6

01M HNO3

(3Li-2K)Cl+CdCl2+PuCl3

Fissile material

Fuelregeneration

Cd

Removal of salts

U+Pu+Cd+(3Li-2K)Cl

Partitioning of minoractinides and FP

(3L

i-2

K)C

l+М

А+

ПД

Removal of salts

Bi+МА+(3Li-2K)Cl

Fabrication of targets

Carbonateprecipitation

(3Li-2K)Cl+FP

Na2СO3

Immobilization

Precipitatecollection

(3Li-2K)ClAfter 3 cycles

Precipitatepurification

Condensation ofsolutions by evaporations

Concentration ofsolutions byevaporation

Aqueous solution(3Li-2K)Cl

Precipitate with FP

FP oxides

(3L

i-2

K)C

l

HNO3 dilute solution

Aqueous solution (3Li-2K)Cl

wa

ter

Condensation ofsolutions byevaporations

Aqueous solution (3Li-2K)Cl

(3Li-2K)Cl

РH

NO

3d

ilu

teso

luti

on

Cd sublimationand condensation

U+Pu+Cd

01M HNO3

(3Li-2K)Cl

UP

up

ow

der

Fuel fabrication

UPu

МА

+B

i

ре

ген

ер

Cd

Bi

(3Li-2K)Cl

water

Integrated flowsheet of pyrochemicalreprocessing of dense fuel

7

Summary of the so called ldquodenserdquo SNF (nitride metal) reprocessingprocess and main types of radioactive waste

The basic processes include the following stages of the dense SNFreprocessing

bull Anodic dissolution with cadmium cathode in molten 3LiCl-2KCl

bull Evaporation of liquid cadmium followed by separation fissilematerials for further manufacturing of metallic and nitride fuel

bull MA partitioning from fission products in a liquid metallic cathode

bull Precipitation of REE by Li2O+K2O trough introduction ofcarbonate collection and removal of salts

bull Immobilization of the resultant oxide product and spentelectrolyte (after repeated use)

8

DDP Pyro HLW

HLW typePhosphate or oxide

concentrateSpent

electrolyteTechnological

wastesPyrographite

OriginProduct s after

purification

of molten salt

Spent Salts

afteraccumulation

of Cs and Sr

Fuel pin

claddings

metallic

equipment

Cruciblestructuralmaterials

Characteristics

Crystalline fine powdercontaining

REE and MA

Alkaline metalschlorides

Metallic wastesCombustible

wastes

Treatmentprocedures

Intermediate storage

Vitrification orCeramization

Intermediatestorage

Vitrification orCeramization

Compactification

Disposal

GrindingFlamelessburning

Recycling of

Ash into

head ofreprocessing

DDP Pyro Wastes treatment

Salt residueSalt

purificationPyroreprocessing

Na3PO4

Phosphates

Fission products

Radioactive Cs

NaClCsClNdPO4C

ePO4

Waste Phosphates Salt residue

Special features contain fission productsAlkaline metal chlorideshigh activity significant

heat release

Basic elements11 wt Nd

44 wt Ce

8196 wt CsCl

1804 wt NaCl

Quantitylt015 kgkg of fastreactor SNF

lt003 kgkg of fastreactor SNF

Data by TOSHIBA estimation for DDP

10

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

As a result of the BOR-60 fuel reprocessing (an ultra high burn-up of 21-24 ha)

phosphate precipitate was obtained

Weight g Bulk densitygcm3

Specific heatrelease Wkg

Specific radioactivity Cig

α-nuclides γ-nuclides

442 06-07 95 93middot10-2 10

Some characteristics of phosphate precipitate

106Ru+106Rh 17middot107 154Eu 78middot108 241Am 32middot109(925)

144Ce+144Pr 33middot1010(90) 155Eu 03middot1010(9) 242Cm 63middot107

137Cs 16middot107 54Mn 48middot106 244Cm 21middot108

125Sb 13middot107 60Co 1middot106

Radioactivity of nuclides in phosphate precipitate Bqg ()

11

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

Hydrolysis tests on phosphate precipitate revealed that the 134Cs and 137Cs isotopesmake for 55 to 88 of the solution activity

the 144Ce (Pr) isotopes make for 68 to 21 of activity and 125Sb produces from 45to 16 of activity (see Table )

NuclidesDuration of hydrolysis tests days

1 3 7 28 100

137Cs 22 10 07 02 006

144Ce(Pr) 39middot10-4 16middot10-4 8middot10-5 47middot10-5 35middot10-5

125Sb 01 007 007 003 002

Total of γ-nuclides

53middot10-3 23middot10-3 17middot10-3 53middot10-4 21middot10-4

Total of α-nuclides

29middot10-4 72middot10-5 55middot10-5 25middot10-5 21middot10-5

Release rates of nuclides from phosphate precipitate( as to the nuclide activity in the sample distilled water 20ordmС)

12

In Dec 2010 26 g of oxide concentrate were obtained as a result of dense fuelreprocessing

Precipitateweight g

Content of some components and radionuclides

Pumass

241AmBqg

137Сs Bqg

154EuBqg

144CeBqg

26 lt0001 54middot106 31middot104 10middot107 86middot106

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Oxide precipitate

Characteristics of real oxide precipitate

13

As an example we refer to the spent electrolyte generated after high burnup fuelreprocessing of the BOR-60 reactor (1995)As a result of reprocessing 81 kg of molten alkali chlorides remainedTheir original composition was LiCl-453NaCl-488KCl-066CsCl

HIGH LEVEL WASTE FROM PYROCHEMICAL PROCESSESAND THEIR SPECIFICATION

Spent electrolytes

Uweight

Puweight

Activity ofα-nuclides

GBqkg

Activity of γ-nuclides GBqkg

106Ru(Rh)

125Sb 134Cs 137Cs144Ce(Pr)

147Pm154E

u60Co

lt0001 lt0001 02 19 07 1517 2024 200 333 59 01

Chemical and radionuclide composition of spent electrolyte

Characteristic

HLW type

Phosphateprecipitate

Spent saltelectrolyte

Phosphate precipitate+ spent salt electrolyte

Glass matrix typePb(PO3)2

NaPO3

NaPO3 AlF3

Al2O3

NaPO3 AlF3

Al2O3

Introduction methodvitrificationТ=9500С

vitrification withoutchloride

conversionТ=9500С

vitrification withoutchloride conversion

Т=9500С

Introduced waste amount 28 20 36

137Cs leaching rate as of the 7th

day gcm2 day710-6 710-6 410-6

Thermal resistance 0С 400 400 400

Radiation resistance 107 Gr (for and ) 1018 -decayg

Vitrification of HLW from DDP pyro reprocessing

15

Vitrification of HLW after pyrochemical processes

Vitrification of phosphate precipitates

A possibility is shown to embed the phosphate precipitate in the alumofluophosphate glass

The real phosphate precipitate generated after BOR-60 fuel reprocessing contains 223of REE and 147 of iron 96 of activity is given by 144Ce (Pr) while 86 of alpha-activity is given by 241AmA composition of glass matrix and waste was selected to carry out a real experiment(NaPO3-75 AlF3-10 NaF-5 Al2O3-10)-85 phosphate precipitation - 15

At the vitrification stage (T=1000C) the release of activity into the gas phase made up28∙10-3 and 10∙10-4 of the initial phosphate precipitate activity for - and -emittersrespectively Among the -emitters 125Sb (516 ) and 137Cs (419 ) made the keycontribution to the gas phase activity as for the -emitters it was 241Am (92 ) Thermalconductivity of the vitrified waste made up 08-11W(m∙0С) at 35-300C that was anadmissible level for the phosphate glass [10 11]

16

Nuclides

Test duration

3rd

day7th

day14th day

21st

day28th

day58th

day88th

day118th day

Al 21∙10-6 22∙10-6 15∙10-6 23∙10-7 24∙10-7 27∙10-7 10∙10-7 89∙10-8

Na 12∙10-5 74∙10-6 72∙10-6 63∙10-6 45∙10-6 34∙10-6 11∙10-6 52∙10-7

P 30∙10-6 29∙10-6 84∙10-7 32∙10-7 35∙10-7 51∙10-7 27∙10-7 16∙10-7

F 70 ∙10-6 69∙10-6 51∙10-6 43∙10-6 24∙10-6 15∙10-6 79∙10-7 77∙10-7

125Sb 69∙10-6 24∙10 -6 13∙10-6 81∙10-7 74∙10-7 24∙10-7 24∙10-7 22∙10-7

137Cs 22∙10-5 97∙10-6 56∙10-6 39∙10-6 28∙10-6 27∙10-6 16∙10-6 9∙10-7

144Ce(144Pr) 12∙10-6 12∙10-6 41∙10-7 36∙10-7 23∙10-7 64∙10-8 38∙10-8 24∙10-8

154155Eu 16∙10-6 18∙10-6 63∙10-7 50∙10-7 46∙10-7 13∙10-7 78∙10-8 48∙10-8

241Am 11∙10-6 87∙10-7 66∙10-7 49∙10-7 33∙10-7 88∙10-8 59∙10-8 39∙10-8

242244Cm 12∙10-6 85∙10-7 67∙10-7 50∙10-7 34∙10-7 93∙10-8 65∙10-8 44∙10-8

Rate of components leaching from radioactive glass sample P-1with phosphate precipitate at Т=20-25С g(cm2day)

Vitrification of HLW after pyrochemical processesvitrification of phosphate precipitates

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 2: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

UNF

2wwwrosatomru

INTERACTION OF TERMAL AND FAST REACTORrsquoS FUEL CYCLES

Thermal reactors Fast Reactors

Model of RUSSIANIntegrated UNF Management System for 2025-2030

RBMK7 units

VVER-10001200

30 units(in Russia)

U fuel fab HLW Disposal

Fast Reactor FuelsReprocessing amp Fab

600 t

400 t

MOX-VVER Pu + U

Centralized UNF Storage(up to 30 000 MT HM)

RT-2 LWR UNFReprocessing plant

1000-1700 t of UNFyear

amp MOX Fab

UNF

UNF 250 t

UNF FR (W-Pu)

U-Pu-fuel

UNF

BN-800

BN-1200andor BREST-

1200

Several units

VVER-10001200

20 units(abroad)

U

UNF FR

Dimitrovgrad dry Process (DDP) MOXMOX flow sheet

Cathode(pyrographite)

Stirrer

UO22+

+

Pu4+

UO22+

UO2 PuO2

Cl2 Cl2+O2+ArStirrerCathode

Na3PO4

Fuel chlorination650 оС

pyrographite bathNaCl -2CsCl

Electrolysis-additional 630 оС

Melt purification650 оС

Cl-

(MAREE)RW4

MAREE

UO22+

UO2 +NpO2

Ar (Cl2)

+

Preliminaryelectrolysis

630 оС

NpO2+

UO22+

MOX

Cl2+O2+Ar

+

Main MOXelectrolysis

630 оС

PuO2+

PuO2+

MOX

4

Integrated flow sheet of spent MOX-fuel reprocessing

Freezing ofchlorine

Chlorination Electrolysis of therecovered melt

Precipitativecrystallization

Electrolysis of theoxidized melt

Melt purificationwith phosphate

Removal of captured salts

Cleaning of sublima

Excesschlorine

Off gases

UO2-1 PuO2 UO2-2 Phosphateprecipitate

UO2-1 PuO2 forfabrication of

fuel rods

UO2-2 Phosphateprecipitate

STORAGE STORAGE STORAGE

Spentelectrolyte

Solutions

Concentration of

solutions by

evaporation

Disposal Immobilizationon glass and

ceramics surfaces

Cl2

Off gas

Cl2 absorptionRemoval of

aerosols

Cl2

Off gas

Resultant solution goesinto radioactive drain

Salts

Water

Contaminatedvacuum cleaning

through filters

Gases to the airduct system

Offgases

Sublimates

Cl2

Off Gases

Incineration ofpyrographite

ashes

FuelMechanicaldecladding

Fuel rods

Treatment inthe resin

Decontamination

Disposal

Pyrographitecomponents

Units ofequipment

Metalequipmen

t

Solution

Burnable waste

Resultantsolution goes

into radioactivedrain

Resin

5

Summary of the MOX-fuel reprocessing process andmain types of radioactive waste

The MOX-fuel to be reprocessed is subjected to mechanical decladdinggrinding to a powder and loaded into the head device- chlorator - electrolyserAll the operations of pyroelectrochemical reprocessing are carried out in thedevice The sequence of operations is as follows

Fuel chlorination in molten NaCl-KCl LiCl-NaCl-KCl-СsCl

Electrolysis for removal of UO2-1 with some fission products (FPs)captured by cathodic deposit

Precipitative crystallization of PuO2 decontaminated from FPs and otherimpurities

Additional electrolysis for removal of UO2-2 with deposited FPs and otherimpurities

Molten salt purification by introduction of phosphates into the melt

6

01M HNO3

(3Li-2K)Cl+CdCl2+PuCl3

Fissile material

Fuelregeneration

Cd

Removal of salts

U+Pu+Cd+(3Li-2K)Cl

Partitioning of minoractinides and FP

(3L

i-2

K)C

l+М

А+

ПД

Removal of salts

Bi+МА+(3Li-2K)Cl

Fabrication of targets

Carbonateprecipitation

(3Li-2K)Cl+FP

Na2СO3

Immobilization

Precipitatecollection

(3Li-2K)ClAfter 3 cycles

Precipitatepurification

Condensation ofsolutions by evaporations

Concentration ofsolutions byevaporation

Aqueous solution(3Li-2K)Cl

Precipitate with FP

FP oxides

(3L

i-2

K)C

l

HNO3 dilute solution

Aqueous solution (3Li-2K)Cl

wa

ter

Condensation ofsolutions byevaporations

Aqueous solution (3Li-2K)Cl

(3Li-2K)Cl

РH

NO

3d

ilu

teso

luti

on

Cd sublimationand condensation

U+Pu+Cd

01M HNO3

(3Li-2K)Cl

UP

up

ow

der

Fuel fabrication

UPu

МА

+B

i

ре

ген

ер

Cd

Bi

(3Li-2K)Cl

water

Integrated flowsheet of pyrochemicalreprocessing of dense fuel

7

Summary of the so called ldquodenserdquo SNF (nitride metal) reprocessingprocess and main types of radioactive waste

The basic processes include the following stages of the dense SNFreprocessing

bull Anodic dissolution with cadmium cathode in molten 3LiCl-2KCl

bull Evaporation of liquid cadmium followed by separation fissilematerials for further manufacturing of metallic and nitride fuel

bull MA partitioning from fission products in a liquid metallic cathode

bull Precipitation of REE by Li2O+K2O trough introduction ofcarbonate collection and removal of salts

bull Immobilization of the resultant oxide product and spentelectrolyte (after repeated use)

8

DDP Pyro HLW

HLW typePhosphate or oxide

concentrateSpent

electrolyteTechnological

wastesPyrographite

OriginProduct s after

purification

of molten salt

Spent Salts

afteraccumulation

of Cs and Sr

Fuel pin

claddings

metallic

equipment

Cruciblestructuralmaterials

Characteristics

Crystalline fine powdercontaining

REE and MA

Alkaline metalschlorides

Metallic wastesCombustible

wastes

Treatmentprocedures

Intermediate storage

Vitrification orCeramization

Intermediatestorage

Vitrification orCeramization

Compactification

Disposal

GrindingFlamelessburning

Recycling of

Ash into

head ofreprocessing

DDP Pyro Wastes treatment

Salt residueSalt

purificationPyroreprocessing

Na3PO4

Phosphates

Fission products

Radioactive Cs

NaClCsClNdPO4C

ePO4

Waste Phosphates Salt residue

Special features contain fission productsAlkaline metal chlorideshigh activity significant

heat release

Basic elements11 wt Nd

44 wt Ce

8196 wt CsCl

1804 wt NaCl

Quantitylt015 kgkg of fastreactor SNF

lt003 kgkg of fastreactor SNF

Data by TOSHIBA estimation for DDP

10

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

As a result of the BOR-60 fuel reprocessing (an ultra high burn-up of 21-24 ha)

phosphate precipitate was obtained

Weight g Bulk densitygcm3

Specific heatrelease Wkg

Specific radioactivity Cig

α-nuclides γ-nuclides

442 06-07 95 93middot10-2 10

Some characteristics of phosphate precipitate

106Ru+106Rh 17middot107 154Eu 78middot108 241Am 32middot109(925)

