systems engineering – a summary...systems engineering – a summary 3 1 introduction integral...

23
SYSTEMS ENGINEERING – A Summary 1 Systems Engineering – A Summary This summary is based on: “Einstieg ins Systems Engineering - Optimale, nachhaltige Lösungen entwickeln und umsetzen“, 3 nd Ausgabe, Zürich: Verlag Industrielle Organisation, 2004, ISBN 978-3-85743-721-2 Purpose Project workers, as well as project managers, who want to apply the Systems Engineering methodology to their projects, get an easily understandable guide with this book. The most important principles and elements of Systems Engi- neering are explained briefly including their interrelations. Furthermore, a checklist is provided which simplifies determining the primary work steps. To all colleagues who supported and encouraged us in preparing this book, we would like to express our heartfelt thanks. Kontakt Rainer Züst: [email protected] Züst Engineering AG: www.zuestengineering.ch SYSTEMS ENGINEERING – A Summary 2 Contents 1 Introduction 3 1.1 Sustainable Solutions are in demand 3 1.2 An Overview of Systems Engineering 4 2 Systems Thinking 6 2.1 Socio-technical Systems 6 3 General Working Principles 9 3.1 Considering Time-related Changes 9 3.2 Thinking in Alternatives 9 3.3 From an Overall to a Detailed View 9 4 Life Cycle Model 11 4.1 An overview of the Life Cycle Model 11 4.2 Initiative for Systems Design 12 4.3 Preliminary Study 12 4.4 Main Study 13 4.5 Detailed Studies 14 4.6 Systems Realisation 15 4.7 Systems Installation 15 4.8 Systems Utilisation 16 4.9 Initiatives for new Design, Redesign or Disposal 16 4.10 Disposal Phase 16 5 Problem-Solving Concept 18 5.1 An Overview of the Problem-solving concept 18 5.2 Situation Analysis 21 5.3 Goal Definition 27 5.4 Concept Synthesis and Concept Analysis 32 5.5 Evaluation and Decision 35 6 Specific Methods 39 7 Systems Engineering and Project Management 41 8 References 46

Upload: others

Post on 25-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

1

S

yste

ms E

ng

ineerin

g –

A S

um

mary

T

his

su

mm

ary

is b

ase

d o

n:

“Ein

stie

g in

s S

yste

ms E

ngin

ee

ring - O

ptim

ale

, na

ch

ha

ltige

su

nge

n e

ntw

icke

ln

un

d u

mse

tze

n“, 3

nd A

usga

be

, Zü

rich

: Ve

rlag In

du

strie

lle O

rga

nis

atio

n, 2

00

4,

ISB

N 9

78

-3-8

57

43

-72

1-2

Purp

ose

Pro

ject w

ork

ers

, as w

ell a

s p

roje

ct m

an

age

rs, w

ho

wa

nt to

ap

ply

the

Syste

ms

En

gin

ee

ring m

eth

od

olo

gy to

the

ir pro

jects

, ge

t an

ea

sily

un

de

rsta

nd

ab

le g

uid

e

with

this

bo

ok. T

he

mo

st im

po

rtan

t prin

cip

les a

nd

ele

me

nts

of S

yste

ms E

ngi-

ne

erin

g

are

e

xp

lain

ed

b

riefly

in

clu

din

g

the

ir in

terre

latio

ns.

Fu

rthe

rmo

re,

a

ch

ecklis

t is p

rovid

ed

wh

ich

sim

plifie

s d

ete

rmin

ing th

e p

rima

ry w

ork

ste

ps.

To

all c

olle

agu

es w

ho

su

pp

orte

d a

nd

en

co

ura

ge

d u

s in

pre

pa

ring th

is b

oo

k, w

e

wo

uld

like

to e

xp

ress o

ur h

ea

rtfelt th

an

ks.

Konta

kt

Ra

ine

r Zü

st: ra

ine

r.zu

est@

zu

este

ngin

ee

ring.c

h

st E

ngin

ee

ring A

G: w

ww

.zu

este

ngin

ee

ring.c

h

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

2

Co

nte

nts

1

Intro

du

ctio

n

3

1.1

S

usta

ina

ble

So

lutio

ns a

re in

de

ma

nd

3

1

.2

An

Ove

rvie

w o

f Syste

ms E

ngin

ee

ring

4

2

Sy

ste

ms

Th

ink

ing

6

2

.1

So

cio

-tech

nic

al S

yste

ms

6

3

Ge

ne

ral W

ork

ing

Prin

cip

les

9

3

.1

Co

nsid

erin

g T

ime

-rela

ted

Ch

an

ge

s

9

3.2

T

hin

kin

g in

Alte

rna

tive

s

9

3.3

F

rom

an

Ove

rall to

a D

eta

iled

Vie

w

9

4

Life

Cy

cle

Mo

de

l 1

1

4.1

A

n o

ve

rvie

w o

f the

Life

Cycle

Mo

de

l 1

1

4.2

In

itiativ

e fo

r Syste

ms D

esig

n

12

4

.3

Pre

limin

ary

Stu

dy

12

4

.4

Ma

in S

tud

y

13

4

.5

De

taile

d S

tud

ies

14

4

.6

Syste

ms R

ea

lisa

tion

1

5

4.7

S

yste

ms In

sta

llatio

n

15

4

.8

Syste

ms U

tilisa

tion

1

6

4.9

In

itiativ

es fo

r ne

w D

esig

n, R

ed

esig

n o

r Dis

po

sa

l 1

6

4.1

0

Dis

po

sa

l Ph

ase

1

6

5

Pro

ble

m-S

olv

ing

Co

nc

ep

t 1

8

5.1

A

n O

ve

rvie

w o

f the

Pro

ble

m-s

olv

ing c

on

ce

pt

18

5

.2

Situ

atio

n A

na

lysis

2

1

5.3

G

oa

l De

finitio

n

27

5

.4

Co

nce

pt S

yn

the

sis

an

d C

on

ce

pt A

na

lysis

3

2

5.5

E

va

lua

tion

an

d D

ecis

ion

3

5

6

Sp

ec

ific M

eth

od

s

39

7

S

ys

tem

s E

ng

ine

erin

g a

nd

Pro

jec

t Ma

na

ge

me

nt

41

8

R

efe

ren

ce

s

46

Page 2: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

3

1

Intro

du

ctio

n

Inte

gra

l pla

nn

ing m

eth

od

olo

gie

s a

re n

ece

ssa

ry to

allo

w c

om

pa

nie

s to

de

sig

n

su

cce

ssfu

l pro

du

cts

1 an

d s

erv

ice

s. In

the

pa

st, v

ario

us c

on

tribu

tion

s o

n th

e

top

ic o

f pro

ble

m-s

olv

ing m

eth

od

olo

gie

s w

ere

pu

blis

he

d w

orld

wid

e. O

ne

of th

e-

se

wa

s th

e “Z

uric

h” S

yste

ms E

ngin

ee

ring.