144Ce+144Pr 33middot1010(90) 155Eu 03middot1010(9) 242Cm 63middot107

137Cs 16middot107 54Mn 48middot106 244Cm 21middot108

125Sb 13middot107 60Co 1middot106

Radioactivity of nuclides in phosphate precipitate Bqg ()

11

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

Hydrolysis tests on phosphate precipitate revealed that the 134Cs and 137Cs isotopesmake for 55 to 88 of the solution activity

the 144Ce (Pr) isotopes make for 68 to 21 of activity and 125Sb produces from 45to 16 of activity (see Table )

NuclidesDuration of hydrolysis tests days

1 3 7 28 100

137Cs 22 10 07 02 006

144Ce(Pr) 39middot10-4 16middot10-4 8middot10-5 47middot10-5 35middot10-5

125Sb 01 007 007 003 002

Total of γ-nuclides

53middot10-3 23middot10-3 17middot10-3 53middot10-4 21middot10-4

Total of α-nuclides

29middot10-4 72middot10-5 55middot10-5 25middot10-5 21middot10-5

Release rates of nuclides from phosphate precipitate( as to the nuclide activity in the sample distilled water 20ordmС)

12

In Dec 2010 26 g of oxide concentrate were obtained as a result of dense fuelreprocessing

Precipitateweight g

Content of some components and radionuclides

Pumass

241AmBqg

137Сs Bqg

154EuBqg

144CeBqg

26 lt0001 54middot106 31middot104 10middot107 86middot106

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Oxide precipitate

Characteristics of real oxide precipitate

13

As an example we refer to the spent electrolyte generated after high burnup fuelreprocessing of the BOR-60 reactor (1995)As a result of reprocessing 81 kg of molten alkali chlorides remainedTheir original composition was LiCl-453NaCl-488KCl-066CsCl

HIGH LEVEL WASTE FROM PYROCHEMICAL PROCESSESAND THEIR SPECIFICATION

Spent electrolytes

Uweight

Puweight

Activity ofα-nuclides

GBqkg

Activity of γ-nuclides GBqkg

106Ru(Rh)

125Sb 134Cs 137Cs144Ce(Pr)

147Pm154E

u60Co

lt0001 lt0001 02 19 07 1517 2024 200 333 59 01

Chemical and radionuclide composition of spent electrolyte

Characteristic

HLW type

Phosphateprecipitate

Spent saltelectrolyte

Phosphate precipitate+ spent salt electrolyte

Glass matrix typePb(PO3)2

NaPO3

NaPO3 AlF3

Al2O3

NaPO3 AlF3

Al2O3

Introduction methodvitrificationТ=9500С

vitrification withoutchloride

conversionТ=9500С

vitrification withoutchloride conversion

Т=9500С

Introduced waste amount 28 20 36

137Cs leaching rate as of the 7th

day gcm2 day710-6 710-6 410-6

Thermal resistance 0С 400 400 400

Radiation resistance 107 Gr (for and ) 1018 -decayg

Vitrification of HLW from DDP pyro reprocessing

15

Vitrification of HLW after pyrochemical processes

Vitrification of phosphate precipitates

A possibility is shown to embed the phosphate precipitate in the alumofluophosphate glass

The real phosphate precipitate generated after BOR-60 fuel reprocessing contains 223of REE and 147 of iron 96 of activity is given by 144Ce (Pr) while 86 of alpha-activity is given by 241AmA composition of glass matrix and waste was selected to carry out a real experiment(NaPO3-75 AlF3-10 NaF-5 Al2O3-10)-85 phosphate precipitation - 15

At the vitrification stage (T=1000C) the release of activity into the gas phase made up28∙10-3 and 10∙10-4 of the initial phosphate precipitate activity for - and -emittersrespectively Among the -emitters 125Sb (516 ) and 137Cs (419 ) made the keycontribution to the gas phase activity as for the -emitters it was 241Am (92 ) Thermalconductivity of the vitrified waste made up 08-11W(m∙0С) at 35-300C that was anadmissible level for the phosphate glass [10 11]

16

Nuclides

Test duration

3rd

day7th

day14th day

21st

day28th

day58th

day88th

day118th day

Al 21∙10-6 22∙10-6 15∙10-6 23∙10-7 24∙10-7 27∙10-7 10∙10-7 89∙10-8

Na 12∙10-5 74∙10-6 72∙10-6 63∙10-6 45∙10-6 34∙10-6 11∙10-6 52∙10-7

P 30∙10-6 29∙10-6 84∙10-7 32∙10-7 35∙10-7 51∙10-7 27∙10-7 16∙10-7

F 70 ∙10-6 69∙10-6 51∙10-6 43∙10-6 24∙10-6 15∙10-6 79∙10-7 77∙10-7

125Sb 69∙10-6 24∙10 -6 13∙10-6 81∙10-7 74∙10-7 24∙10-7 24∙10-7 22∙10-7

137Cs 22∙10-5 97∙10-6 56∙10-6 39∙10-6 28∙10-6 27∙10-6 16∙10-6 9∙10-7

144Ce(144Pr) 12∙10-6 12∙10-6 41∙10-7 36∙10-7 23∙10-7 64∙10-8 38∙10-8 24∙10-8

154155Eu 16∙10-6 18∙10-6 63∙10-7 50∙10-7 46∙10-7 13∙10-7 78∙10-8 48∙10-8

241Am 11∙10-6 87∙10-7 66∙10-7 49∙10-7 33∙10-7 88∙10-8 59∙10-8 39∙10-8

242244Cm 12∙10-6 85∙10-7 67∙10-7 50∙10-7 34∙10-7 93∙10-8 65∙10-8 44∙10-8

Rate of components leaching from radioactive glass sample P-1with phosphate precipitate at Т=20-25С g(cm2day)

Vitrification of HLW after pyrochemical processesvitrification of phosphate precipitates

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 3: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

Dimitrovgrad dry Process (DDP) MOXMOX flow sheet

Cathode(pyrographite)

Stirrer

UO22+

+

Pu4+

UO22+

UO2 PuO2

Cl2 Cl2+O2+ArStirrerCathode

Na3PO4

Fuel chlorination650 оС

pyrographite bathNaCl -2CsCl

Electrolysis-additional 630 оС

Melt purification650 оС

Cl-

(MAREE)RW4

MAREE

UO22+

UO2 +NpO2

Ar (Cl2)

+

Preliminaryelectrolysis

630 оС

NpO2+

UO22+

MOX

Cl2+O2+Ar

+

Main MOXelectrolysis

630 оС

PuO2+

PuO2+

MOX

4

Integrated flow sheet of spent MOX-fuel reprocessing

Freezing ofchlorine

Chlorination Electrolysis of therecovered melt

Precipitativecrystallization

Electrolysis of theoxidized melt

Melt purificationwith phosphate

Removal of captured salts

Cleaning of sublima

Excesschlorine

Off gases

UO2-1 PuO2 UO2-2 Phosphateprecipitate

UO2-1 PuO2 forfabrication of

fuel rods

UO2-2 Phosphateprecipitate

STORAGE STORAGE STORAGE

Spentelectrolyte

Solutions

Concentration of

solutions by

evaporation

Disposal Immobilizationon glass and

ceramics surfaces

Cl2

Off gas

Cl2 absorptionRemoval of

aerosols

Cl2

Off gas

Resultant solution goesinto radioactive drain

Salts

Water

Contaminatedvacuum cleaning

through filters

Gases to the airduct system

Offgases

Sublimates

Cl2

Off Gases

Incineration ofpyrographite

ashes

FuelMechanicaldecladding

Fuel rods

Treatment inthe resin

Decontamination

Disposal

Pyrographitecomponents

Units ofequipment

Metalequipmen

t

Solution

Burnable waste

Resultantsolution goes

into radioactivedrain

Resin

5

Summary of the MOX-fuel reprocessing process andmain types of radioactive waste

The MOX-fuel to be reprocessed is subjected to mechanical decladdinggrinding to a powder and loaded into the head device- chlorator - electrolyserAll the operations of pyroelectrochemical reprocessing are carried out in thedevice The sequence of operations is as follows

Fuel chlorination in molten NaCl-KCl LiCl-NaCl-KCl-СsCl

Electrolysis for removal of UO2-1 with some fission products (FPs)captured by cathodic deposit

Precipitative crystallization of PuO2 decontaminated from FPs and otherimpurities

Additional electrolysis for removal of UO2-2 with deposited FPs and otherimpurities

Molten salt purification by introduction of phosphates into the melt

6

01M HNO3

(3Li-2K)Cl+CdCl2+PuCl3

Fissile material

Fuelregeneration

Cd

Removal of salts

U+Pu+Cd+(3Li-2K)Cl

Partitioning of minoractinides and FP

(3L

i-2

K)C

l+М

А+

ПД

Removal of salts

Bi+МА+(3Li-2K)Cl

Fabrication of targets

Carbonateprecipitation

(3Li-2K)Cl+FP

Na2СO3

Immobilization

Precipitatecollection

(3Li-2K)ClAfter 3 cycles

Precipitatepurification

Condensation ofsolutions by evaporations

Concentration ofsolutions byevaporation

Aqueous solution(3Li-2K)Cl

Precipitate with FP

FP oxides

(3L

i-2

K)C

l

HNO3 dilute solution

Aqueous solution (3Li-2K)Cl

wa

ter

Condensation ofsolutions byevaporations

Aqueous solution (3Li-2K)Cl

(3Li-2K)Cl

РH

NO

3d

ilu

teso

luti

on

Cd sublimationand condensation

U+Pu+Cd

01M HNO3

(3Li-2K)Cl

UP

up

ow

der

Fuel fabrication

UPu

МА

+B

i

ре

ген

ер

Cd

Bi

(3Li-2K)Cl

water

Integrated flowsheet of pyrochemicalreprocessing of dense fuel

7

Summary of the so called ldquodenserdquo SNF (nitride metal) reprocessingprocess and main types of radioactive waste

The basic processes include the following stages of the dense SNFreprocessing

bull Anodic dissolution with cadmium cathode in molten 3LiCl-2KCl

bull Evaporation of liquid cadmium followed by separation fissilematerials for further manufacturing of metallic and nitride fuel

bull MA partitioning from fission products in a liquid metallic cathode

bull Precipitation of REE by Li2O+K2O trough introduction ofcarbonate collection and removal of salts

bull Immobilization of the resultant oxide product and spentelectrolyte (after repeated use)

8

DDP Pyro HLW

HLW typePhosphate or oxide

concentrateSpent

electrolyteTechnological

wastesPyrographite

OriginProduct s after

purification

of molten salt

Spent Salts

afteraccumulation

of Cs and Sr

Fuel pin

claddings

metallic

equipment

Cruciblestructuralmaterials

Characteristics

Crystalline fine powdercontaining

REE and MA

Alkaline metalschlorides

Metallic wastesCombustible

wastes

Treatmentprocedures

Intermediate storage

Vitrification orCeramization

Intermediatestorage

Vitrification orCeramization

Compactification

Disposal

GrindingFlamelessburning

Recycling of

Ash into

head ofreprocessing

DDP Pyro Wastes treatment

Salt residueSalt

purificationPyroreprocessing

Na3PO4

Phosphates

Fission products

Radioactive Cs

NaClCsClNdPO4C

ePO4

Waste Phosphates Salt residue

Special features contain fission productsAlkaline metal chlorideshigh activity significant

heat release

Basic elements11 wt Nd

44 wt Ce

8196 wt CsCl

1804 wt NaCl

Quantitylt015 kgkg of fastreactor SNF

lt003 kgkg of fastreactor SNF

Data by TOSHIBA estimation for DDP

10

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

As a result of the BOR-60 fuel reprocessing (an ultra high burn-up of 21-24 ha)

phosphate precipitate was obtained

Weight g Bulk densitygcm3

Specific heatrelease Wkg

Specific radioactivity Cig

α-nuclides γ-nuclides

442 06-07 95 93middot10-2 10

Some characteristics of phosphate precipitate

106Ru+106Rh 17middot107 154Eu 78middot108 241Am 32middot109(925)

144Ce+144Pr 33middot1010(90) 155Eu 03middot1010(9) 242Cm 63middot107

137Cs 16middot107 54Mn 48middot106 244Cm 21middot108

125Sb 13middot107 60Co 1middot106

Radioactivity of nuclides in phosphate precipitate Bqg ()

11

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

Hydrolysis tests on phosphate precipitate revealed that the 134Cs and 137Cs isotopesmake for 55 to 88 of the solution activity

the 144Ce (Pr) isotopes make for 68 to 21 of activity and 125Sb produces from 45to 16 of activity (see Table )

NuclidesDuration of hydrolysis tests days

1 3 7 28 100

137Cs 22 10 07 02 006

144Ce(Pr) 39middot10-4 16middot10-4 8middot10-5 47middot10-5 35middot10-5

125Sb 01 007 007 003 002

Total of γ-nuclides

53middot10-3 23middot10-3 17middot10-3 53middot10-4 21middot10-4

Total of α-nuclides

29middot10-4 72middot10-5 55middot10-5 25middot10-5 21middot10-5

Release rates of nuclides from phosphate precipitate( as to the nuclide activity in the sample distilled water 20ordmС)

12

In Dec 2010 26 g of oxide concentrate were obtained as a result of dense fuelreprocessing

Precipitateweight g

Content of some components and radionuclides

Pumass

241AmBqg

137Сs Bqg

154EuBqg

144CeBqg

26 lt0001 54middot106 31middot104 10middot107 86middot106

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Oxide precipitate

Characteristics of real oxide precipitate

13

As an example we refer to the spent electrolyte generated after high burnup fuelreprocessing of the BOR-60 reactor (1995)As a result of reprocessing 81 kg of molten alkali chlorides remainedTheir original composition was LiCl-453NaCl-488KCl-066CsCl

HIGH LEVEL WASTE FROM PYROCHEMICAL PROCESSESAND THEIR SPECIFICATION

Spent electrolytes

Uweight

Puweight

Activity ofα-nuclides

GBqkg

Activity of γ-nuclides GBqkg

106Ru(Rh)

125Sb 134Cs 137Cs144Ce(Pr)

147Pm154E

u60Co

lt0001 lt0001 02 19 07 1517 2024 200 333 59 01

Chemical and radionuclide composition of spent electrolyte

Characteristic

HLW type

Phosphateprecipitate

Spent saltelectrolyte

Phosphate precipitate+ spent salt electrolyte

Glass matrix typePb(PO3)2

NaPO3

NaPO3 AlF3

Al2O3

NaPO3 AlF3

Al2O3

Introduction methodvitrificationТ=9500С

vitrification withoutchloride

conversionТ=9500С

vitrification withoutchloride conversion

Т=9500С

Introduced waste amount 28 20 36

137Cs leaching rate as of the 7th

day gcm2 day710-6 710-6 410-6

Thermal resistance 0С 400 400 400

Radiation resistance 107 Gr (for and ) 1018 -decayg

Vitrification of HLW from DDP pyro reprocessing

15

Vitrification of HLW after pyrochemical processes

Vitrification of phosphate precipitates

A possibility is shown to embed the phosphate precipitate in the alumofluophosphate glass