Th

e O

rigin

s o

f Sy

ste

ms

En

gin

ee

ring

Th

e o

rigin

s o

f Syste

ms E

ngin

ee

ring g

o b

ack o

ve

r 50

ye

ars

. At th

at tim

e, in

the

co

nte

xt o

f larg

e p

roje

cts

, me

tho

ds w

ere

so

ugh

t, wh

ich

wo

uld

imp

rove

pro

ject

exe

cu

tion

, as w

ell a

s th

e p

lan

ne

d o

utc

om

e. In

the

60

´s, a

s a

resu

lt, the

first

co

mp

reh

en

siv

e

pu

blic

atio

ns

on

S

yste

ms

En

gin

ee

ring

(e.g

. /H

all

19

62

/) a

p-

pe

are

d. A

t the

en

d o

f the

60

´s a

nd

the

be

gin

nin

g o

f the

70

´s, th

ese

ide

as w

ere

a

lso

ad

op

ted

by m

em

be

rs o

f ET

H Z

uric

h (S

wis

s F

ed

era

l Institu

te o

f Te

ch

no

lo-

gy) s

taff (e

.g. fro

m /B

üch

el 1

96

9/). T

his

tea

m fro

m th

e In

stitu

te o

f Ind

ustria

l En

-gin

ee

ring a

nd

Ma

na

ge

me

nt (B

WI) th

en

de

ve

lop

ed

an

d p

ub

lish

ed

a c

oh

esiv

e

an

d

co

nsis

ten

t p

lan

nin

g

me

tho

do

logy

ca

lled

„S

yste

ms

En

gin

ee

ring“

/Ha

be

rfelln

er e

t al. 1

97

6/.

In

the

m

ea

ntim

e,

this

“Z

uric

h”

Syste

ms

En

gin

ee

ring

ha

s

be

en

re

wo

rke

d

(/Ha

be

rfelln

er

et

al.

19

99

/, /Z

üst

20

04

/) a

nd

a

da

pte

d

acco

rdin

g

to

ne

w

kn

ow

led

ge

an

d re

qu

irem

en

ts. T

his

ad

ap

tatio

n m

ain

ly c

on

sis

ted

of a

stro

nge

r co

nsid

era

tion

of s

ocio

-tech

nic

al s

yste

ms a

nd

of th

e in

cre

asin

gly

imp

orta

nt a

na

l-ysis

an

d e

va

lua

tion

of d

yn

am

ic, s

tron

gly

inte

rlinke

d o

bje

cts

.

Th

e “Z

uric

h” S

yste

ms E

ngin

ee

ring o

ffers

a fra

me

wo

rk a

nd

prin

cip

les th

at le

ad

to

ob

jectiv

e a

nd

go

al-o

rien

ted

de

sig

nin

g o

f co

mp

lex s

yste

ms in

ca

se

s o

f hig

h

co

mp

lexity

a

nd

/or

exte

nsiv

e sco

pe

o

f a

p

roje

ct. S

yste

ms E

ngin

ee

ring p

ostu

-la

tes a

ran

ge

of p

rincip

les a

nd

wa

ys o

f thin

kin

g.

Th

e “Z

uric

h” S

yste

ms E

ngin

ee

ring (S

E) h

as b

ee

n s

ucce

ssfu

lly a

pp

lied

ma

ny

time

s in

va

riou

s p

lan

nin

g a

nd

de

ve

lop

me

nta

l ap

pro

ach

es. Its

su

cce

ss is

du

e

ma

inly

to th

e fra

me

wo

rk th

at S

E o

ffers

an

inte

rdis

cip

lina

ry te

am

of w

ork

ers

. T

his

is a

lso

the

rea

so

n w

hy S

E is

inclu

de

d in

the

cu

rricu

lum

of v

ario

us u

niv

ers

i-tie

s

an

d

institu

tion

s

of

hig

he

r e

du

ca

tion

w

ithin

S

witz

erla

nd

a

nd

a

rou

nd

th

e

wo

rld.

1 T

he e

xpre

ssio

n „p

roduct“ w

ill be u

sed in

this

contrib

utio

n in

a m

uch b

roader s

ense, th

at w

ould

m

ean a

s a

phys

ical s

yste

m a

s w

ell a

s p

rocess s

yste

m. T

he e

colo

gic

al, e

conom

ical a

nd s

ocia

l im

pacts

over th

e w

hole

life tim

e h

ave to

be in

tegra

ted in

the p

rocess o

f sys

tem

s d

evelo

pm

ent

(see a

lso th

e w

ider u

nders

tandin

g o

f techniq

ue in

/Ropohl 1

996/).

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

4

1.2

A

n O

ve

rvie

w o

f Sy

ste

ms

En

gin

ee

ring

In o

rde

r to a

pp

roa

ch

pro

ble

ms c

ircu

msp

ectly

, a c

om

pre

he

nsiv

e m

eth

od

of h

an

-d

ling / d

ea

ling w

ith th

em

, in a

ll pla

nn

ing p

ha

se

s, m

ust b

e g

ua

ran

tee

d.

On

on

e h

an

d –

the

SE

-me

tho

do

logy - is

ba

se

d o

n th

e ”s

yste

ms a

pp

roa

ch

” an

d

”ba

sic

be

liefs

an

d p

rincip

les”. T

he

ma

in p

urp

ose

of th

e s

yste

ms a

pp

roa

ch

is to

e

nh

an

ce

the

un

de

rsta

nd

ing o

f syste

ms b

eh

avio

ur a

s s

uch

; wh

ile th

e b

asic

be

-lie

fs a

nd

prin

cip

les s

et p

rioritie

s fo

r the

pro

ble

m-s

olv

ing p

roce

ss (s

ee

Fig

. 1).

Fig

. 1:

Th

e

Syste

ms

En

gin

ee

ring

Fra

me

wo

rk

(in

acco

rdin

g

to

/Zü

st

19

97

/)

On

the

oth

er h

an

d –

the

SE

-me

tho

do

logy - e

nco

mp

asse

s th

e “L

ife C

ycle

Mo

d-

el” a

nd

the

“Pro

ble

m-S

olv

ing C

on

ce

pt”. T

he

life c

ycle

mo

de

l de

scrib

es th

e life

p

ha

se

s o

f an

y a

rtificia

l syste

m. T

he

pro

ble

m-s

olv

ing c

on

ce

pt s

ho

ws a

se

qu

en

ce

o

f ind

isp

en

sa

ble

wo

rk s

tep

s w

hic

h h

ave

to b

e c

arrie

d o

ut to

so

lve

a d

istin

ct

pro

ble

m.