The real phosphate precipitate generated after BOR-60 fuel reprocessing contains 223of REE and 147 of iron 96 of activity is given by 144Ce (Pr) while 86 of alpha-activity is given by 241AmA composition of glass matrix and waste was selected to carry out a real experiment(NaPO3-75 AlF3-10 NaF-5 Al2O3-10)-85 phosphate precipitation - 15

At the vitrification stage (T=1000C) the release of activity into the gas phase made up28∙10-3 and 10∙10-4 of the initial phosphate precipitate activity for - and -emittersrespectively Among the -emitters 125Sb (516 ) and 137Cs (419 ) made the keycontribution to the gas phase activity as for the -emitters it was 241Am (92 ) Thermalconductivity of the vitrified waste made up 08-11W(m∙0С) at 35-300C that was anadmissible level for the phosphate glass [10 11]

16

Nuclides

Test duration

3rd

day7th

day14th day

21st

day28th

day58th

day88th

day118th day

Al 21∙10-6 22∙10-6 15∙10-6 23∙10-7 24∙10-7 27∙10-7 10∙10-7 89∙10-8

Na 12∙10-5 74∙10-6 72∙10-6 63∙10-6 45∙10-6 34∙10-6 11∙10-6 52∙10-7

P 30∙10-6 29∙10-6 84∙10-7 32∙10-7 35∙10-7 51∙10-7 27∙10-7 16∙10-7

F 70 ∙10-6 69∙10-6 51∙10-6 43∙10-6 24∙10-6 15∙10-6 79∙10-7 77∙10-7

125Sb 69∙10-6 24∙10 -6 13∙10-6 81∙10-7 74∙10-7 24∙10-7 24∙10-7 22∙10-7

137Cs 22∙10-5 97∙10-6 56∙10-6 39∙10-6 28∙10-6 27∙10-6 16∙10-6 9∙10-7

144Ce(144Pr) 12∙10-6 12∙10-6 41∙10-7 36∙10-7 23∙10-7 64∙10-8 38∙10-8 24∙10-8

154155Eu 16∙10-6 18∙10-6 63∙10-7 50∙10-7 46∙10-7 13∙10-7 78∙10-8 48∙10-8

241Am 11∙10-6 87∙10-7 66∙10-7 49∙10-7 33∙10-7 88∙10-8 59∙10-8 39∙10-8

242244Cm 12∙10-6 85∙10-7 67∙10-7 50∙10-7 34∙10-7 93∙10-8 65∙10-8 44∙10-8

Rate of components leaching from radioactive glass sample P-1with phosphate precipitate at Т=20-25С g(cm2day)

Vitrification of HLW after pyrochemical processesvitrification of phosphate precipitates

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 4: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

4

Integrated flow sheet of spent MOX-fuel reprocessing

Freezing ofchlorine

Chlorination Electrolysis of therecovered melt

Precipitativecrystallization

Electrolysis of theoxidized melt

Melt purificationwith phosphate

Removal of captured salts

Cleaning of sublima

Excesschlorine

Off gases

UO2-1 PuO2 UO2-2 Phosphateprecipitate

UO2-1 PuO2 forfabrication of

fuel rods

UO2-2 Phosphateprecipitate

STORAGE STORAGE STORAGE

Spentelectrolyte

Solutions

Concentration of

solutions by

evaporation

Disposal Immobilizationon glass and

ceramics surfaces

Cl2

Off gas

Cl2 absorptionRemoval of

aerosols

Cl2

Off gas

Resultant solution goesinto radioactive drain

Salts

Water

Contaminatedvacuum cleaning

through filters

Gases to the airduct system

Offgases

Sublimates

Cl2

Off Gases

Incineration ofpyrographite

ashes

FuelMechanicaldecladding

Fuel rods

Treatment inthe resin

Decontamination

Disposal

Pyrographitecomponents

Units ofequipment

Metalequipmen

t

Solution

Burnable waste

Resultantsolution goes

into radioactivedrain

Resin

5

Summary of the MOX-fuel reprocessing process andmain types of radioactive waste

The MOX-fuel to be reprocessed is subjected to mechanical decladdinggrinding to a powder and loaded into the head device- chlorator - electrolyserAll the operations of pyroelectrochemical reprocessing are carried out in thedevice The sequence of operations is as follows

Fuel chlorination in molten NaCl-KCl LiCl-NaCl-KCl-СsCl

Electrolysis for removal of UO2-1 with some fission products (FPs)captured by cathodic deposit

Precipitative crystallization of PuO2 decontaminated from FPs and otherimpurities

Additional electrolysis for removal of UO2-2 with deposited FPs and otherimpurities

Molten salt purification by introduction of phosphates into the melt

6

01M HNO3

(3Li-2K)Cl+CdCl2+PuCl3

Fissile material

Fuelregeneration

Cd

Removal of salts

U+Pu+Cd+(3Li-2K)Cl

Partitioning of minoractinides and FP

(3L

i-2

K)C

l+М

А+

ПД

Removal of salts

Bi+МА+(3Li-2K)Cl

Fabrication of targets

Carbonateprecipitation

(3Li-2K)Cl+FP

Na2СO3

Immobilization

Precipitatecollection

(3Li-2K)ClAfter 3 cycles

Precipitatepurification

Condensation ofsolutions by evaporations

Concentration ofsolutions byevaporation

Aqueous solution(3Li-2K)Cl

Precipitate with FP

FP oxides

(3L

i-2

K)C

l

HNO3 dilute solution

Aqueous solution (3Li-2K)Cl

wa

ter

Condensation ofsolutions byevaporations

Aqueous solution (3Li-2K)Cl

(3Li-2K)Cl

РH

NO

3d

ilu

teso

luti

on

Cd sublimationand condensation

U+Pu+Cd

01M HNO3

(3Li-2K)Cl

UP

up

ow

der

Fuel fabrication

UPu

МА

+B

i

ре

ген

ер

Cd

Bi

(3Li-2K)Cl

water

Integrated flowsheet of pyrochemicalreprocessing of dense fuel

7

Summary of the so called ldquodenserdquo SNF (nitride metal) reprocessingprocess and main types of radioactive waste

The basic processes include the following stages of the dense SNFreprocessing

bull Anodic dissolution with cadmium cathode in molten 3LiCl-2KCl

bull Evaporation of liquid cadmium followed by separation fissilematerials for further manufacturing of metallic and nitride fuel

bull MA partitioning from fission products in a liquid metallic cathode

bull Precipitation of REE by Li2O+K2O trough introduction ofcarbonate collection and removal of salts

bull Immobilization of the resultant oxide product and spentelectrolyte (after repeated use)

8

DDP Pyro HLW

HLW typePhosphate or oxide

concentrateSpent

electrolyteTechnological

wastesPyrographite

OriginProduct s after

purification

of molten salt

Spent Salts

afteraccumulation

of Cs and Sr

Fuel pin

claddings

metallic

equipment

Cruciblestructuralmaterials

Characteristics

Crystalline fine powdercontaining

REE and MA

Alkaline metalschlorides

Metallic wastesCombustible

wastes

Treatmentprocedures

Intermediate storage

Vitrification orCeramization

Intermediatestorage

Vitrification orCeramization

Compactification

Disposal

GrindingFlamelessburning

Recycling of

Ash into

head ofreprocessing

DDP Pyro Wastes treatment

Salt residueSalt

purificationPyroreprocessing

Na3PO4

Phosphates

Fission products

Radioactive Cs

NaClCsClNdPO4C

ePO4

Waste Phosphates Salt residue

Special features contain fission productsAlkaline metal chlorideshigh activity significant

heat release

Basic elements11 wt Nd

44 wt Ce

8196 wt CsCl

1804 wt NaCl

Quantitylt015 kgkg of fastreactor SNF

lt003 kgkg of fastreactor SNF

Data by TOSHIBA estimation for DDP

10

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

As a result of the BOR-60 fuel reprocessing (an ultra high burn-up of 21-24 ha)

phosphate precipitate was obtained

Weight g Bulk densitygcm3

Specific heatrelease Wkg

Specific radioactivity Cig

α-nuclides γ-nuclides

442 06-07 95 93middot10-2 10

Some characteristics of phosphate precipitate

106Ru+106Rh 17middot107 154Eu 78middot108 241Am 32middot109(925)

144Ce+144Pr 33middot1010(90) 155Eu 03middot1010(9) 242Cm 63middot107

137Cs 16middot107 54Mn 48middot106 244Cm 21middot108

125Sb 13middot107 60Co 1middot106

Radioactivity of nuclides in phosphate precipitate Bqg ()

11

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

Hydrolysis tests on phosphate precipitate revealed that the 134Cs and 137Cs isotopesmake for 55 to 88 of the solution activity

the 144Ce (Pr) isotopes make for 68 to 21 of activity and 125Sb produces from 45to 16 of activity (see Table )

NuclidesDuration of hydrolysis tests days

1 3 7 28 100

137Cs 22 10 07 02 006

144Ce(Pr) 39middot10-4 16middot10-4 8middot10-5 47middot10-5 35middot10-5

125Sb 01 007 007 003 002

Total of γ-nuclides

53middot10-3 23middot10-3 17middot10-3 53middot10-4 21middot10-4

Total of α-nuclides

29middot10-4 72middot10-5 55middot10-5 25middot10-5 21middot10-5

Release rates of nuclides from phosphate precipitate( as to the nuclide activity in the sample distilled water 20ordmС)

12

In Dec 2010 26 g of oxide concentrate were obtained as a result of dense fuelreprocessing

Precipitateweight g

Content of some components and radionuclides

Pumass

241AmBqg

137Сs Bqg

154EuBqg

144CeBqg

26 lt0001 54middot106 31middot104 10middot107 86middot106

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Oxide precipitate

Characteristics of real oxide precipitate

13

As an example we refer to the spent electrolyte generated after high burnup fuelreprocessing of the BOR-60 reactor (1995)As a result of reprocessing 81 kg of molten alkali chlorides remainedTheir original composition was LiCl-453NaCl-488KCl-066CsCl

HIGH LEVEL WASTE FROM PYROCHEMICAL PROCESSESAND THEIR SPECIFICATION

Spent electrolytes

Uweight

Puweight

Activity ofα-nuclides

GBqkg

Activity of γ-nuclides GBqkg

106Ru(Rh)

125Sb 134Cs 137Cs144Ce(Pr)

147Pm154E

u60Co

lt0001 lt0001 02 19 07 1517 2024 200 333 59 01

Chemical and radionuclide composition of spent electrolyte

Characteristic

HLW type

Phosphateprecipitate

Spent saltelectrolyte

Phosphate precipitate+ spent salt electrolyte

Glass matrix typePb(PO3)2

NaPO3

NaPO3 AlF3

Al2O3

NaPO3 AlF3

Al2O3

Introduction methodvitrificationТ=9500С

vitrification withoutchloride

conversionТ=9500С

vitrification withoutchloride conversion

Т=9500С

Introduced waste amount 28 20 36

137Cs leaching rate as of the 7th

day gcm2 day710-6 710-6 410-6

Thermal resistance 0С 400 400 400

Radiation resistance 107 Gr (for and ) 1018 -decayg

Vitrification of HLW from DDP pyro reprocessing

15

Vitrification of HLW after pyrochemical processes

Vitrification of phosphate precipitates

A possibility is shown to embed the phosphate precipitate in the alumofluophosphate glass

The real phosphate precipitate generated after BOR-60 fuel reprocessing contains 223of REE and 147 of iron 96 of activity is given by 144Ce (Pr) while 86 of alpha-activity is given by 241AmA composition of glass matrix and waste was selected to carry out a real experiment(NaPO3-75 AlF3-10 NaF-5 Al2O3-10)-85 phosphate precipitation - 15

At the vitrification stage (T=1000C) the release of activity into the gas phase made up28∙10-3 and 10∙10-4 of the initial phosphate precipitate activity for - and -emittersrespectively Among the -emitters 125Sb (516 ) and 137Cs (419 ) made the keycontribution to the gas phase activity as for the -emitters it was 241Am (92 ) Thermalconductivity of the vitrified waste made up 08-11W(m∙0С) at 35-300C that was anadmissible level for the phosphate glass [10 11]

16

Nuclides

Test duration

3rd

day7th

day14th day

21st

day28th

day58th

day88th

day118th day

Al 21∙10-6 22∙10-6 15∙10-6 23∙10-7 24∙10-7 27∙10-7 10∙10-7 89∙10-8

Na 12∙10-5 74∙10-6 72∙10-6 63∙10-6 45∙10-6 34∙10-6 11∙10-6 52∙10-7

P 30∙10-6 29∙10-6 84∙10-7 32∙10-7 35∙10-7 51∙10-7 27∙10-7 16∙10-7

F 70 ∙10-6 69∙10-6 51∙10-6 43∙10-6 24∙10-6 15∙10-6 79∙10-7 77∙10-7

125Sb 69∙10-6 24∙10 -6 13∙10-6 81∙10-7 74∙10-7 24∙10-7 24∙10-7 22∙10-7

137Cs 22∙10-5 97∙10-6 56∙10-6 39∙10-6 28∙10-6 27∙10-6 16∙10-6 9∙10-7

144Ce(144Pr) 12∙10-6 12∙10-6 41∙10-7 36∙10-7 23∙10-7 64∙10-8 38∙10-8 24∙10-8

154155Eu 16∙10-6 18∙10-6 63∙10-7 50∙10-7 46∙10-7 13∙10-7 78∙10-8 48∙10-8

241Am 11∙10-6 87∙10-7 66∙10-7 49∙10-7 33∙10-7 88∙10-8 59∙10-8 39∙10-8

242244Cm 12∙10-6 85∙10-7 67∙10-7 50∙10-7 34∙10-7 93∙10-8 65∙10-8 44∙10-8

Rate of components leaching from radioactive glass sample P-1with phosphate precipitate at Т=20-25С g(cm2day)

Vitrification of HLW after pyrochemical processesvitrification of phosphate precipitates

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 5: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

5

Summary of the MOX-fuel reprocessing process andmain types of radioactive waste

The MOX-fuel to be reprocessed is subjected to mechanical decladdinggrinding to a powder and loaded into the head device- chlorator - electrolyserAll the operations of pyroelectrochemical reprocessing are carried out in thedevice The sequence of operations is as follows

Fuel chlorination in molten NaCl-KCl LiCl-NaCl-KCl-СsCl

Electrolysis for removal of UO2-1 with some fission products (FPs)captured by cathodic deposit

Precipitative crystallization of PuO2 decontaminated from FPs and otherimpurities

Additional electrolysis for removal of UO2-2 with deposited FPs and otherimpurities

Molten salt purification by introduction of phosphates into the melt

6

01M HNO3

(3Li-2K)Cl+CdCl2+PuCl3

Fissile material

Fuelregeneration

Cd

Removal of salts

U+Pu+Cd+(3Li-2K)Cl

Partitioning of minoractinides and FP

(3L

i-2

K)C

l+М

А+

ПД

Removal of salts

Bi+МА+(3Li-2K)Cl

Fabrication of targets

Carbonateprecipitation

(3Li-2K)Cl+FP

Na2СO3

Immobilization

Precipitatecollection

(3Li-2K)ClAfter 3 cycles

Precipitatepurification

Condensation ofsolutions by evaporations

Concentration ofsolutions byevaporation

Aqueous solution(3Li-2K)Cl

Precipitate with FP

FP oxides

(3L

i-2

K)C

l

HNO3 dilute solution

Aqueous solution (3Li-2K)Cl

wa

ter

Condensation ofsolutions byevaporations

Aqueous solution (3Li-2K)Cl

(3Li-2K)Cl

РH

NO

3d

ilu

teso

luti

on

Cd sublimationand condensation

U+Pu+Cd

01M HNO3

(3Li-2K)Cl

UP

up

ow

der

Fuel fabrication

UPu

МА

+B

i

ре

ген

ер

Cd

Bi

(3Li-2K)Cl

water

Integrated flowsheet of pyrochemicalreprocessing of dense fuel

7

Summary of the so called ldquodenserdquo SNF (nitride metal) reprocessingprocess and main types of radioactive waste