Th

e S

E-c

on

ce

pt h

as to

be

inte

rpre

ted

for e

ach

ind

ivid

ua

l ca

se

an

d a

pp

lied

in a

ta

sk-s

pe

cific

ma

nn

er. T

he

refo

re, th

e fo

llow

ing m

ust b

e ta

ke

n in

to c

on

sid

era

tion

w

he

n u

sin

g S

yste

ms E

ngin

ee

ring.

Syste

ms E

ngin

ee

ring:

- is

no

su

bstitu

te fo

r tale

nt a

nd

exp

erie

nce

, pro

fessio

na

l kn

ow

led

ge

an

d in

-te

nsiv

e p

ers

on

al in

vo

lve

me

nt w

ith th

e p

rob

lem

.

- in

no

wa

y in

hib

its in

tuitio

n a

nd

cre

ativ

ity. S

yste

ms E

ngin

ee

ring in

tegra

tes

the

se

ab

ilities in

ord

er to

ach

ieve

a g

oa

l.

- is

n

ot

a re

ad

y-m

ad

e re

cip

e,

bu

t a

ge

ne

ral

pro

ble

m-s

olv

ing m

eth

od

olo

gy

wh

ich

sh

ou

ld b

e a

pp

lied

task-s

pe

cific

ally

Page 3: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

5

Sin

ce

the

se

lectio

n a

nd

ap

plic

atio

n o

f pro

pe

r me

tho

ds is

de

cis

ive

for s

ucce

ssfu

l syste

ms d

esig

n a

nd

syste

ms c

on

trol, th

e fo

llow

ing w

ill de

lve

de

ep

er in

to th

e

me

tho

dic

al a

sp

ects

of p

rob

lem

-so

lvin

g.

Th

is b

oo

k w

as c

on

ce

ive

d a

s a

pe

rso

na

l ma

nu

al. F

or th

at re

aso

n, th

ere

is e

xtra

sp

ace

at th

e e

nd

of e

ach

ch

ap

ter fo

r pe

rso

na

l no

tes.

Pe

rso

na

l no

tes

:

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

6

2

Syste

ms A

pp

roach

Th

e S

yste

ms a

pp

roa

ch

su

pp

orts

the

p

roce

ss o

f syste

ms d

esig

n a

nd

the

in

tegra

tion

o

f th

e d

ive

rse

e

nga

ge

d

kn

ow

led

ge

-are

as

an

d

dis

cip

line

s,

esp

ecia

lly

the

go

al-o

rien

ted

co

m-

mu

nic

atio

n

with

in

the

p

lan

nin

g

tea

m.

Sy

ste

ms

Ap

pro

ac

h a

nd

Sy

ste

ms

Mo

de

ls

“Aw

are

ne

ss o

f the

va

riety

an

d in

terd

ep

en

de

ncy o

f rele

va

nt fa

cto

rs h

as le

d to

a

me

tho

do

log

ica

l de

ve

lop

me

nt in

all d

iscip

line

s a

nd

field

s o

f wo

rk, i.e

. a s

yste

ms

ap

pro

ach

. A

firs

t su

pe

rficia

l co

nsid

era

tion

w

ou

ld b

ring

d

iffere

nt

syste

ms a

p-

pro

ach

es to

min

d. T

he

y a

ll sh

ow

, esp

ecia

lly w

ith re

ga

rd to

term

ino

log

y, th

eir

de

riva

tion

from

the

field

of k

no

wle

dg

e o

n w

hic

h th

eir d

eve

lop

me

nt is

ba

se

d.

Th

oro

ug

h

co

nte

mp

latio

n

reve

als

th

e u

nifo

rmity

o

f th

e b

asic

a

pp

roa

ch

q

uite

cle

arly

. Esp

ecia

lly in

rece

nt y

ea

rs, in

an

ab

stra

ct w

ay, th

is c

on

sis

ten

cy h

as re

-su

lted

in a

stro

ng

ly d

eve

lop

ed

syste

ms th

eo

ry.

Of s

pe

cia

l imp

orta

nce

is th

e h

olis

tic c

on

ce

ptio

n, th

at a

ny p

rob

lem

atic

en

tity c

an

b

e c

on

sid

ere

d to

be

a s

yste

m, c

on

sis

ting

of e

lem

en

ts w

ith d

istin

ct re

latio

nsh

ips.

Th

e q

ue

stio

n o

f wh

eth

er o

r no

t an

en

terp

rise

, a c

om

pa

ny, a

n in

du

stry

or a

bio

-to

pe

is a

syste

m is

irrele

va

nt. M

uch

mo

re im

po

rtan

t is th

e fa

ct th

at th

ey a

ll ma

y

be

de

alt w

ith a

s v

ery

co

mp

lex e

ntitie

s, w

hic

h, w

ith a

ll the

ir div

ers

e fu

nctio

ns,

ca

n b

e re

pre

se

nte

d m

ore

u

nd

ers

tan

da

bly

a

nd

tra

nsp

are

ntly

, w

he

n th

ey a

re

mo

de

lled

a

s syste

ms.

Th

is re

qu

ires a

n a

pp

lica

ble

, fle

xib

le m

od

el

stru

ctu

re.

Mo

de

ls sh

ou

ld b

e a

s a

ccu

rate

a

s p

ossib

le /

as co

ncre

te a

s n

ece

ssa

ry,

bu

t m

od

els

ine

vita

bly

ab

stra

ct fro

m re

ality

an

d re

flect th

e p

lan

ne

rs v

iew

an

d c

om

-p

reh

en

sio

n o

f rea

lity.”

(qu

ote

d fro

m W

. Da

en

ze

r’s p

refa

ce

, in /H

ab

erfe

llne

r et a

l. 19

76

/)

2.1

S

oc

io-te

ch

nic

al S

ys

tem

s

In a

co

rpo

rate

co

nte

xt, n

ot o

nly

tech

nic

al, b

ut a

lso

so

cio

-tech

nic

al s

yste

ms m

ust

be

de

sig

ne

d, a

na

lyse

d a

nd

eva

lua

ted

. Hu

ma

n b

ein

gs w

ith a

ll the

ir inte

ractio

ns

are

pa

rt of th

e s

yste

m. H

ere

we

will s

pe

ak a

bo

ut in

vo

lve

d a

nd

affe

cte

d p

artic

i-p

an

ts (s

ee

Fig

. 2).

Page 4: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

7

So

cio

-tech

nic

al s

yste

ms a

re o

pe

n, in

terlin

ke

d a

nd

dyn

am

ic a

nd

the

refo

re c

om

-p

lex:

Op

en

ne

ss:

Th

e c

urre

nt s

yste

m c

on

tain

s a

ctiv

e re

latio

ns to

the

exte

r-n

al e

nviro

nm

en

t. Th

e s

yste

m is

no

t iso

late

d.

Dyn

am

ism

: T

he

ele

me

nts

an

d re

latio

nsh

ips in

the

syste

m c

ha

nge

ove

r tim

e.