The basic processes include the following stages of the dense SNFreprocessing

bull Anodic dissolution with cadmium cathode in molten 3LiCl-2KCl

bull Evaporation of liquid cadmium followed by separation fissilematerials for further manufacturing of metallic and nitride fuel

bull MA partitioning from fission products in a liquid metallic cathode

bull Precipitation of REE by Li2O+K2O trough introduction ofcarbonate collection and removal of salts

bull Immobilization of the resultant oxide product and spentelectrolyte (after repeated use)

8

DDP Pyro HLW

HLW typePhosphate or oxide

concentrateSpent

electrolyteTechnological

wastesPyrographite

OriginProduct s after

purification

of molten salt

Spent Salts

afteraccumulation

of Cs and Sr

Fuel pin

claddings

metallic

equipment

Cruciblestructuralmaterials

Characteristics

Crystalline fine powdercontaining

REE and MA

Alkaline metalschlorides

Metallic wastesCombustible

wastes

Treatmentprocedures

Intermediate storage

Vitrification orCeramization

Intermediatestorage

Vitrification orCeramization

Compactification

Disposal

GrindingFlamelessburning

Recycling of

Ash into

head ofreprocessing

DDP Pyro Wastes treatment

Salt residueSalt

purificationPyroreprocessing

Na3PO4

Phosphates

Fission products

Radioactive Cs

NaClCsClNdPO4C

ePO4

Waste Phosphates Salt residue

Special features contain fission productsAlkaline metal chlorideshigh activity significant

heat release

Basic elements11 wt Nd

44 wt Ce

8196 wt CsCl

1804 wt NaCl

Quantitylt015 kgkg of fastreactor SNF

lt003 kgkg of fastreactor SNF

Data by TOSHIBA estimation for DDP

10

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

As a result of the BOR-60 fuel reprocessing (an ultra high burn-up of 21-24 ha)

phosphate precipitate was obtained

Weight g Bulk densitygcm3

Specific heatrelease Wkg

Specific radioactivity Cig

α-nuclides γ-nuclides

442 06-07 95 93middot10-2 10

Some characteristics of phosphate precipitate

106Ru+106Rh 17middot107 154Eu 78middot108 241Am 32middot109(925)

144Ce+144Pr 33middot1010(90) 155Eu 03middot1010(9) 242Cm 63middot107

137Cs 16middot107 54Mn 48middot106 244Cm 21middot108

125Sb 13middot107 60Co 1middot106

Radioactivity of nuclides in phosphate precipitate Bqg ()

11

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

Hydrolysis tests on phosphate precipitate revealed that the 134Cs and 137Cs isotopesmake for 55 to 88 of the solution activity

the 144Ce (Pr) isotopes make for 68 to 21 of activity and 125Sb produces from 45to 16 of activity (see Table )

NuclidesDuration of hydrolysis tests days

1 3 7 28 100

137Cs 22 10 07 02 006

144Ce(Pr) 39middot10-4 16middot10-4 8middot10-5 47middot10-5 35middot10-5

125Sb 01 007 007 003 002

Total of γ-nuclides

53middot10-3 23middot10-3 17middot10-3 53middot10-4 21middot10-4

Total of α-nuclides

29middot10-4 72middot10-5 55middot10-5 25middot10-5 21middot10-5

Release rates of nuclides from phosphate precipitate( as to the nuclide activity in the sample distilled water 20ordmС)

12

In Dec 2010 26 g of oxide concentrate were obtained as a result of dense fuelreprocessing

Precipitateweight g

Content of some components and radionuclides

Pumass

241AmBqg

137Сs Bqg

154EuBqg

144CeBqg

26 lt0001 54middot106 31middot104 10middot107 86middot106

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Oxide precipitate

Characteristics of real oxide precipitate

13

As an example we refer to the spent electrolyte generated after high burnup fuelreprocessing of the BOR-60 reactor (1995)As a result of reprocessing 81 kg of molten alkali chlorides remainedTheir original composition was LiCl-453NaCl-488KCl-066CsCl

HIGH LEVEL WASTE FROM PYROCHEMICAL PROCESSESAND THEIR SPECIFICATION

Spent electrolytes

Uweight

Puweight

Activity ofα-nuclides

GBqkg

Activity of γ-nuclides GBqkg

106Ru(Rh)

125Sb 134Cs 137Cs144Ce(Pr)

147Pm154E

u60Co

lt0001 lt0001 02 19 07 1517 2024 200 333 59 01

Chemical and radionuclide composition of spent electrolyte

Characteristic

HLW type

Phosphateprecipitate

Spent saltelectrolyte

Phosphate precipitate+ spent salt electrolyte

Glass matrix typePb(PO3)2

NaPO3

NaPO3 AlF3

Al2O3

NaPO3 AlF3

Al2O3

Introduction methodvitrificationТ=9500С

vitrification withoutchloride

conversionТ=9500С

vitrification withoutchloride conversion

Т=9500С

Introduced waste amount 28 20 36

137Cs leaching rate as of the 7th

day gcm2 day710-6 710-6 410-6

Thermal resistance 0С 400 400 400

Radiation resistance 107 Gr (for and ) 1018 -decayg

Vitrification of HLW from DDP pyro reprocessing

15

Vitrification of HLW after pyrochemical processes

Vitrification of phosphate precipitates

A possibility is shown to embed the phosphate precipitate in the alumofluophosphate glass

The real phosphate precipitate generated after BOR-60 fuel reprocessing contains 223of REE and 147 of iron 96 of activity is given by 144Ce (Pr) while 86 of alpha-activity is given by 241AmA composition of glass matrix and waste was selected to carry out a real experiment(NaPO3-75 AlF3-10 NaF-5 Al2O3-10)-85 phosphate precipitation - 15

At the vitrification stage (T=1000C) the release of activity into the gas phase made up28∙10-3 and 10∙10-4 of the initial phosphate precipitate activity for - and -emittersrespectively Among the -emitters 125Sb (516 ) and 137Cs (419 ) made the keycontribution to the gas phase activity as for the -emitters it was 241Am (92 ) Thermalconductivity of the vitrified waste made up 08-11W(m∙0С) at 35-300C that was anadmissible level for the phosphate glass [10 11]

16

Nuclides

Test duration

3rd

day7th

day14th day

21st

day28th

day58th

day88th

day118th day

Al 21∙10-6 22∙10-6 15∙10-6 23∙10-7 24∙10-7 27∙10-7 10∙10-7 89∙10-8

Na 12∙10-5 74∙10-6 72∙10-6 63∙10-6 45∙10-6 34∙10-6 11∙10-6 52∙10-7

P 30∙10-6 29∙10-6 84∙10-7 32∙10-7 35∙10-7 51∙10-7 27∙10-7 16∙10-7

F 70 ∙10-6 69∙10-6 51∙10-6 43∙10-6 24∙10-6 15∙10-6 79∙10-7 77∙10-7

125Sb 69∙10-6 24∙10 -6 13∙10-6 81∙10-7 74∙10-7 24∙10-7 24∙10-7 22∙10-7

137Cs 22∙10-5 97∙10-6 56∙10-6 39∙10-6 28∙10-6 27∙10-6 16∙10-6 9∙10-7

144Ce(144Pr) 12∙10-6 12∙10-6 41∙10-7 36∙10-7 23∙10-7 64∙10-8 38∙10-8 24∙10-8

154155Eu 16∙10-6 18∙10-6 63∙10-7 50∙10-7 46∙10-7 13∙10-7 78∙10-8 48∙10-8

241Am 11∙10-6 87∙10-7 66∙10-7 49∙10-7 33∙10-7 88∙10-8 59∙10-8 39∙10-8

242244Cm 12∙10-6 85∙10-7 67∙10-7 50∙10-7 34∙10-7 93∙10-8 65∙10-8 44∙10-8

Rate of components leaching from radioactive glass sample P-1with phosphate precipitate at Т=20-25С g(cm2day)

Vitrification of HLW after pyrochemical processesvitrification of phosphate precipitates

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 6: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

6

01M HNO3

(3Li-2K)Cl+CdCl2+PuCl3

Fissile material

Fuelregeneration

Cd

Removal of salts

U+Pu+Cd+(3Li-2K)Cl

Partitioning of minoractinides and FP

(3L

i-2

K)C

l+М

А+

ПД

Removal of salts

Bi+МА+(3Li-2K)Cl

Fabrication of targets

Carbonateprecipitation

(3Li-2K)Cl+FP

Na2СO3

Immobilization

Precipitatecollection

(3Li-2K)ClAfter 3 cycles

Precipitatepurification

Condensation ofsolutions by evaporations

Concentration ofsolutions byevaporation

Aqueous solution(3Li-2K)Cl

Precipitate with FP

FP oxides

(3L

i-2

K)C

l

HNO3 dilute solution

Aqueous solution (3Li-2K)Cl

wa

ter

Condensation ofsolutions byevaporations

Aqueous solution (3Li-2K)Cl

(3Li-2K)Cl

РH

NO

3d

ilu

teso

luti

on

Cd sublimationand condensation

U+Pu+Cd

01M HNO3

(3Li-2K)Cl

UP

up

ow

der

Fuel fabrication

UPu

МА

+B

i

ре

ген

ер

Cd

Bi

(3Li-2K)Cl

water

Integrated flowsheet of pyrochemicalreprocessing of dense fuel

7

Summary of the so called ldquodenserdquo SNF (nitride metal) reprocessingprocess and main types of radioactive waste

The basic processes include the following stages of the dense SNFreprocessing

bull Anodic dissolution with cadmium cathode in molten 3LiCl-2KCl

bull Evaporation of liquid cadmium followed by separation fissilematerials for further manufacturing of metallic and nitride fuel

bull MA partitioning from fission products in a liquid metallic cathode

bull Precipitation of REE by Li2O+K2O trough introduction ofcarbonate collection and removal of salts

bull Immobilization of the resultant oxide product and spentelectrolyte (after repeated use)

8

DDP Pyro HLW

HLW typePhosphate or oxide

concentrateSpent

electrolyteTechnological

wastesPyrographite

OriginProduct s after

purification

of molten salt

Spent Salts

afteraccumulation

of Cs and Sr

Fuel pin

claddings

metallic

equipment

Cruciblestructuralmaterials

Characteristics

Crystalline fine powdercontaining

REE and MA

Alkaline metalschlorides

Metallic wastesCombustible

wastes

Treatmentprocedures

Intermediate storage

Vitrification orCeramization

Intermediatestorage

Vitrification orCeramization

Compactification

Disposal

GrindingFlamelessburning

Recycling of

Ash into

head ofreprocessing

DDP Pyro Wastes treatment

Salt residueSalt

purificationPyroreprocessing

Na3PO4

Phosphates

Fission products

Radioactive Cs

NaClCsClNdPO4C

ePO4

Waste Phosphates Salt residue

Special features contain fission productsAlkaline metal chlorideshigh activity significant

heat release

Basic elements11 wt Nd

44 wt Ce

8196 wt CsCl

1804 wt NaCl

Quantitylt015 kgkg of fastreactor SNF

lt003 kgkg of fastreactor SNF

Data by TOSHIBA estimation for DDP

10

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

As a result of the BOR-60 fuel reprocessing (an ultra high burn-up of 21-24 ha)

phosphate precipitate was obtained

Weight g Bulk densitygcm3

Specific heatrelease Wkg

Specific radioactivity Cig

α-nuclides γ-nuclides

442 06-07 95 93middot10-2 10

Some characteristics of phosphate precipitate

106Ru+106Rh 17middot107 154Eu 78middot108 241Am 32middot109(925)

144Ce+144Pr 33middot1010(90) 155Eu 03middot1010(9) 242Cm 63middot107

137Cs 16middot107 54Mn 48middot106 244Cm 21middot108

125Sb 13middot107 60Co 1middot106

Radioactivity of nuclides in phosphate precipitate Bqg ()

11

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

Hydrolysis tests on phosphate precipitate revealed that the 134Cs and 137Cs isotopesmake for 55 to 88 of the solution activity

the 144Ce (Pr) isotopes make for 68 to 21 of activity and 125Sb produces from 45to 16 of activity (see Table )

NuclidesDuration of hydrolysis tests days

1 3 7 28 100

137Cs 22 10 07 02 006

144Ce(Pr) 39middot10-4 16middot10-4 8middot10-5 47middot10-5 35middot10-5

125Sb 01 007 007 003 002

Total of γ-nuclides

53middot10-3 23middot10-3 17middot10-3 53middot10-4 21middot10-4

Total of α-nuclides

29middot10-4 72middot10-5 55middot10-5 25middot10-5 21middot10-5

Release rates of nuclides from phosphate precipitate( as to the nuclide activity in the sample distilled water 20ordmС)

12

In Dec 2010 26 g of oxide concentrate were obtained as a result of dense fuelreprocessing

Precipitateweight g

Content of some components and radionuclides

Pumass

241AmBqg

137Сs Bqg

154EuBqg

144CeBqg

26 lt0001 54middot106 31middot104 10middot107 86middot106

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Oxide precipitate

Characteristics of real oxide precipitate

13

As an example we refer to the spent electrolyte generated after high burnup fuelreprocessing of the BOR-60 reactor (1995)As a result of reprocessing 81 kg of molten alkali chlorides remainedTheir original composition was LiCl-453NaCl-488KCl-066CsCl

HIGH LEVEL WASTE FROM PYROCHEMICAL PROCESSESAND THEIR SPECIFICATION

Spent electrolytes

Uweight

Puweight

Activity ofα-nuclides

GBqkg

Activity of γ-nuclides GBqkg

106Ru(Rh)

125Sb 134Cs 137Cs144Ce(Pr)

147Pm154E

u60Co

lt0001 lt0001 02 19 07 1517 2024 200 333 59 01

Chemical and radionuclide composition of spent electrolyte

Characteristic

HLW type

Phosphateprecipitate

Spent saltelectrolyte

Phosphate precipitate+ spent salt electrolyte

Glass matrix typePb(PO3)2

NaPO3

NaPO3 AlF3

Al2O3

NaPO3 AlF3

Al2O3

Introduction methodvitrificationТ=9500С

vitrification withoutchloride

conversionТ=9500С

vitrification withoutchloride conversion

Т=9500С

Introduced waste amount 28 20 36

137Cs leaching rate as of the 7th

day gcm2 day710-6 710-6 410-6

Thermal resistance 0С 400 400 400

Radiation resistance 107 Gr (for and ) 1018 -decayg

Vitrification of HLW from DDP pyro reprocessing

15

Vitrification of HLW after pyrochemical processes

Vitrification of phosphate precipitates

A possibility is shown to embed the phosphate precipitate in the alumofluophosphate glass

The real phosphate precipitate generated after BOR-60 fuel reprocessing contains 223of REE and 147 of iron 96 of activity is given by 144Ce (Pr) while 86 of alpha-activity is given by 241AmA composition of glass matrix and waste was selected to carry out a real experiment(NaPO3-75 AlF3-10 NaF-5 Al2O3-10)-85 phosphate precipitation - 15

At the vitrification stage (T=1000C) the release of activity into the gas phase made up28∙10-3 and 10∙10-4 of the initial phosphate precipitate activity for - and -emittersrespectively Among the -emitters 125Sb (516 ) and 137Cs (419 ) made the keycontribution to the gas phase activity as for the -emitters it was 241Am (92 ) Thermalconductivity of the vitrified waste made up 08-11W(m∙0С) at 35-300C that was anadmissible level for the phosphate glass [10 11]

16

Nuclides

Test duration

3rd

day7th

day14th day

21st

day28th

day58th

day88th

day118th day

Al 21∙10-6 22∙10-6 15∙10-6 23∙10-7 24∙10-7 27∙10-7 10∙10-7 89∙10-8

Na 12∙10-5 74∙10-6 72∙10-6 63∙10-6 45∙10-6 34∙10-6 11∙10-6 52∙10-7

P 30∙10-6 29∙10-6 84∙10-7 32∙10-7 35∙10-7 51∙10-7 27∙10-7 16∙10-7

F 70 ∙10-6 69∙10-6 51∙10-6 43∙10-6 24∙10-6 15∙10-6 79∙10-7 77∙10-7

125Sb 69∙10-6 24∙10 -6 13∙10-6 81∙10-7 74∙10-7 24∙10-7 24∙10-7 22∙10-7

137Cs 22∙10-5 97∙10-6 56∙10-6 39∙10-6 28∙10-6 27∙10-6 16∙10-6 9∙10-7

144Ce(144Pr) 12∙10-6 12∙10-6 41∙10-7 36∙10-7 23∙10-7 64∙10-8 38∙10-8 24∙10-8

154155Eu 16∙10-6 18∙10-6 63∙10-7 50∙10-7 46∙10-7 13∙10-7 78∙10-8 48∙10-8

241Am 11∙10-6 87∙10-7 66∙10-7 49∙10-7 33∙10-7 88∙10-8 59∙10-8 39∙10-8

242244Cm 12∙10-6 85∙10-7 67∙10-7 50∙10-7 34∙10-7 93∙10-8 65∙10-8 44∙10-8

Rate of components leaching from radioactive glass sample P-1with phosphate precipitate at Т=20-25С g(cm2day)

Vitrification of HLW after pyrochemical processesvitrification of phosphate precipitates

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 7: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

7

Summary of the so called ldquodenserdquo SNF (nitride metal) reprocessingprocess and main types of radioactive waste

The basic processes include the following stages of the dense SNFreprocessing

bull Anodic dissolution with cadmium cathode in molten 3LiCl-2KCl

bull Evaporation of liquid cadmium followed by separation fissilematerials for further manufacturing of metallic and nitride fuel

bull MA partitioning from fission products in a liquid metallic cathode

bull Precipitation of REE by Li2O+K2O trough introduction ofcarbonate collection and removal of salts

bull Immobilization of the resultant oxide product and spentelectrolyte (after repeated use)

8

DDP Pyro HLW

HLW typePhosphate or oxide

concentrateSpent

electrolyteTechnological

wastesPyrographite

OriginProduct s after

purification

of molten salt

Spent Salts

afteraccumulation

of Cs and Sr

Fuel pin

claddings

metallic

equipment

Cruciblestructuralmaterials

Characteristics

Crystalline fine powdercontaining

REE and MA

Alkaline metalschlorides

Metallic wastesCombustible

wastes

Treatmentprocedures

Intermediate storage

Vitrification orCeramization

Intermediatestorage

Vitrification orCeramization

Compactification

Disposal

GrindingFlamelessburning

Recycling of

Ash into

head ofreprocessing

DDP Pyro Wastes treatment

Salt residueSalt

purificationPyroreprocessing

Na3PO4

Phosphates

Fission products

Radioactive Cs

NaClCsClNdPO4C

ePO4

Waste Phosphates Salt residue

Special features contain fission productsAlkaline metal chlorideshigh activity significant

heat release

Basic elements11 wt Nd

44 wt Ce

8196 wt CsCl

1804 wt NaCl

Quantitylt015 kgkg of fastreactor SNF

lt003 kgkg of fastreactor SNF

Data by TOSHIBA estimation for DDP

10

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

As a result of the BOR-60 fuel reprocessing (an ultra high burn-up of 21-24 ha)

phosphate precipitate was obtained

Weight g Bulk densitygcm3

Specific heatrelease Wkg

Specific radioactivity Cig

α-nuclides γ-nuclides

442 06-07 95 93middot10-2 10

Some characteristics of phosphate precipitate

106Ru+106Rh 17middot107 154Eu 78middot108 241Am 32middot109(925)

144Ce+144Pr 33middot1010(90) 155Eu 03middot1010(9) 242Cm 63middot107

137Cs 16middot107 54Mn 48middot106 244Cm 21middot108

125Sb 13middot107 60Co 1middot106

Radioactivity of nuclides in phosphate precipitate Bqg ()

11

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

Hydrolysis tests on phosphate precipitate revealed that the 134Cs and 137Cs isotopesmake for 55 to 88 of the solution activity

the 144Ce (Pr) isotopes make for 68 to 21 of activity and 125Sb produces from 45to 16 of activity (see Table )

NuclidesDuration of hydrolysis tests days

1 3 7 28 100

137Cs 22 10 07 02 006

144Ce(Pr) 39middot10-4 16middot10-4 8middot10-5 47middot10-5 35middot10-5

125Sb 01 007 007 003 002

Total of γ-nuclides

53middot10-3 23middot10-3 17middot10-3 53middot10-4 21middot10-4

Total of α-nuclides

29middot10-4 72middot10-5 55middot10-5 25middot10-5 21middot10-5

Release rates of nuclides from phosphate precipitate( as to the nuclide activity in the sample distilled water 20ordmС)

12

In Dec 2010 26 g of oxide concentrate were obtained as a result of dense fuelreprocessing

Precipitateweight g

Content of some components and radionuclides

Pumass

241AmBqg

137Сs Bqg

154EuBqg

144CeBqg

26 lt0001 54middot106 31middot104 10middot107 86middot106

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Oxide precipitate

Characteristics of real oxide precipitate

13

As an example we refer to the spent electrolyte generated after high burnup fuelreprocessing of the BOR-60 reactor (1995)As a result of reprocessing 81 kg of molten alkali chlorides remainedTheir original composition was LiCl-453NaCl-488KCl-066CsCl

HIGH LEVEL WASTE FROM PYROCHEMICAL PROCESSESAND THEIR SPECIFICATION

Spent electrolytes

Uweight

Puweight

Activity ofα-nuclides

GBqkg

Activity of γ-nuclides GBqkg

106Ru(Rh)

125Sb 134Cs 137Cs144Ce(Pr)

147Pm154E

u60Co

lt0001 lt0001 02 19 07 1517 2024 200 333 59 01

Chemical and radionuclide composition of spent electrolyte

Characteristic

HLW type

Phosphateprecipitate

Spent saltelectrolyte

Phosphate precipitate+ spent salt electrolyte

Glass matrix typePb(PO3)2

NaPO3

NaPO3 AlF3

Al2O3

NaPO3 AlF3

Al2O3

Introduction methodvitrificationТ=9500С

vitrification withoutchloride

conversionТ=9500С

vitrification withoutchloride conversion

Т=9500С

Introduced waste amount 28 20 36

137Cs leaching rate as of the 7th

day gcm2 day710-6 710-6 410-6

Thermal resistance 0С 400 400 400

Radiation resistance 107 Gr (for and ) 1018 -decayg

Vitrification of HLW from DDP pyro reprocessing

15

Vitrification of HLW after pyrochemical processes

Vitrification of phosphate precipitates

A possibility is shown to embed the phosphate precipitate in the alumofluophosphate glass

The real phosphate precipitate generated after BOR-60 fuel reprocessing contains 223of REE and 147 of iron 96 of activity is given by 144Ce (Pr) while 86 of alpha-activity is given by 241AmA composition of glass matrix and waste was selected to carry out a real experiment(NaPO3-75 AlF3-10 NaF-5 Al2O3-10)-85 phosphate precipitation - 15

At the vitrification stage (T=1000C) the release of activity into the gas phase made up28∙10-3 and 10∙10-4 of the initial phosphate precipitate activity for - and -emittersrespectively Among the -emitters 125Sb (516 ) and 137Cs (419 ) made the keycontribution to the gas phase activity as for the -emitters it was 241Am (92 ) Thermalconductivity of the vitrified waste made up 08-11W(m∙0С) at 35-300C that was anadmissible level for the phosphate glass [10 11]

16

Nuclides

Test duration

3rd

day7th

day14th day

21st

day28th

day58th

day88th

day118th day

Al 21∙10-6 22∙10-6 15∙10-6 23∙10-7 24∙10-7 27∙10-7 10∙10-7 89∙10-8

Na 12∙10-5 74∙10-6 72∙10-6 63∙10-6 45∙10-6 34∙10-6 11∙10-6 52∙10-7

P 30∙10-6 29∙10-6 84∙10-7 32∙10-7 35∙10-7 51∙10-7 27∙10-7 16∙10-7

F 70 ∙10-6 69∙10-6 51∙10-6 43∙10-6 24∙10-6 15∙10-6 79∙10-7 77∙10-7

125Sb 69∙10-6 24∙10 -6 13∙10-6 81∙10-7 74∙10-7 24∙10-7 24∙10-7 22∙10-7

137Cs 22∙10-5 97∙10-6 56∙10-6 39∙10-6 28∙10-6 27∙10-6 16∙10-6 9∙10-7

144Ce(144Pr) 12∙10-6 12∙10-6 41∙10-7 36∙10-7 23∙10-7 64∙10-8 38∙10-8 24∙10-8

154155Eu 16∙10-6 18∙10-6 63∙10-7 50∙10-7 46∙10-7 13∙10-7 78∙10-8 48∙10-8

241Am 11∙10-6 87∙10-7 66∙10-7 49∙10-7 33∙10-7 88∙10-8 59∙10-8 39∙10-8

242244Cm 12∙10-6 85∙10-7 67∙10-7 50∙10-7 34∙10-7 93∙10-8 65∙10-8 44∙10-8

Rate of components leaching from radioactive glass sample P-1with phosphate precipitate at Т=20-25С g(cm2day)

Vitrification of HLW after pyrochemical processesvitrification of phosphate precipitates

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 8: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

8

DDP Pyro HLW

HLW typePhosphate or oxide

concentrateSpent

electrolyteTechnological

wastesPyrographite

OriginProduct s after

purification

of molten salt

Spent Salts

afteraccumulation

of Cs and Sr

Fuel pin

claddings

metallic

equipment

Cruciblestructuralmaterials

Characteristics

Crystalline fine powdercontaining

REE and MA

Alkaline metalschlorides

Metallic wastesCombustible

wastes

Treatmentprocedures

Intermediate storage

Vitrification orCeramization

Intermediatestorage

Vitrification orCeramization

Compactification

Disposal

GrindingFlamelessburning

Recycling of

Ash into

head ofreprocessing

DDP Pyro Wastes treatment

Salt residueSalt

purificationPyroreprocessing

Na3PO4

Phosphates

Fission products

Radioactive Cs

NaClCsClNdPO4C

ePO4

Waste Phosphates Salt residue

Special features contain fission productsAlkaline metal chlorideshigh activity significant

heat release

Basic elements11 wt Nd

44 wt Ce

8196 wt CsCl

1804 wt NaCl

Quantitylt015 kgkg of fastreactor SNF

lt003 kgkg of fastreactor SNF

Data by TOSHIBA estimation for DDP

10

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

As a result of the BOR-60 fuel reprocessing (an ultra high burn-up of 21-24 ha)

phosphate precipitate was obtained

Weight g Bulk densitygcm3

Specific heatrelease Wkg

Specific radioactivity Cig

α-nuclides γ-nuclides

442 06-07 95 93middot10-2 10

Some characteristics of phosphate precipitate

106Ru+106Rh 17middot107 154Eu 78middot108 241Am 32middot109(925)

144Ce+144Pr 33middot1010(90) 155Eu 03middot1010(9) 242Cm 63middot107

137Cs 16middot107 54Mn 48middot106 244Cm 21middot108

125Sb 13middot107 60Co 1middot106

Radioactivity of nuclides in phosphate precipitate Bqg ()

11

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

Hydrolysis tests on phosphate precipitate revealed that the 134Cs and 137Cs isotopesmake for 55 to 88 of the solution activity

the 144Ce (Pr) isotopes make for 68 to 21 of activity and 125Sb produces from 45to 16 of activity (see Table )

NuclidesDuration of hydrolysis tests days

1 3 7 28 100

137Cs 22 10 07 02 006

144Ce(Pr) 39middot10-4 16middot10-4 8middot10-5 47middot10-5 35middot10-5

125Sb 01 007 007 003 002

Total of γ-nuclides

53middot10-3 23middot10-3 17middot10-3 53middot10-4 21middot10-4

Total of α-nuclides

29middot10-4 72middot10-5 55middot10-5 25middot10-5 21middot10-5

Release rates of nuclides from phosphate precipitate( as to the nuclide activity in the sample distilled water 20ordmС)

12

In Dec 2010 26 g of oxide concentrate were obtained as a result of dense fuelreprocessing

Precipitateweight g

Content of some components and radionuclides

Pumass

241AmBqg

137Сs Bqg

154EuBqg

144CeBqg

26 lt0001 54middot106 31middot104 10middot107 86middot106

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Oxide precipitate

Characteristics of real oxide precipitate

13

As an example we refer to the spent electrolyte generated after high burnup fuelreprocessing of the BOR-60 reactor (1995)As a result of reprocessing 81 kg of molten alkali chlorides remainedTheir original composition was LiCl-453NaCl-488KCl-066CsCl

HIGH LEVEL WASTE FROM PYROCHEMICAL PROCESSESAND THEIR SPECIFICATION

Spent electrolytes

Uweight

Puweight

Activity ofα-nuclides

GBqkg

Activity of γ-nuclides GBqkg

106Ru(Rh)

125Sb 134Cs 137Cs144Ce(Pr)

147Pm154E

u60Co

lt0001 lt0001 02 19 07 1517 2024 200 333 59 01

Chemical and radionuclide composition of spent electrolyte

Characteristic

HLW type

Phosphateprecipitate

Spent saltelectrolyte

Phosphate precipitate+ spent salt electrolyte

Glass matrix typePb(PO3)2

NaPO3

NaPO3 AlF3

Al2O3

NaPO3 AlF3

Al2O3

Introduction methodvitrificationТ=9500С

vitrification withoutchloride

conversionТ=9500С

vitrification withoutchloride conversion

Т=9500С

Introduced waste amount 28 20 36

137Cs leaching rate as of the 7th

day gcm2 day710-6 710-6 410-6

Thermal resistance 0С 400 400 400

Radiation resistance 107 Gr (for and ) 1018 -decayg

Vitrification of HLW from DDP pyro reprocessing

15

Vitrification of HLW after pyrochemical processes

Vitrification of phosphate precipitates

A possibility is shown to embed the phosphate precipitate in the alumofluophosphate glass

The real phosphate precipitate generated after BOR-60 fuel reprocessing contains 223of REE and 147 of iron 96 of activity is given by 144Ce (Pr) while 86 of alpha-activity is given by 241AmA composition of glass matrix and waste was selected to carry out a real experiment(NaPO3-75 AlF3-10 NaF-5 Al2O3-10)-85 phosphate precipitation - 15

At the vitrification stage (T=1000C) the release of activity into the gas phase made up28∙10-3 and 10∙10-4 of the initial phosphate precipitate activity for - and -emittersrespectively Among the -emitters 125Sb (516 ) and 137Cs (419 ) made the keycontribution to the gas phase activity as for the -emitters it was 241Am (92 ) Thermalconductivity of the vitrified waste made up 08-11W(m∙0С) at 35-300C that was anadmissible level for the phosphate glass [10 11]