Co

mp

lexity

: C

om

ple

xity

is

a

fu

nctio

n o

f th

e d

ive

rsity

a

nd

n

um

be

r o

f e

lem

en

ts a

nd

rela

tion

sh

ips in

a s

yste

m. T

he

be

ha

vio

ur o

f co

mp

lex s

yste

ms is

no

t de

term

inis

tic a

nd

the

refo

re p

rinci-

pa

lly u

np

red

icta

ble

. U

nd

er

sp

ecific

co

nd

ition

s th

ey m

ay

run

o

ut

of

co

ntro

l i.e

. b

eh

ave

ch

ao

tica

lly.

On

th

e o

the

r h

an

d w

e k

no

w s

elf-o

rga

nis

ing s

yste

ms th

at b

uild

up

sta

ble

stru

ctu

res a

nd

be

ha

vio

ur d

esp

ite th

eir c

om

ple

xity

.

C

om

ple

x

syste

ms

are

a

lso

ch

ara

cte

rise

d

by

the

(o

ften

te

mp

ora

lly d

ela

ye

d) a

pp

ea

ran

ce

of p

ositiv

e a

nd

ne

ga

tive

fe

ed

ba

ck lo

op

s, in

as fa

r as th

ey c

an

be

mo

de

lled

as in

ter-

twin

ed

ca

use

-effe

ct-c

ha

ins.

Th

e b

eh

avio

ur o

f so

cio

-tech

nic

al s

yste

ms is

ofte

n c

ou

nte

rintu

itive

(e.g

. Fig

. 2).

Fig

. 2:

Mo

de

l of a

dyn

am

ic s

yste

m, s

ho

win

g th

e im

pa

ct o

f ele

me

nts

on

o

the

rs (E

xa

mp

le „w

aste

fee

“ from

/Zü

st 1

99

7/

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

8

Pe

rso

na

l no

tes

:

Page 5: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

9

3

Basic

Belie

fs a

nd

Prin

cip

les

Ba

sic

be

liefs

an

d p

rincip

les s

ugge

st

ho

w th

e p

lan

nin

g a

nd

de

ve

lop

me

nt

tea

m

sh

ou

ld

ge

ne

rally

a

ct

in

the

p

rob

lem

-so

lvin

g p

roce

ss.

3.1

C

on

sid

erin

g T

ime

-rela

ted

Ch

an

ge

s

Syste

ms c

ha

nge

ove

r the

co

urs

e w

he

n d

eve

lop

ing a

syste

m m

od

el. T

ha

t is w

hy

the

pla

nn

ing te

am

mu

st c

on

sta

ntly

de

al w

ith n

ew

situ

atio

ns. T

he

re a

re tw

o d

if-fe

ren

t asp

ects

to c

on

sid

er:

- a

ntic

ipa

tion

of fu

ture

ch

an

ge

s in

the

en

viro

nm

en

t an

d th

eir in

tegra

tion

into

th

e p

lan

nin

g p

roce

ss b

ase

d, fo

r exa

mp

le, o

n tre

nd

an

aly

sis

, an

d

- e

va

lua

tion

of p

revio

usly

pla

nn

ed

ste

ps a

nd

inte

rim d

ecis

ion

s a

ga

inst n

ew

re

leva

nt k

no

wle

dge

, an

d a

da

pta

tion

, if ne

ce

ssa

ry.

3.2

T

hin

kin

g in

Alte

rna

tive

s / T

hin

kin

g in

Op

tion

s

Th

e g

oa

l of S

yste

ms E

ngin

ee

ring is

to c

om

pre

he

nsiv

ely

co

nsid

er a

ll rele

va

nt

asp

ects

of th

e p

rob

lem

in th

e p

lan

nin

g p

roce

ss. T

hin

kin

g in

alte

rna

tive

s a

nd

o

ptio

ns a

s w

ell a

s u

sin

g s

ce

na

rios to

exa

min

e th

ese

alte

rna

tive

s p

lays a

ce

ntra

l ro

le in

the

syn

the

sis

, as w

ell a

s a

na

lysis

of s

olu

tion

s to

the

pro

ble

m.

3.3

F

rom

an

Ov

era

ll to a

De

taile

d V

iew

A fu

rthe

r ele

me

nt o

f su

cce

ssfu

l pla

nn

ing is

the

effe

ctiv

e s

tructu

ring o

f the

wo

rk-

ing le

ve

ls. T

he

re a

re tw

o w

ays in

wh

ich

this

sh

ou

ld b

e d

on

e:

- o

n th

e o

ne

ha

nd

, syste

ms s

ho

uld

be

stru

ctu

red

hie

rarc

hic

ally

an

d s

pe

cifie

d

with

an

incre

asin

g d

egre

e o

f de

tail.

- o

n th

e o

the

r ha

nd

, this

influ

en

ce

s th

e p

lan

nin

g m

eth

od

s. T

he

he

uris

tic p

rin-

cip

le ”F

rom

an

Ove

rall to

a D

eta

iled

Vie

w“ illu

stra

tes th

at it is

ad

vis

ab

le to

firs

t ma

ke

a c

om

pre

he

nsiv

e s

itua

tion

an

aly

sis

, se

t ge

ne

ral g

oa

ls fo

r the

tota

l syste

m a

nd

de

sig

n a

rou

gh

dra

ft so

lutio

n o

n a

rela

tive

ly g

en

era

l leve

l. In th

e

co

urs

e o

f the

pro

ble

m-s

olv

ing p

roce

ss th

e g

oa

ls a

nd

co

nce

pts

sh

ou

ld b

e

de

ve

lop

ed

– s

tep

by s

tep

– in

a m

ore

an

d m

ore

co

ncre

te a

nd

de

taile

d m

an

-n

er.

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

1

0

In p

ractic

al a

pp

lica

tion

, the

prin

cip

les „fro

m a

n o

ve

rall to

a d

eta

iled

vie

w“ o

r „fro

m th

e a

bstra

ct to

the

co

ncre

te“ a

nd

of „th

inkin

g in

alte

rna

tive

s “ s

ho

uld

be

u

se

d in

co

mb

ina

tion

. Th

is m

ea

ns th

at in

the

pro

ble

m-s

olv

ing p

roce

ss, a

s o

ne

m

ove

s fro

m o

ve

rall v

iew

of th

e s

yste

m to

a d

eta

iled

vie

w o

f the

so

lva

ble

pro

b-

lem

, on

e m

ust b

e a

wa

re o

f the

alte

rna

tive

s a

t ea

ch

pla

nn

ing le

ve

l an

d s

ele

ct

the

alte

rna

tive

tha

t is c

on

sid

ere

d th

e b

est g

ive

n th

e c

urre

nt k

no

wle

dge

of s

ys-

tem

an

d th

e p

rob

lem

-so

lvin

g g

oa

ls.