16

Nuclides

Test duration

3rd

day7th

day14th day

21st

day28th

day58th

day88th

day118th day

Al 21∙10-6 22∙10-6 15∙10-6 23∙10-7 24∙10-7 27∙10-7 10∙10-7 89∙10-8

Na 12∙10-5 74∙10-6 72∙10-6 63∙10-6 45∙10-6 34∙10-6 11∙10-6 52∙10-7

P 30∙10-6 29∙10-6 84∙10-7 32∙10-7 35∙10-7 51∙10-7 27∙10-7 16∙10-7

F 70 ∙10-6 69∙10-6 51∙10-6 43∙10-6 24∙10-6 15∙10-6 79∙10-7 77∙10-7

125Sb 69∙10-6 24∙10 -6 13∙10-6 81∙10-7 74∙10-7 24∙10-7 24∙10-7 22∙10-7

137Cs 22∙10-5 97∙10-6 56∙10-6 39∙10-6 28∙10-6 27∙10-6 16∙10-6 9∙10-7

144Ce(144Pr) 12∙10-6 12∙10-6 41∙10-7 36∙10-7 23∙10-7 64∙10-8 38∙10-8 24∙10-8

154155Eu 16∙10-6 18∙10-6 63∙10-7 50∙10-7 46∙10-7 13∙10-7 78∙10-8 48∙10-8

241Am 11∙10-6 87∙10-7 66∙10-7 49∙10-7 33∙10-7 88∙10-8 59∙10-8 39∙10-8

242244Cm 12∙10-6 85∙10-7 67∙10-7 50∙10-7 34∙10-7 93∙10-8 65∙10-8 44∙10-8

Rate of components leaching from radioactive glass sample P-1with phosphate precipitate at Т=20-25С g(cm2day)

Vitrification of HLW after pyrochemical processesvitrification of phosphate precipitates

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 9: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

DDP Pyro Wastes treatment

Salt residueSalt

purificationPyroreprocessing

Na3PO4

Phosphates

Fission products

Radioactive Cs

NaClCsClNdPO4C

ePO4

Waste Phosphates Salt residue

Special features contain fission productsAlkaline metal chlorideshigh activity significant

heat release

Basic elements11 wt Nd

44 wt Ce

8196 wt CsCl

1804 wt NaCl

Quantitylt015 kgkg of fastreactor SNF

lt003 kgkg of fastreactor SNF

Data by TOSHIBA estimation for DDP

10

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

As a result of the BOR-60 fuel reprocessing (an ultra high burn-up of 21-24 ha)

phosphate precipitate was obtained

Weight g Bulk densitygcm3

Specific heatrelease Wkg

Specific radioactivity Cig

α-nuclides γ-nuclides

442 06-07 95 93middot10-2 10

Some characteristics of phosphate precipitate

106Ru+106Rh 17middot107 154Eu 78middot108 241Am 32middot109(925)

144Ce+144Pr 33middot1010(90) 155Eu 03middot1010(9) 242Cm 63middot107

137Cs 16middot107 54Mn 48middot106 244Cm 21middot108

125Sb 13middot107 60Co 1middot106

Radioactivity of nuclides in phosphate precipitate Bqg ()

11

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

Hydrolysis tests on phosphate precipitate revealed that the 134Cs and 137Cs isotopesmake for 55 to 88 of the solution activity

the 144Ce (Pr) isotopes make for 68 to 21 of activity and 125Sb produces from 45to 16 of activity (see Table )

NuclidesDuration of hydrolysis tests days

1 3 7 28 100

137Cs 22 10 07 02 006

144Ce(Pr) 39middot10-4 16middot10-4 8middot10-5 47middot10-5 35middot10-5

125Sb 01 007 007 003 002

Total of γ-nuclides

53middot10-3 23middot10-3 17middot10-3 53middot10-4 21middot10-4

Total of α-nuclides

29middot10-4 72middot10-5 55middot10-5 25middot10-5 21middot10-5

Release rates of nuclides from phosphate precipitate( as to the nuclide activity in the sample distilled water 20ordmС)

12

In Dec 2010 26 g of oxide concentrate were obtained as a result of dense fuelreprocessing

Precipitateweight g

Content of some components and radionuclides

Pumass

241AmBqg

137Сs Bqg

154EuBqg

144CeBqg

26 lt0001 54middot106 31middot104 10middot107 86middot106

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Oxide precipitate

Characteristics of real oxide precipitate

13

As an example we refer to the spent electrolyte generated after high burnup fuelreprocessing of the BOR-60 reactor (1995)As a result of reprocessing 81 kg of molten alkali chlorides remainedTheir original composition was LiCl-453NaCl-488KCl-066CsCl

HIGH LEVEL WASTE FROM PYROCHEMICAL PROCESSESAND THEIR SPECIFICATION

Spent electrolytes

Uweight

Puweight

Activity ofα-nuclides

GBqkg

Activity of γ-nuclides GBqkg

106Ru(Rh)

125Sb 134Cs 137Cs144Ce(Pr)

147Pm154E

u60Co

lt0001 lt0001 02 19 07 1517 2024 200 333 59 01

Chemical and radionuclide composition of spent electrolyte

Characteristic

HLW type

Phosphateprecipitate

Spent saltelectrolyte

Phosphate precipitate+ spent salt electrolyte

Glass matrix typePb(PO3)2

NaPO3

NaPO3 AlF3

Al2O3

NaPO3 AlF3

Al2O3

Introduction methodvitrificationТ=9500С

vitrification withoutchloride

conversionТ=9500С

vitrification withoutchloride conversion

Т=9500С

Introduced waste amount 28 20 36

137Cs leaching rate as of the 7th

day gcm2 day710-6 710-6 410-6

Thermal resistance 0С 400 400 400

Radiation resistance 107 Gr (for and ) 1018 -decayg

Vitrification of HLW from DDP pyro reprocessing

15

Vitrification of HLW after pyrochemical processes

Vitrification of phosphate precipitates

A possibility is shown to embed the phosphate precipitate in the alumofluophosphate glass

The real phosphate precipitate generated after BOR-60 fuel reprocessing contains 223of REE and 147 of iron 96 of activity is given by 144Ce (Pr) while 86 of alpha-activity is given by 241AmA composition of glass matrix and waste was selected to carry out a real experiment(NaPO3-75 AlF3-10 NaF-5 Al2O3-10)-85 phosphate precipitation - 15

At the vitrification stage (T=1000C) the release of activity into the gas phase made up28∙10-3 and 10∙10-4 of the initial phosphate precipitate activity for - and -emittersrespectively Among the -emitters 125Sb (516 ) and 137Cs (419 ) made the keycontribution to the gas phase activity as for the -emitters it was 241Am (92 ) Thermalconductivity of the vitrified waste made up 08-11W(m∙0С) at 35-300C that was anadmissible level for the phosphate glass [10 11]

16

Nuclides

Test duration

3rd

day7th

day14th day

21st

day28th

day58th

day88th

day118th day

Al 21∙10-6 22∙10-6 15∙10-6 23∙10-7 24∙10-7 27∙10-7 10∙10-7 89∙10-8

Na 12∙10-5 74∙10-6 72∙10-6 63∙10-6 45∙10-6 34∙10-6 11∙10-6 52∙10-7

P 30∙10-6 29∙10-6 84∙10-7 32∙10-7 35∙10-7 51∙10-7 27∙10-7 16∙10-7

F 70 ∙10-6 69∙10-6 51∙10-6 43∙10-6 24∙10-6 15∙10-6 79∙10-7 77∙10-7

125Sb 69∙10-6 24∙10 -6 13∙10-6 81∙10-7 74∙10-7 24∙10-7 24∙10-7 22∙10-7

137Cs 22∙10-5 97∙10-6 56∙10-6 39∙10-6 28∙10-6 27∙10-6 16∙10-6 9∙10-7

144Ce(144Pr) 12∙10-6 12∙10-6 41∙10-7 36∙10-7 23∙10-7 64∙10-8 38∙10-8 24∙10-8

154155Eu 16∙10-6 18∙10-6 63∙10-7 50∙10-7 46∙10-7 13∙10-7 78∙10-8 48∙10-8

241Am 11∙10-6 87∙10-7 66∙10-7 49∙10-7 33∙10-7 88∙10-8 59∙10-8 39∙10-8

242244Cm 12∙10-6 85∙10-7 67∙10-7 50∙10-7 34∙10-7 93∙10-8 65∙10-8 44∙10-8

Rate of components leaching from radioactive glass sample P-1with phosphate precipitate at Т=20-25С g(cm2day)

Vitrification of HLW after pyrochemical processesvitrification of phosphate precipitates

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 10: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

10

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

As a result of the BOR-60 fuel reprocessing (an ultra high burn-up of 21-24 ha)

phosphate precipitate was obtained

Weight g Bulk densitygcm3

Specific heatrelease Wkg

Specific radioactivity Cig

α-nuclides γ-nuclides

442 06-07 95 93middot10-2 10

Some characteristics of phosphate precipitate

106Ru+106Rh 17middot107 154Eu 78middot108 241Am 32middot109(925)

144Ce+144Pr 33middot1010(90) 155Eu 03middot1010(9) 242Cm 63middot107

137Cs 16middot107 54Mn 48middot106 244Cm 21middot108

125Sb 13middot107 60Co 1middot106

Radioactivity of nuclides in phosphate precipitate Bqg ()

11

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

Hydrolysis tests on phosphate precipitate revealed that the 134Cs and 137Cs isotopesmake for 55 to 88 of the solution activity

the 144Ce (Pr) isotopes make for 68 to 21 of activity and 125Sb produces from 45to 16 of activity (see Table )

NuclidesDuration of hydrolysis tests days

1 3 7 28 100

137Cs 22 10 07 02 006

144Ce(Pr) 39middot10-4 16middot10-4 8middot10-5 47middot10-5 35middot10-5

125Sb 01 007 007 003 002

Total of γ-nuclides

53middot10-3 23middot10-3 17middot10-3 53middot10-4 21middot10-4

Total of α-nuclides

29middot10-4 72middot10-5 55middot10-5 25middot10-5 21middot10-5

Release rates of nuclides from phosphate precipitate( as to the nuclide activity in the sample distilled water 20ordmС)

12

In Dec 2010 26 g of oxide concentrate were obtained as a result of dense fuelreprocessing

Precipitateweight g

Content of some components and radionuclides

Pumass

241AmBqg

137Сs Bqg

154EuBqg

144CeBqg

26 lt0001 54middot106 31middot104 10middot107 86middot106

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Oxide precipitate

Characteristics of real oxide precipitate

13

As an example we refer to the spent electrolyte generated after high burnup fuelreprocessing of the BOR-60 reactor (1995)As a result of reprocessing 81 kg of molten alkali chlorides remainedTheir original composition was LiCl-453NaCl-488KCl-066CsCl

HIGH LEVEL WASTE FROM PYROCHEMICAL PROCESSESAND THEIR SPECIFICATION

Spent electrolytes

Uweight

Puweight

Activity ofα-nuclides

GBqkg

Activity of γ-nuclides GBqkg

106Ru(Rh)

125Sb 134Cs 137Cs144Ce(Pr)

147Pm154E

u60Co

lt0001 lt0001 02 19 07 1517 2024 200 333 59 01

Chemical and radionuclide composition of spent electrolyte

Characteristic

HLW type

Phosphateprecipitate

Spent saltelectrolyte

Phosphate precipitate+ spent salt electrolyte

Glass matrix typePb(PO3)2

NaPO3

NaPO3 AlF3

Al2O3

NaPO3 AlF3

Al2O3

Introduction methodvitrificationТ=9500С

vitrification withoutchloride

conversionТ=9500С

vitrification withoutchloride conversion

Т=9500С

Introduced waste amount 28 20 36

137Cs leaching rate as of the 7th

day gcm2 day710-6 710-6 410-6

Thermal resistance 0С 400 400 400

Radiation resistance 107 Gr (for and ) 1018 -decayg

Vitrification of HLW from DDP pyro reprocessing

15

Vitrification of HLW after pyrochemical processes

Vitrification of phosphate precipitates

A possibility is shown to embed the phosphate precipitate in the alumofluophosphate glass

The real phosphate precipitate generated after BOR-60 fuel reprocessing contains 223of REE and 147 of iron 96 of activity is given by 144Ce (Pr) while 86 of alpha-activity is given by 241AmA composition of glass matrix and waste was selected to carry out a real experiment(NaPO3-75 AlF3-10 NaF-5 Al2O3-10)-85 phosphate precipitation - 15

At the vitrification stage (T=1000C) the release of activity into the gas phase made up28∙10-3 and 10∙10-4 of the initial phosphate precipitate activity for - and -emittersrespectively Among the -emitters 125Sb (516 ) and 137Cs (419 ) made the keycontribution to the gas phase activity as for the -emitters it was 241Am (92 ) Thermalconductivity of the vitrified waste made up 08-11W(m∙0С) at 35-300C that was anadmissible level for the phosphate glass [10 11]

16

Nuclides

Test duration

3rd

day7th

day14th day

21st

day28th

day58th

day88th

day118th day

Al 21∙10-6 22∙10-6 15∙10-6 23∙10-7 24∙10-7 27∙10-7 10∙10-7 89∙10-8

Na 12∙10-5 74∙10-6 72∙10-6 63∙10-6 45∙10-6 34∙10-6 11∙10-6 52∙10-7

P 30∙10-6 29∙10-6 84∙10-7 32∙10-7 35∙10-7 51∙10-7 27∙10-7 16∙10-7

F 70 ∙10-6 69∙10-6 51∙10-6 43∙10-6 24∙10-6 15∙10-6 79∙10-7 77∙10-7

125Sb 69∙10-6 24∙10 -6 13∙10-6 81∙10-7 74∙10-7 24∙10-7 24∙10-7 22∙10-7

137Cs 22∙10-5 97∙10-6 56∙10-6 39∙10-6 28∙10-6 27∙10-6 16∙10-6 9∙10-7

144Ce(144Pr) 12∙10-6 12∙10-6 41∙10-7 36∙10-7 23∙10-7 64∙10-8 38∙10-8 24∙10-8

154155Eu 16∙10-6 18∙10-6 63∙10-7 50∙10-7 46∙10-7 13∙10-7 78∙10-8 48∙10-8

241Am 11∙10-6 87∙10-7 66∙10-7 49∙10-7 33∙10-7 88∙10-8 59∙10-8 39∙10-8

242244Cm 12∙10-6 85∙10-7 67∙10-7 50∙10-7 34∙10-7 93∙10-8 65∙10-8 44∙10-8

Rate of components leaching from radioactive glass sample P-1with phosphate precipitate at Т=20-25С g(cm2day)

Vitrification of HLW after pyrochemical processesvitrification of phosphate precipitates

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 11: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

11

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Phosphate precipitates

Hydrolysis tests on phosphate precipitate revealed that the 134Cs and 137Cs isotopesmake for 55 to 88 of the solution activity

the 144Ce (Pr) isotopes make for 68 to 21 of activity and 125Sb produces from 45to 16 of activity (see Table )

NuclidesDuration of hydrolysis tests days

1 3 7 28 100

137Cs 22 10 07 02 006

144Ce(Pr) 39middot10-4 16middot10-4 8middot10-5 47middot10-5 35middot10-5

125Sb 01 007 007 003 002

Total of γ-nuclides

53middot10-3 23middot10-3 17middot10-3 53middot10-4 21middot10-4

Total of α-nuclides

29middot10-4 72middot10-5 55middot10-5 25middot10-5 21middot10-5

Release rates of nuclides from phosphate precipitate( as to the nuclide activity in the sample distilled water 20ordmС)

12

In Dec 2010 26 g of oxide concentrate were obtained as a result of dense fuelreprocessing