Pe

rso

na

l no

tes

:

Page 6: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

1

1

4

Life

Cycle

Mo

del

Th

e life

cycle

of a

n a

rtificia

l Syste

m

co

mp

rise

s

a

nu

mb

er

of

dis

tinct

sta

ge

s.

4.1

A

n o

ve

rvie

w o

f the

Life

Cy

cle

Mo

de

l

Th

e “L

ife C

ycle

Mo

de

l” rou

gh

ly d

ivid

es th

e life

sp

an

of a

dis

tinct a

rtificia

l syste

m

into

de

ve

lop

me

nt, re

alis

atio

n o

r pro

du

ctio

n, u

tilisa

tion

an

d d

isp

osa

l. Th

e re

late

d

activ

ities c

an

be

su

bd

ivid

ed

into

pa

rtial p

ha

se

s. T

he

de

ve

lop

me

nt p

ha

se

ca

n b

e

bro

ke

n d

ow

n in

to in

ce

ntiv

es fo

r syste

ms d

esig

n, p

relim

ina

ry s

tud

y, m

ain

stu

dy

an

d d

eta

iled

stu

dy. T

hro

ugh

this

, the

syste

m w

ill su

cce

ssiv

ely

be

de

ve

lop

ed

a

cco

rdin

g to

the

ge

ne

ral p

rincip

le „fro

m th

e a

bstra

ct to

the

co

ncre

te“ (F

ig. 3

):

Fig

. 3:

Life

Cycle

Ph

ase

s

In th

e fo

llow

ing, th

e life

cycle

mo

de

l ph

ase

s w

ill be

de

scrib

ed

ind

ivid

ua

lly.

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

1

2

4.2

In

itiativ

e fo

r Sy

ste

ms

De

sig

n

Th

e firs

t ph

ase

in th

e d

eve

lop

me

nt s

tage

is „s

yste

ms d

esig

n in

itialis

atio

n“. T

his

ra

the

r u

nstru

ctu

red

p

ha

se

e

nco

mp

asse

s th

e tim

e p

erio

d b

etw

ee

n b

eco

min

g

aw

are

of a

pro

ble

m a

nd

de

cid

ing to

so

lve

it. In p

ractic

e, th

is is

als

o c

alle

d th

e

pro

ject p

rep

ara

tion

ph

ase

.

Pu

rpo

se

: In

form

an

d s

en

sitis

e d

ecis

ion

-ma

ke

rs a

bo

ut a

po

ssib

le p

rob

lem

, d

eve

lop

pro

ble

m a

wa

ren

ess a

nd

cla

rify w

illingn

ess to

act

Re

su

lt: T

he

de

cis

ion

of th

e d

ecis

ion

-ma

ke

rs to

eith

er d

ea

l with

the

pro

b-

lem

with

in th

e s

co

pe

of a

stu

dy, o

r to d

efe

r it.

Th

e in

itialis

atio

n h

as a

de

cis

ive

influ

en

ce

on

the

su

bse

qu

en

t pla

nn

ing p

roce

ss.

Th

e m

ore

or le

ss c

on

cre

te ta

sk fo

rmu

latio

n a

t the

be

gin

nin

g o

f a s

tud

y is

critic

al

for its

an

aly

sis

an

d m

ust b

e e

nh

an

ce

d in

acco

rda

nce

with

the

clie

nt’s

inte

rests

.

4.3

P

relim

ina

ry S

tud

y

Fo

rmu

latio

n o

f an

d a

gre

em

en

t on

the

pro

ble

m a

nd

its b

ou

nd

arie

s is

the

ce

ntra

l is

su

e, a

s w

ell a

s th

e d

efin

ition

of re

qu

irem

en

ts fo

r the

syste

m to

be

ch

an

ge

d o

r n

ew

ly d

esig

ne

d. T

he

pro

ble

m m

ust b

e re

ga

rde

d c

om

pre

he

nsiv

ely

. Th

e re

leva

nt

rela

tion

with

the

syste

m’s

en

viro

nm

en

t an

d a

ll influ

en

ce

s o

n th

e s

yste

m its

elf

are

sig

nific

an

t.

Th

e p

rob

lem

-so

lvin

g p

roce

ss, w

ithin

the

fram

ew

ork

of a

pre

limin

ary

stu

dy, is

ch

ara

cte

rise

d b

y th

e fa

ct th

at im

po

rtan

t de

cis

ion

s m

ust b

e ta

ke

n th

ou

gh

the

re is

n

ot

ve

ry

mu

ch

in

form

atio

n

ava

ilab

le

(ye

t). C

orre

sp

on

din

gly

, th

e

pre

limin

ary

stu

dy h

as a

sig

nific

an

t effe

ct o

n th

e re

su

lts o

f the

follo

win

g p

lan

nin

g-s

tage

s.

Th

e d

ecis

ion

-ma

ke

rs h

ave

to

clo

se

th

e p

relim

ina

ry stu

dy b

y m

akin

g a

n im

-p

orta

nt d

ecis

ion

: Pla

ns w

hic

h a

re n

ot p

rom

isin

g s

ho

uld

be

dis

ca

rde

d a

s e

arly

as

po

ssib

le. F

or th

e p

urp

ose

of c

on

ce

ntra

ting e

fforts

, less p

rom

isin

g u

nd

erta

kin

gs

sh

ou

ld b

e re

pla

ce

d b

y b

ette

r on

es.

Pu

rpo

se

: T

he

pre

limin

ary

stu

dy is

a c

larific

atio

n p

roce

ss, e

sp

ecia

lly re

ga

rd-

ing p

rob

lem

form

ula

tion

an

d g

oa

l se

tting. P

ossib

le s

olu

tion

co

n-

ce

pts

mu

st b

e w

ork

ed

ou

t su

fficie

ntly

, an

d c

he

cke

d fo

r fea

sib

ility,

so

tha

t the

de

cis

ion

-ma

ke

rs c

an

eva

lua

te a

nd

ma

ke

a d

ecis

ion

.

Re

su

lt: T

he

resu

lt of a

pre

limin

ary

stu

dy is

a s

olu

tion

co

nce

pt, i.e

. a c

on

-ce

ptu

al

fram

ew

ork

th

at m

ust b

e w

ork

ed

ou

t in m

ore

de

tail in

a

ma

in s

tud

y o

r a s

ugge

stio

n to

term

ina

te th

e p

rob

lem

-so

lvin

g p

ro-

ce

ss.

Page 7: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

1

3

A fu

rthe

r go

al o

f a p

relim

ina

ry s

tud

y is

to d

ete

rmin

e if th

ere

rea

lly is

a n

ee

d fo

r a

ne

w o

r mo

difie

d s

olu

tion

to a

dd

ress / o

r to s

olv

e th

e p

rob

lem

ide

ntifie

d in

the

p

revio

us p

ha

se

s.