Precipitateweight g

Content of some components and radionuclides

Pumass

241AmBqg

137Сs Bqg

154EuBqg

144CeBqg

26 lt0001 54middot106 31middot104 10middot107 86middot106

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Oxide precipitate

Characteristics of real oxide precipitate

13

As an example we refer to the spent electrolyte generated after high burnup fuelreprocessing of the BOR-60 reactor (1995)As a result of reprocessing 81 kg of molten alkali chlorides remainedTheir original composition was LiCl-453NaCl-488KCl-066CsCl

HIGH LEVEL WASTE FROM PYROCHEMICAL PROCESSESAND THEIR SPECIFICATION

Spent electrolytes

Uweight

Puweight

Activity ofα-nuclides

GBqkg

Activity of γ-nuclides GBqkg

106Ru(Rh)

125Sb 134Cs 137Cs144Ce(Pr)

147Pm154E

u60Co

lt0001 lt0001 02 19 07 1517 2024 200 333 59 01

Chemical and radionuclide composition of spent electrolyte

Characteristic

HLW type

Phosphateprecipitate

Spent saltelectrolyte

Phosphate precipitate+ spent salt electrolyte

Glass matrix typePb(PO3)2

NaPO3

NaPO3 AlF3

Al2O3

NaPO3 AlF3

Al2O3

Introduction methodvitrificationТ=9500С

vitrification withoutchloride

conversionТ=9500С

vitrification withoutchloride conversion

Т=9500С

Introduced waste amount 28 20 36

137Cs leaching rate as of the 7th

day gcm2 day710-6 710-6 410-6

Thermal resistance 0С 400 400 400

Radiation resistance 107 Gr (for and ) 1018 -decayg

Vitrification of HLW from DDP pyro reprocessing

15

Vitrification of HLW after pyrochemical processes

Vitrification of phosphate precipitates

A possibility is shown to embed the phosphate precipitate in the alumofluophosphate glass

The real phosphate precipitate generated after BOR-60 fuel reprocessing contains 223of REE and 147 of iron 96 of activity is given by 144Ce (Pr) while 86 of alpha-activity is given by 241AmA composition of glass matrix and waste was selected to carry out a real experiment(NaPO3-75 AlF3-10 NaF-5 Al2O3-10)-85 phosphate precipitation - 15

At the vitrification stage (T=1000C) the release of activity into the gas phase made up28∙10-3 and 10∙10-4 of the initial phosphate precipitate activity for - and -emittersrespectively Among the -emitters 125Sb (516 ) and 137Cs (419 ) made the keycontribution to the gas phase activity as for the -emitters it was 241Am (92 ) Thermalconductivity of the vitrified waste made up 08-11W(m∙0С) at 35-300C that was anadmissible level for the phosphate glass [10 11]

16

Nuclides

Test duration

3rd

day7th

day14th day

21st

day28th

day58th

day88th

day118th day

Al 21∙10-6 22∙10-6 15∙10-6 23∙10-7 24∙10-7 27∙10-7 10∙10-7 89∙10-8

Na 12∙10-5 74∙10-6 72∙10-6 63∙10-6 45∙10-6 34∙10-6 11∙10-6 52∙10-7

P 30∙10-6 29∙10-6 84∙10-7 32∙10-7 35∙10-7 51∙10-7 27∙10-7 16∙10-7

F 70 ∙10-6 69∙10-6 51∙10-6 43∙10-6 24∙10-6 15∙10-6 79∙10-7 77∙10-7

125Sb 69∙10-6 24∙10 -6 13∙10-6 81∙10-7 74∙10-7 24∙10-7 24∙10-7 22∙10-7

137Cs 22∙10-5 97∙10-6 56∙10-6 39∙10-6 28∙10-6 27∙10-6 16∙10-6 9∙10-7

144Ce(144Pr) 12∙10-6 12∙10-6 41∙10-7 36∙10-7 23∙10-7 64∙10-8 38∙10-8 24∙10-8

154155Eu 16∙10-6 18∙10-6 63∙10-7 50∙10-7 46∙10-7 13∙10-7 78∙10-8 48∙10-8

241Am 11∙10-6 87∙10-7 66∙10-7 49∙10-7 33∙10-7 88∙10-8 59∙10-8 39∙10-8

242244Cm 12∙10-6 85∙10-7 67∙10-7 50∙10-7 34∙10-7 93∙10-8 65∙10-8 44∙10-8

Rate of components leaching from radioactive glass sample P-1with phosphate precipitate at Т=20-25С g(cm2day)

Vitrification of HLW after pyrochemical processesvitrification of phosphate precipitates

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 12: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

12

In Dec 2010 26 g of oxide concentrate were obtained as a result of dense fuelreprocessing

Precipitateweight g

Content of some components and radionuclides

Pumass

241AmBqg

137Сs Bqg

154EuBqg

144CeBqg

26 lt0001 54middot106 31middot104 10middot107 86middot106

HIGH LEVEL WASTE FROM PYROCHEMICALPROCESSES AND THEIR SPECIFICATION

Oxide precipitate

Characteristics of real oxide precipitate

13

As an example we refer to the spent electrolyte generated after high burnup fuelreprocessing of the BOR-60 reactor (1995)As a result of reprocessing 81 kg of molten alkali chlorides remainedTheir original composition was LiCl-453NaCl-488KCl-066CsCl

HIGH LEVEL WASTE FROM PYROCHEMICAL PROCESSESAND THEIR SPECIFICATION

Spent electrolytes

Uweight

Puweight

Activity ofα-nuclides

GBqkg

Activity of γ-nuclides GBqkg

106Ru(Rh)

125Sb 134Cs 137Cs144Ce(Pr)

147Pm154E

u60Co

lt0001 lt0001 02 19 07 1517 2024 200 333 59 01

Chemical and radionuclide composition of spent electrolyte

Characteristic

HLW type

Phosphateprecipitate

Spent saltelectrolyte

Phosphate precipitate+ spent salt electrolyte

Glass matrix typePb(PO3)2

NaPO3

NaPO3 AlF3

Al2O3

NaPO3 AlF3

Al2O3

Introduction methodvitrificationТ=9500С

vitrification withoutchloride

conversionТ=9500С

vitrification withoutchloride conversion

Т=9500С

Introduced waste amount 28 20 36

137Cs leaching rate as of the 7th

day gcm2 day710-6 710-6 410-6

Thermal resistance 0С 400 400 400

Radiation resistance 107 Gr (for and ) 1018 -decayg

Vitrification of HLW from DDP pyro reprocessing

15

Vitrification of HLW after pyrochemical processes

Vitrification of phosphate precipitates

A possibility is shown to embed the phosphate precipitate in the alumofluophosphate glass

The real phosphate precipitate generated after BOR-60 fuel reprocessing contains 223of REE and 147 of iron 96 of activity is given by 144Ce (Pr) while 86 of alpha-activity is given by 241AmA composition of glass matrix and waste was selected to carry out a real experiment(NaPO3-75 AlF3-10 NaF-5 Al2O3-10)-85 phosphate precipitation - 15

At the vitrification stage (T=1000C) the release of activity into the gas phase made up28∙10-3 and 10∙10-4 of the initial phosphate precipitate activity for - and -emittersrespectively Among the -emitters 125Sb (516 ) and 137Cs (419 ) made the keycontribution to the gas phase activity as for the -emitters it was 241Am (92 ) Thermalconductivity of the vitrified waste made up 08-11W(m∙0С) at 35-300C that was anadmissible level for the phosphate glass [10 11]

16

Nuclides

Test duration

3rd

day7th

day14th day

21st

day28th

day58th

day88th

day118th day

Al 21∙10-6 22∙10-6 15∙10-6 23∙10-7 24∙10-7 27∙10-7 10∙10-7 89∙10-8

Na 12∙10-5 74∙10-6 72∙10-6 63∙10-6 45∙10-6 34∙10-6 11∙10-6 52∙10-7

P 30∙10-6 29∙10-6 84∙10-7 32∙10-7 35∙10-7 51∙10-7 27∙10-7 16∙10-7

F 70 ∙10-6 69∙10-6 51∙10-6 43∙10-6 24∙10-6 15∙10-6 79∙10-7 77∙10-7

125Sb 69∙10-6 24∙10 -6 13∙10-6 81∙10-7 74∙10-7 24∙10-7 24∙10-7 22∙10-7

137Cs 22∙10-5 97∙10-6 56∙10-6 39∙10-6 28∙10-6 27∙10-6 16∙10-6 9∙10-7

144Ce(144Pr) 12∙10-6 12∙10-6 41∙10-7 36∙10-7 23∙10-7 64∙10-8 38∙10-8 24∙10-8

154155Eu 16∙10-6 18∙10-6 63∙10-7 50∙10-7 46∙10-7 13∙10-7 78∙10-8 48∙10-8

241Am 11∙10-6 87∙10-7 66∙10-7 49∙10-7 33∙10-7 88∙10-8 59∙10-8 39∙10-8

242244Cm 12∙10-6 85∙10-7 67∙10-7 50∙10-7 34∙10-7 93∙10-8 65∙10-8 44∙10-8

Rate of components leaching from radioactive glass sample P-1with phosphate precipitate at Т=20-25С g(cm2day)

Vitrification of HLW after pyrochemical processesvitrification of phosphate precipitates

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 13: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

13

As an example we refer to the spent electrolyte generated after high burnup fuelreprocessing of the BOR-60 reactor (1995)As a result of reprocessing 81 kg of molten alkali chlorides remainedTheir original composition was LiCl-453NaCl-488KCl-066CsCl

HIGH LEVEL WASTE FROM PYROCHEMICAL PROCESSESAND THEIR SPECIFICATION

Spent electrolytes

Uweight

Puweight

Activity ofα-nuclides

GBqkg

Activity of γ-nuclides GBqkg

106Ru(Rh)

125Sb 134Cs 137Cs144Ce(Pr)

147Pm154E

u60Co

lt0001 lt0001 02 19 07 1517 2024 200 333 59 01

Chemical and radionuclide composition of spent electrolyte

Characteristic

HLW type

Phosphateprecipitate

Spent saltelectrolyte

Phosphate precipitate+ spent salt electrolyte

Glass matrix typePb(PO3)2

NaPO3

NaPO3 AlF3

Al2O3

NaPO3 AlF3

Al2O3

Introduction methodvitrificationТ=9500С

vitrification withoutchloride

conversionТ=9500С

vitrification withoutchloride conversion

Т=9500С

Introduced waste amount 28 20 36

137Cs leaching rate as of the 7th

day gcm2 day710-6 710-6 410-6

Thermal resistance 0С 400 400 400

Radiation resistance 107 Gr (for and ) 1018 -decayg

Vitrification of HLW from DDP pyro reprocessing

15

Vitrification of HLW after pyrochemical processes

Vitrification of phosphate precipitates

A possibility is shown to embed the phosphate precipitate in the alumofluophosphate glass

The real phosphate precipitate generated after BOR-60 fuel reprocessing contains 223of REE and 147 of iron 96 of activity is given by 144Ce (Pr) while 86 of alpha-activity is given by 241AmA composition of glass matrix and waste was selected to carry out a real experiment(NaPO3-75 AlF3-10 NaF-5 Al2O3-10)-85 phosphate precipitation - 15

At the vitrification stage (T=1000C) the release of activity into the gas phase made up28∙10-3 and 10∙10-4 of the initial phosphate precipitate activity for - and -emittersrespectively Among the -emitters 125Sb (516 ) and 137Cs (419 ) made the keycontribution to the gas phase activity as for the -emitters it was 241Am (92 ) Thermalconductivity of the vitrified waste made up 08-11W(m∙0С) at 35-300C that was anadmissible level for the phosphate glass [10 11]

16

Nuclides

Test duration

3rd

day7th

day14th day

21st

day28th

day58th

day88th

day118th day

Al 21∙10-6 22∙10-6 15∙10-6 23∙10-7 24∙10-7 27∙10-7 10∙10-7 89∙10-8

Na 12∙10-5 74∙10-6 72∙10-6 63∙10-6 45∙10-6 34∙10-6 11∙10-6 52∙10-7

P 30∙10-6 29∙10-6 84∙10-7 32∙10-7 35∙10-7 51∙10-7 27∙10-7 16∙10-7

F 70 ∙10-6 69∙10-6 51∙10-6 43∙10-6 24∙10-6 15∙10-6 79∙10-7 77∙10-7

125Sb 69∙10-6 24∙10 -6 13∙10-6 81∙10-7 74∙10-7 24∙10-7 24∙10-7 22∙10-7

137Cs 22∙10-5 97∙10-6 56∙10-6 39∙10-6 28∙10-6 27∙10-6 16∙10-6 9∙10-7

144Ce(144Pr) 12∙10-6 12∙10-6 41∙10-7 36∙10-7 23∙10-7 64∙10-8 38∙10-8 24∙10-8

154155Eu 16∙10-6 18∙10-6 63∙10-7 50∙10-7 46∙10-7 13∙10-7 78∙10-8 48∙10-8

241Am 11∙10-6 87∙10-7 66∙10-7 49∙10-7 33∙10-7 88∙10-8 59∙10-8 39∙10-8

242244Cm 12∙10-6 85∙10-7 67∙10-7 50∙10-7 34∙10-7 93∙10-8 65∙10-8 44∙10-8

Rate of components leaching from radioactive glass sample P-1with phosphate precipitate at Т=20-25С g(cm2day)

Vitrification of HLW after pyrochemical processesvitrification of phosphate precipitates

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 14: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

Characteristic

HLW type

Phosphateprecipitate

Spent saltelectrolyte

Phosphate precipitate+ spent salt electrolyte

Glass matrix typePb(PO3)2

NaPO3

NaPO3 AlF3

Al2O3

NaPO3 AlF3

Al2O3

Introduction methodvitrificationТ=9500С

vitrification withoutchloride

conversionТ=9500С

vitrification withoutchloride conversion

Т=9500С

Introduced waste amount 28 20 36

137Cs leaching rate as of the 7th

day gcm2 day710-6 710-6 410-6

Thermal resistance 0С 400 400 400

Radiation resistance 107 Gr (for and ) 1018 -decayg

Vitrification of HLW from DDP pyro reprocessing

15

Vitrification of HLW after pyrochemical processes

Vitrification of phosphate precipitates

A possibility is shown to embed the phosphate precipitate in the alumofluophosphate glass

The real phosphate precipitate generated after BOR-60 fuel reprocessing contains 223of REE and 147 of iron 96 of activity is given by 144Ce (Pr) while 86 of alpha-activity is given by 241AmA composition of glass matrix and waste was selected to carry out a real experiment(NaPO3-75 AlF3-10 NaF-5 Al2O3-10)-85 phosphate precipitation - 15

At the vitrification stage (T=1000C) the release of activity into the gas phase made up28∙10-3 and 10∙10-4 of the initial phosphate precipitate activity for - and -emittersrespectively Among the -emitters 125Sb (516 ) and 137Cs (419 ) made the keycontribution to the gas phase activity as for the -emitters it was 241Am (92 ) Thermalconductivity of the vitrified waste made up 08-11W(m∙0С) at 35-300C that was anadmissible level for the phosphate glass [10 11]

16

Nuclides

Test duration

3rd

day7th

day14th day

21st

day28th

day58th

day88th

day118th day

Al 21∙10-6 22∙10-6 15∙10-6 23∙10-7 24∙10-7 27∙10-7 10∙10-7 89∙10-8

Na 12∙10-5 74∙10-6 72∙10-6 63∙10-6 45∙10-6 34∙10-6 11∙10-6 52∙10-7

P 30∙10-6 29∙10-6 84∙10-7 32∙10-7 35∙10-7 51∙10-7 27∙10-7 16∙10-7

F 70 ∙10-6 69∙10-6 51∙10-6 43∙10-6 24∙10-6 15∙10-6 79∙10-7 77∙10-7

125Sb 69∙10-6 24∙10 -6 13∙10-6 81∙10-7 74∙10-7 24∙10-7 24∙10-7 22∙10-7

137Cs 22∙10-5 97∙10-6 56∙10-6 39∙10-6 28∙10-6 27∙10-6 16∙10-6 9∙10-7

144Ce(144Pr) 12∙10-6 12∙10-6 41∙10-7 36∙10-7 23∙10-7 64∙10-8 38∙10-8 24∙10-8

154155Eu 16∙10-6 18∙10-6 63∙10-7 50∙10-7 46∙10-7 13∙10-7 78∙10-8 48∙10-8

241Am 11∙10-6 87∙10-7 66∙10-7 49∙10-7 33∙10-7 88∙10-8 59∙10-8 39∙10-8

242244Cm 12∙10-6 85∙10-7 67∙10-7 50∙10-7 34∙10-7 93∙10-8 65∙10-8 44∙10-8

Rate of components leaching from radioactive glass sample P-1with phosphate precipitate at Т=20-25С g(cm2day)

Vitrification of HLW after pyrochemical processesvitrification of phosphate precipitates

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 15: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

15

Vitrification of HLW after pyrochemical processes

Vitrification of phosphate precipitates

A possibility is shown to embed the phosphate precipitate in the alumofluophosphate glass

The real phosphate precipitate generated after BOR-60 fuel reprocessing contains 223of REE and 147 of iron 96 of activity is given by 144Ce (Pr) while 86 of alpha-activity is given by 241AmA composition of glass matrix and waste was selected to carry out a real experiment(NaPO3-75 AlF3-10 NaF-5 Al2O3-10)-85 phosphate precipitation - 15

At the vitrification stage (T=1000C) the release of activity into the gas phase made up28∙10-3 and 10∙10-4 of the initial phosphate precipitate activity for - and -emittersrespectively Among the -emitters 125Sb (516 ) and 137Cs (419 ) made the keycontribution to the gas phase activity as for the -emitters it was 241Am (92 ) Thermalconductivity of the vitrified waste made up 08-11W(m∙0С) at 35-300C that was anadmissible level for the phosphate glass [10 11]

16

Nuclides

Test duration

3rd

day7th

day14th day

21st

day28th

day58th

day88th

day118th day

Al 21∙10-6 22∙10-6 15∙10-6 23∙10-7 24∙10-7 27∙10-7 10∙10-7 89∙10-8

Na 12∙10-5 74∙10-6 72∙10-6 63∙10-6 45∙10-6 34∙10-6 11∙10-6 52∙10-7

P 30∙10-6 29∙10-6 84∙10-7 32∙10-7 35∙10-7 51∙10-7 27∙10-7 16∙10-7

F 70 ∙10-6 69∙10-6 51∙10-6 43∙10-6 24∙10-6 15∙10-6 79∙10-7 77∙10-7

125Sb 69∙10-6 24∙10 -6 13∙10-6 81∙10-7 74∙10-7 24∙10-7 24∙10-7 22∙10-7

137Cs 22∙10-5 97∙10-6 56∙10-6 39∙10-6 28∙10-6 27∙10-6 16∙10-6 9∙10-7

144Ce(144Pr) 12∙10-6 12∙10-6 41∙10-7 36∙10-7 23∙10-7 64∙10-8 38∙10-8 24∙10-8

154155Eu 16∙10-6 18∙10-6 63∙10-7 50∙10-7 46∙10-7 13∙10-7 78∙10-8 48∙10-8

241Am 11∙10-6 87∙10-7 66∙10-7 49∙10-7 33∙10-7 88∙10-8 59∙10-8 39∙10-8

242244Cm 12∙10-6 85∙10-7 67∙10-7 50∙10-7 34∙10-7 93∙10-8 65∙10-8 44∙10-8

Rate of components leaching from radioactive glass sample P-1with phosphate precipitate at Т=20-25С g(cm2day)

Vitrification of HLW after pyrochemical processesvitrification of phosphate precipitates

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 16: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

16

Nuclides

Test duration

3rd

day7th

day14th day

21st

day28th

day58th

day88th

day118th day

Al 21∙10-6 22∙10-6 15∙10-6 23∙10-7 24∙10-7 27∙10-7 10∙10-7 89∙10-8

Na 12∙10-5 74∙10-6 72∙10-6 63∙10-6 45∙10-6 34∙10-6 11∙10-6 52∙10-7

P 30∙10-6 29∙10-6 84∙10-7 32∙10-7 35∙10-7 51∙10-7 27∙10-7 16∙10-7

F 70 ∙10-6 69∙10-6 51∙10-6 43∙10-6 24∙10-6 15∙10-6 79∙10-7 77∙10-7

125Sb 69∙10-6 24∙10 -6 13∙10-6 81∙10-7 74∙10-7 24∙10-7 24∙10-7 22∙10-7

137Cs 22∙10-5 97∙10-6 56∙10-6 39∙10-6 28∙10-6 27∙10-6 16∙10-6 9∙10-7

144Ce(144Pr) 12∙10-6 12∙10-6 41∙10-7 36∙10-7 23∙10-7 64∙10-8 38∙10-8 24∙10-8

154155Eu 16∙10-6 18∙10-6 63∙10-7 50∙10-7 46∙10-7 13∙10-7 78∙10-8 48∙10-8

241Am 11∙10-6 87∙10-7 66∙10-7 49∙10-7 33∙10-7 88∙10-8 59∙10-8 39∙10-8

242244Cm 12∙10-6 85∙10-7 67∙10-7 50∙10-7 34∙10-7 93∙10-8 65∙10-8 44∙10-8

Rate of components leaching from radioactive glass sample P-1with phosphate precipitate at Т=20-25С g(cm2day)

Vitrification of HLW after pyrochemical processesvitrification of phosphate precipitates

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 17: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

17

Sample No NaPO3 AlF3 Al2O3 BeO 3LiCl-2KCl 3LiPO3-KPO3

M ndash 1M ndash 2M ndash 3M - 4R ndash 1R - 2

6751010

67567510

1711717181817

--3

45453

543----

10--

1010-

-7070--

70

Content of glass charge mixture wt

Characteristics of samples

Parameter M-1 M-2 M-3 M-4 R-1 R-2

Weight gDiameter mmSurface sm2

Density g sm3

Radioactivity Bk g

392313364238

-

398309359246

-

329731053269242

-

331307

3273241

-

29130731223271∙106

47593139425224∙107

Immobilization of spent electrolyte by vitrification (2010)

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 18: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

18

Simulating samples М-4 (а) М-5 (б) М-6 (в) М-7 (г)

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 19: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

19

Sample ComponentTest duration days

3 7 14 21 28 58 88 118

М - 4

М - 5

Р ndash 2

NaAlPF

NaAlPF

NaAlPF

137Cs

1910-5

3310-6

2310-6

1810-6

8010-6

4810-6

2510-6

1810-6

1310-5

1710-5

8310-7

1010-5

1210-5

1210-5

7810-7

1110-6

1510-6

5510-6

1110-6

1210-6

9110-7

4210-6

2510-6

7110-7

4210-6

1510-6

6210-6

5310-7

7010-7

1110-6

4410-6

9410-7

8510-6

6310-7

1510-6

5610-7

6310-7

3910-6

1510-6

5510-6

3010-7

2610-7

5110-7

3210-6

6910-7

3610-7

5210-7

8310-7

3210-7

5010-7

2910-6

8610-7

1810-6

2610-7

1710-7

4010-7

2710-6

3410-7

2610-7

4510-7

7710-7

2810-7

6210-8

2410-6

8110-7

2510-7

4310-8

5510-8

1210-7

8610-7

3710-8

4910-8

1210-7

5210-7

2110-7

5010-8

9610-7

5010-7

2510-7

3610-8

4610-8

9410-8

5210-7

3610-8

4910-8

4810-8

4210-7

1010-7

5510-8

96104610-7

2410-7

3310-8

4010-8

9410-8

5010-7

3610-8

4310-8

4910-8

4210-7

7910-8

5310-8

4110-7

4210-7

Rate of glass components leaching from samplesat 20-25C g(cm2day) (chlorides conversion)

Vitrification of HLW after pyrochemical processesVitrification of spent electrolytes

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 20: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

Characteristics

Type of high-level wastes

Phosphate concentrate Spent salt electrolyte

Type of ceramics monazite Cosnarite (NZP)

Method of introduction into ceramicspressing calcination

Т=8500С

Conversion to NZP from themelt or aqueous solutionpressing calcination

Т=10000С

Quantity of waste introduced intoceramics

100 3040

Leaching rate of 137Cs on 7-th daygcm2 day

110-6 310-6

Thermal stability 0С 850 1000

Radiation resistance 5108 Gy( for and ) 1019 - decayg

Ceramization of HLW from DDP pyro reprocessing

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 21: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

21

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

ElementMass

fraction

La 274 Gd 01 Ti 019 Pb 014

Ce 411 Y 041 Mo 055 Ca 274

Pr 206 Al 020 Cu 014 Sr 280

Nd 1027 Cr 203 Mn 027 P+O 5417

Sm 137 Fe 1370 Zn 021

Eu 020 Ni 055 Mg 102

A simulator of phosphate concentrate of pyroelectrochemical processis produced from NaCl-2CsCl melt

The produced powder was compacted into pellets annealed in air at 800-1400 0С for 10-12 hours Phase composition of products was analyzed by X-rayingChemical composition was identified by the emission spectrum analysis and X-ray spectrummicroanalysis with the use of a scanning electronic microscope (SEM) The ceramicsincluded the main monazite-like phase with the lattice parameters ofa=6773plusmn0003 Aring b=6987plusmn0002 Aring c=6435plusmn0002 Aring β = 10368plusmn002 degrees

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 22: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

22

Ceramization of HLW after pyrochemical processesCeramization of phosphate precipitates

The SEM results showed the presence of three phases in its composition light greygrey and dark grey Mass fractions of cations together with the X-ray diffraction analysisdata are evident of the following1 light grey dominant phase monazite incorporating lanthanides2 dark grey phase ferrous orthophosphate FePO4 with isomorphic impurities - Al Cr3 grey phase Fe- and Cr-based oxide (Fe Cr)2O3 with the hematite structure

Images of microanalysis regions for ceramics on the basis of phosphateprecipitate light grey (а) dark grey (b) and grey (c) phases

10 microm 10 microm20microm cbа

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 23: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

23

Ceramization of oxide cocentate into Murataite type ldquofuserdquo ceramics(YNa)6 Zn(ZnFe3+)4(TiNbNa)12O29(OFOH)10F4

OxideComponents mass

Composition 1 Composition 2

Charge components

TiO2 55 55

MnO2 10 10

CaO 10 10

Al2O3 5 5

Fe2O3 5 5

ZrO2 5 5

HLW simulators (or real oxide presipitate) 10 mass

SrO 03934 00426

MoO3 21930 02376

CeO2 27222 18680

Pr6O11 25452 02758

Nd2O3 05042 00546

Sm2O3 07812 00846

Eu2O3 05265 00570

UO2 03344 73800

100000 100000

M

M

M

M MP

M M M

M

M

M

MM

M

M MMF

M

M

0

20

40

60

80

100

120

20 30 40 50 60 70

2Q degree

I

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 24: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

24

Ceramization of HLW after pyrochemical processes

Ceramization of spent electolytesNZP (kosnarite)- structure

Calculatedcomposition

Na05K05Zr2(PO4)3 Na13Cs23Zr2(PO4)3 (Li0090Na0409K0441Cs0060)Zr2(PO4)3

Synthesismethod

Impregnation withН3PO4 solution

Precipitation fromsolution

Precipitation from solution

Annealing 1000 0С 3 h 1200 0С 5 h 1000 0С4 h

Latticeparameters of

the NZPphases

a = 8737(4) Aringc = 2371(2) AringV = 1567(3) Aring 3

a = 8607(3) Aringc = 2471(2) AringV = 1585(2) Aring 3

a = 8746(1) Aringс = 2354(1) AringV = 1559(1) Aring 3

SEM-images of ceramic particles with the composition Na13Cs23Zr2(PO4)3а) light phase b) dark phase c) grey phase

20 microm50 microm 50 micromа b c

(M1)[6](M2)3[8][(L)2

[6](P[4]O4)3]

М1 М2

LO6

(M1)

PO4

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 25: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

25

Ceramization of spent electolytes - Langbeinite structureс

аb

PO4

PrO6

ZrO6

atoms К

Initial electrolyte Total composition of phosphate

NaCl-KCl NaKFeZr(PO4)3

NaCl-2CsCl Na066Cs133FeZr(PO4)3

LiCl-453NaCl-488KCl-066CsCl Li018Na082K088Cs012FeZr(PO4)3

NaCl-2CsCl Na066Cs133CrZr(PO4)3

3LiCl-2KCl+ NaCl-2CsCl Li06K04Na033Cs067FeZr(PO4)3

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 26: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

26

Ceramization of spent electolytes - Langbeinite structure

ElementMass fraction(calculation)

Mass fraction(experiment)

light grey phase

Mass fraction(experiment)

dark grey phase

Na 245 206 359

Cs 2837 2952 2113

Fe 894 704 687

Zr 1461 1647 2019

P 1487 1463 1608

O 3074 3016 3214

а

b

SEM images of ceramic particles Na066Cs133FeZr(PO4)3a-light grey phase b- dark grey phase

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 27: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

27

Ceramization of spent electolytesLangbeinite structure

ElementLeachingperioddays

Leaching rate g(сm2middotday)

Na066Cs133FeZr (PO4)3

NaKFeZr(PO4)3

Li018Na082K018Cs012

FeZr(PO4)3

Na066Cs133FeZr(PO4)3

with bindingBi2O3+NaF

Na37

gt1110-4

9810-6

2310-4

1010-4

2910-6

1710-6

Cs37

gt1110-3

5910-4

2310-4

1010-4

14middot10-5

lt64middot10-6

Fe37

3510-5

4810-6

3110-5

1510-5

3110-5

1710-5

63middot10-6

37middot10-6

Zr37

6610-7

9910-7

1610-6

5110-7

1010-6

1810-7

lt7210-7

lt6110-7

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 28: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

28

bull Pyro processes are characterized by a small spectrumand volume of the produced wastes their high specificactivity absence of liquid high-level process wastes

bull The main types of solid process wastes are phosphateand oxide precipitates as well as spent electrolytes

bull The main waste forms of pyrochemical processes can bestored long-term in shielding containers without usingany schemes of their chemical conversion andimmobilization

bull If necessary to enhance efficiency of the HLW shieldingbarrier for their long-term geological disposal wasteforms of pyroprocesses can be converted into morestable chemical forms

Conclusions

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions

Page 29: System of Pyro Reprocessing RAW Treatment...Mikhail Kormilitsyn, Andrew Lizin, Alexander Osipenko, Research Institute of Atomic Reactors, Dimitrovgrad, Russia 1 UNF 2 INTERACTION OF

29

bull Alumofluophosphate glass and monazite-based matrixcan be used for immobilization of phosphate precipitates

bull Fuse ceramics on the basis of murataite mineral can beused for immobilization of oxide precipitates

bull Alumofluophosphate glass and ceramics with thestructures of kosnarite and langbeinite can be used forimmobilization of salt electrolytes

bull Further investigations on immobilization of salt systemscan be aimed at a search of effective ways to prevent theformation of conversion and corrosion chlorine-containing gases effective chemical bonding of chlorine-ion research and development of hybrid glass-ceramicmethod of spent electrolytes fixation

bull (YNa)6 Zn(ZnFe 3+)4(TiNbNa)12O29(OFOH)10F4

Conclusions