Me

tho

ds, w

hic

h s

up

po

rt qu

alita

tive

an

d/o

r se

mi-q

ua

ntita

tive

an

aly

se

s a

nd

eva

l-u

atio

ns, a

re o

f sp

ecia

l inte

rest in

so

far a

s th

e n

ece

ssa

ry p

lan

nin

g in

form

atio

n is

u

su

ally

inco

mp

lete

an

d in

exa

ct.

Th

e q

ua

lity o

f a p

relim

ina

ry s

tud

y c

an

be

teste

d w

ith th

e fo

llow

ing q

ue

stio

ns

/Zü

st 1

99

7/:

- H

as th

e p

rob

lem

be

en

de

fine

d c

lea

rly e

no

ugh

?

- W

ho

is a

ffecte

d b

y th

e p

roje

ct a

nd

wh

o is

invo

lve

d?

- A

re th

e re

latio

ns to

the

en

viro

nm

en

t cle

ar?

- A

re th

e o

ptio

ns fo

r syste

ms d

esig

n k

no

wn

an

d d

efin

ed

cle

arly

en

ou

gh

?

- Is

the

clie

nt in

agre

em

en

t with

the

info

rma

tion

liste

d a

bo

ve

?

- A

re th

e re

qu

irem

en

ts fo

r p

rob

lem

-so

lvin

g (g

oa

ls a

nd

ge

ne

ral

fram

ew

ork

) cle

ar?

- Is

the

re a

de

qu

ate

ove

rvie

w o

f ba

sic

, co

nce

iva

ble

so

lutio

n c

on

ce

pts

?

- C

an

the

su

itab

ility / e

ffectiv

en

ess o

f the

se

alte

rna

tive

s b

e e

va

lua

ted

?

- Is

it po

ssib

le to

ma

ke

a d

ecis

ion

for a

ce

rtain

alte

rna

tive

ba

se

d o

n th

is e

va

l-u

atio

n?

- C

an

the

de

cis

ion

be

justifie

d lo

gic

ally

an

d u

nd

ers

tan

da

bly

?

- A

re a

ll critic

al fa

cto

rs k

no

wn

?

4.4

M

ain

Stu

dy

Ba

se

d o

n th

e (a

bstra

ct) s

olu

tion

co

nce

pt c

ho

se

n, th

e m

ain

stu

dy w

ork

s o

ut th

e

de

sig

n o

f the

en

tire s

yste

m. O

ve

rall c

on

ce

pts

sh

ou

ld b

e g

en

era

ted

, wh

ich

allo

w

a w

ell-fo

un

de

d e

va

lua

tion

o

f th

e e

ffectiv

en

ess,

fea

sib

ility a

nd

e

co

no

mic

e

ffi-cie

ncy o

f the

de

sig

ne

d s

yste

m.

In th

e m

ain

stu

dy, th

e a

rea

of s

tud

y is

co

nscio

usly

na

rrow

ed

do

wn

an

d c

on

ce

n-

trate

d o

n a

se

t of p

ossib

le s

olu

tion

s. T

he

en

viro

nm

en

t is o

nly

rele

va

nt a

s fa

r as

its e

ffects

on

the

furth

er d

esig

n o

f co

nce

pt d

rafts

.

Pu

rpo

se

: W

ithin

the

fram

ew

ork

of th

e m

ain

stu

dy, in

ten

sifie

d g

ath

erin

g o

f in

form

atio

n is

esse

ntia

l. Alte

rna

tive

co

nce

pts

mu

st b

e d

eve

lop

ed

a

nd

e

va

lua

ted

w

ith re

ga

rd to

th

eir fe

asib

ility, e

ffectiv

en

ess, a

nd

p

rofita

bility

.

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

1

4

Re

su

lt: T

he

resu

lt of th

e m

ain

stu

dy is

the

ove

rall c

on

ce

pt. T

he

ove

rall

co

nce

pt p

rovid

es th

e fra

me

wo

rk fo

r furth

er d

eve

lop

me

nt a

nd

rea

l-is

atio

n

Th

e q

ua

lity o

f a m

ain

stu

dy c

an

be

teste

d w

ith th

e fo

llow

ing q

ue

stio

ns /Z

üst

19

97

/:

- Is

the

reco

mm

en

de

d o

ve

rall c

on

ce

pt c

on

vin

cin

g a

nd

rea

lisa

ble

, rega

rdin

g

fun

ctio

na

l, eco

no

mic

al, p

ers

on

ne

l an

d o

rga

nis

atio

na

l asp

ects

? A

re th

e n

ec-

essa

ry m

ea

ns a

nd

org

an

isa

tion

al p

rere

qu

isite

s k

no

wn

?

- Is

the

re a

n o

ve

rvie

w o

f co

nce

iva

ble

alte

rna

tive

s?

- A

re th

e c

ritica

l co

mp

on

en

ts k

no

wn

?

- A

re th

e p

eo

ple

wo

rkin

g o

n th

e s

ea

rch

for a

so

lutio

n s

uffic

ien

tly in

vo

lve

d o

r in

form

ed

?

- Is

the

situ

atio

n re

ad

y fo

r a d

ecis

ion

? C

an

the

de

cis

ion

be

acce

pte

d a

nd

jus-

tified

inte

rna

lly a

nd

exte

rna

lly?

- A

re th

e p

rioritie

s fo

r furth

er s

pe

cific

atio

n, re

sp

ectiv

ely

rea

lisa

tion

, cle

ar?

Th

e c

on

ce

pt a

ltern

ativ

es, c

om

pa

red

to th

e p

relim

ina

ry s

tud

y, a

re m

ore

co

mp

re-

he

nsiv

e a

nd

esp

ecia

lly m

ore

de

taile

d. In

this

sta

ge

, e.g

. effic

ien

cy a

nd

inve

st-

me

nt c

alc

ula

tion

s p

lay a

ce

ntra

l role

.

4.5

D

eta

iled

Stu

die

s

With

in th

e fra

me

wo

rk o

f de

taile

d s

tud

ies, d

eta

iled

so

lutio

n c

on

ce

pts

for p

artia

l p

rob

lem

s, i.e

. fun

ctio

ns a

nd

co

mp

on

en

ts o

f a s

yste

m, a

re w

ork

ed

ou

t. Th

e b

a-

se

s fo

r d

eta

iled

stu

die

s a

re in

form

atio

n a

nd

re

su

lts cre

ate

d w

ithin

th

e m

ain

stu

dy. T

he

are

a o

f stu

dy is

na

rrow

ed

do

wn

as m

uch

as p

ossib

le. D

istin

ct s

ub

-syste

ms a

re ta

ckle

d u

nd

er s

pe

cific

asp

ects

.

Pu

rpo

se

: W

ork

ing o

ut o

f de

taile

d c

on

ce

pts

on

the

ba

sis

of s

pe

cific

, so

un

d,

eva

lua

ted

in

form

atio

n a

nd

p

artia

l co

nce

pt

alte

rna

tive

s.

Als

o,

all

rele

va

nt in

form

atio

n to

rea

lise

the

so

lutio

n is

pro

vid

ed

.

Re

su

lt: D

eta

iled

co

nce

pts

an

d, if n

ee

d b

e, re

alis

atio

n c

on

ce

pts

, as w

ell a

s

ide

as c

on

ce

rnin

g th

e d

isp

ositio

n o

f exis

ting s

yste

ms a

nd

its e

le-

me

nts

.

No

te th

at in

div

idu

al d

eta

iled

stu

die

s c

an

exte

nd

ove

r se

ve

ral s

yste

m le

ve

ls. T

he

d

eco

mp

ositio

n o

f a

n o

ve

rall

co

nce

pt

ca

n b

e a

cco

mp

lish

ed

in

se

ve

ral

pa

rtial

ste

ps. A

lso

, the

pa

rtial c

on

ce

pts

de

ve

lop

ed

with

in th

e s

co

pe

of d

eta

iled

stu

die

s

mu

st c

on

sta

ntly

be

co

-ord

ina

ted

with

ea

ch

oth

er.

Page 8: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

1

5

Th

e q

ua

lity o

f de

taile

d s

tud

ies c

an

be

teste

d w

ith th

e fo

llow

ing q

ue

stio

ns /Z

üst

19

97

/:

- D

o th

e d

eta

iled

co

nce

pts

me

et th

e re

qu

irem

en

ts re

su

lting fro

m th

e o

ve

rall

co

nce

pt?

- C

an

d

eta

iled

co

nce

pts

b

e in

tegra

ted

into

the

ove

rall c

on

ce

pt a

nd

am

on

g

the

mse

lve

s ?

Do

the

y fu

lfil the

fun

ctio

ns th

ey w

ere

co

nce

ive

d fo

r? D

o th

e

de

taile

d c

on

ce

pts

ha

ve

qu

alitie

s w

hic

h a

re n

ot d

esira

ble

for th

e o

ve

rall c

on

-ce

pt?

- A

re th

e d

eta

iled

co

nce

pts

co

ncre

te e

no

ugh

to b

e re

alis

ed

?

4.6

S

ys

tem

s R

ea

lisa

tion

Syste

ms re

alis

atio

n m

ea

ns th

e im

ple

me

nta

tion

of a

syste

m c

on

ce

pt, i.e

. the

p

rod

uctio

n o

f a d

esig

ne

d a

nd

pla

nn

ed

syste

m. T

his

en

co

mp

asse

s th

e in

div

idu

al

syste

ms c

om

po

ne

nts

, wh

ich

are

pro

du

ce

d w

ithin

the

org

an

isa

tion

or a

cqu

ired

e

xte

rna

lly. It a

lso

inclu

de

s th

e re

sp

ectiv

e o

rga

nis

atio

na

l fram

ew

ork

.

Pu

rpo

se

: A

cqu

isitio

n o

r pro

du

ctio

n o

f the

ind

ivid

ua

l syste

ms c

om

po

ne

nts

, o

rde

rly / s

yste

ma

tic a

sse

mb

ly a

nd

pre

pa

ratio

n fo

r syste

ms in

tro-

du

ctio

n.

Re

su

lt: A

fun

ctio

nin

g / w

ork

ing b

ut n

ot y

et d

ep

loye

d / in

trod

uce

d s

yste

m.

Pa

ralle

l to th

e p

rod

uctio

n o

f the

syste

m its

elf g

oe

s th

e c

rea

tion

or a

cqu

isitio

n o

f fu

rthe

r im

po

rtan

t h

ard

a

nd

so

ftwa

re co

mp

on

en

ts,

i.e.

train

ing m

ate

rials

, sys-

tem

s d

ocu

me

nta

tion

an

d u

se

r ma

nu

als

.

4.7

S

ys

tem

s In

sta

llatio

n

Syste

ms in

sta

llatio

n m

ea

ns tu

rnin

g th

e s

yste

m o

ve

r to th

e u

se

r, as w

ell a

s e

x-

pla

inin

g h

ow

it

wo

rks a

nd

h

ow

to

u

se

it.

Sim

ple

syste

ms,

afte

r a

pp

rop

riate

p

rep

ara

tion

, ca

n b

e in

trod

uce

d a

s a

wh

ole

with

ou

t mu

ch

risk. In

a c

on

clu

din

g

revie

w th

e e

ffectiv

en

ess a

nd

effic

ien

cy o

f the

syste

m s

ho

uld

be

eva

lua

ted

.

Pu

rpo

se

: P

ut n

ew

syste

m in

to o

pe

ratio

n, a

nd

, if ne

ed

be

, dis

po

se

of o

ld

syste

m.

Re

su

lt: T

he

rea

dy–

to-u

se

syste

m is

turn

ed

ove

r to th

e s

yste

m u

se

r.

Afte

r a s

ucce

ssfu

l insta

llatio

n o

f the

syste

m, th

e S

E-p

roje

ct is

ge

ne

rally

term

i-n

ate

d.

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

1

6

4.8

S

ys

tem

s U

tilisa

tion

Syste

ms u

tilisa

tion

me

an

s th

e s

yste

m is

be

ing o

pe

rate

d a

nd

ha

nd

led

by th

e

use

r.

Pu

rpo

se

: A

pp

lica

tion

an

d u

se

of th

e s

yste

m a

nd

test o

f the

pe

rform

an

ce

, if n

ece

ssa

ry, w

hile

ad

ap

ting th

e c

om

po

ne

nts

.

Exp

erie

nce

s g

ain

ed

an

d s

ugge

stio

ns fo

r ch

an

ge

sh

ou

ld b

e g

ath

ere

d s

yste

ma

ti-ca

lly a

nd

, if po

ssib

le, lin

ke

d w

ith th

e in

div

idu

al fu

nctio

ns o

f the

syste

m. T

his

p

rovid

es th

e b

asis

for im

pro

vin

g th

e c

urre

nt s

yste

m o

r for th

e d

esig

n o

f an

alo

-go

us s

yste

ms.

4.9

In

itiativ

es

for n

ew

De

sig

n, R

ed

es

ign

or D

em

an

ufa

ctu

ring

Wh

en

it be

co

me

s o

bvio

us th

at th

e s

yste

m in

use

requ

ires s

ign

ifica

nt re

de

sig

n-

ing o

r eve

n a

ne

w d

esig

n, th

is is

the

ince

ntiv

e fo

r a n

ew

pre

limin

ary

stu

dy.

Pu

rpo

se

: M

ake

d

ecis

ion

-ma

ke

rs

aw

are

, d

eve

lop

p

rob

lem

co

nscio

usn

ess,

an

d c

larify

willin

gn

ess to

act.

Re

su

lt: D

ecis

ion

by th

e re

sp

on

sib

le p

ers

on

s, e

ithe

r to d

ea

l with

the

pro

b-

lem

in a

ne

w s

tud

y, o

r to d

efe

r it.

Fo

r min

or im

pro

ve

me

nts

an

d c

ha

nge

s, th

is c

ou

rse

of a

ctio

n is

no

t ne

ce

ssa

ry.

Su

ch

ad

ap

tatio

ns c

an

be

imp

lem

en

ted

, wh

ile th

e s

yste

m is

wo

rkin

g.

4.1

0

Dis

po

sa

l Ph

as

e

Th

e d

isp

osa

l ph

ase

co

ve

rs th

e fin

al d

isp

osa

l of a

syste

m. A

fter th

e d

isp

osa

l p

ha

se

, the

orig

ina

l syste

m d

oe

s n

ot e

xis

t an

ym

ore

. Ind

ivid

ua

l co

mp

on

en

ts o

f it ca

n b

e re

use

d in

the

sa

me

or s

imila

r wa

y in

oth

er s

yste

ms.

Pu

rpo

se

: O

rga

nis

ed

dis

po

sa

l of s

yste

ms.

Re

su

lt: D

isp

ose

d s

yste

m.

Th

e d

isp

osa

l ph

ase

sh

ou

ld, if p

ossib

le, b

e p

art o

f the

pla

nn

ing a

ctiv

ities. T

he

syste

m d

isp

osa

l sh

ou

ld a

lrea

dy b

e c

on

sid

ere

d d

urin

g th

e d

eve

lop

me

nt p

ha

se

.

Page 9: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

1

7

Pe

rso

na

l no

tes

:

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

1

8

5

Pro

ble

m-s

olv

ing

co

ncep

t

Th

e

ge

ne

ric

pro

ble

m-s

olv

ing

co

n-

ce

pt

(Pro

ble

m-S

olv

ing-C

ycle

) is

a

b

asic

stru

ctu

re fo

r tacklin

g a

ny d

e-

fine

d b

ig o

r sm

all p

rob

lem

in a

ny life

cycle

ph

ase

of a

syste

m. It p

rop

os-

es a

se

ries o

f top

ics, w

hic

h s

ho

uld

b

e ta

ckle

d - p

rincip

ally

in a

n ite

rativ

e

ma

nn

er

- w

ithin

a

d

istin

ct

pla

nn

ing

ste

p.

Th

e

resu

lts

of

the

in

div

idu

al

pla

nn

ing s

tep

s s

ho

uld

be

co

he

ren

t.

5.1

A

n O

ve

rvie

w o

f the

Pro

ble

m-s

olv

ing

co

nc

ep

t

Th

e p

rob

lem

-so

lvin

g c

on

ce

pt d

escrib

es th

e in

dis

pe

nsa

ble

wo

rk s

tep

s in

ord

er to

so

lve

a ta

sk w

ithin

the

sco

pe

of a

ny p

lan

nin

g s

tage

.

Fig

. 4

Pro

ble

m-S

olv

ing C

on

ce

pt (a

cco

rdin

g to

/Ha

be

rfelln

er e

t al. 1

97

6)

Th

e in

div

idu

al p

lan

nin

g s

tep

s, a

s p

rese

nte

d g

en

era

lly in

Fig

. 4, s

ho

w s

ub

tasks,

wh

ich

m

ust

be

a

cco

mp

lish

ed

. T

he

re

sp

ectiv

e e

ffort

de

pe

nd

s o

n th

e sp

ecific

p

rob

lem

.

Pro

ble

m-s

olv

ing s

ho

uld

sta

rt with

a d

efin

ition

of th

e s

yste

m a

nd

a c

om

pre

he

n-

siv

e s

itua

tion

an

aly

sis

(Fig

. 4, F

ig. 5

). Un

de

rsta

nd

ing h

ow

the

syste

m fu

nctio

ns

an

d its

inte

ractio

ns w

ith its

en

viro

nm

en

t is th

e fo

rem

ost p

urp

ose

. Esp

ecia

lly in

Page 10: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

1

9

pre

limin

ary

stu

die

s, a

nd

for th

e m

ost p

art in

ma

in s

tud

ies, u

su

ally

in a

n e

arly

p

lan

nin

g p

ha

se

, the

rela

tion

s to

the

syste

m e

nviro

nm

en

t, an

d/o

r exte

rna

l influ

-e

nce

s o

n th

e s

yste

m, a

re im

po

rtan

t an

d n

ee

d to

be

ca

refu

lly c

on

sid

ere

d.

Fig

. 5:

Pro

ble

m-s

olv

ing c

on

ce

pt a

nd

co

rresp

on

din

g in

form

atio

n flo

w (a

c-

co

rdin

g to

/Ha

be

rfelln

er e

t al. 1

97

6/)

Afte

r the

situ

atio

n a

na

lysis

the

go

als

are

form

ula

ted

an

d th

e in

itial p

rob

lem

de

fi-n

ition

mu

st b

e re

co

nsid

ere

d / re

vis

ed

. He

re th

e p

refe

ren

ce

s o

f the

de

cis

ion

-

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

2

0

ma

ke

rs / s

take

ho

lde

rs a

re ta

ke

n in

to c

on

sid

era

tion

, an

d th

e fa

cts

are

so

rted

th

rou

gh

in th

e s

itua

tion

an

aly

sis

.

Co

nce

pt s

yn

the

sis

an

d c

on

ce

pt a

na

lysis

are

the

ne

xt s

tep

s. H

ere

the

wid

est

an

d m

ost c

om

pre

he

nsiv

e s

olu

tion

sp

ectru

m s

ho

uld

be

de

ve

lop

ed

an

d te

ste

d fo

r its

fea

sib

ility. R

ea

lisa

ble

so

lutio

n a

ltern

ativ

es a

re th

e re

su

lt.

Th

e fin

alis

ing s

tep

s e

nco

mp

ass th

e e

va

lua

tion

of th

e a

ltern

ativ

e s

olu

tion

s a

nd

th

e d

ecis

ion

ab

ou

t the

op

tima

l on

e.

In th

e fo

llow

ing, th

e in

div

idu

al s

tep

s o

f the

pro

ble

m-s

olv

ing c

on

ce

pt a

re p

re-

se

nte

d in

de

tail.

Pe

rso

na

l no

tes

:

Page 11: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

2

1

5.2

S

itua

tion

An

aly

sis

Th

e

situ

atio

n

an

aly

sis

is

th

e

first

wo

rk s

tep

It inclu

de

s th

e in

ve

stig

a-

tion

of th

e c

urre

nt s

itua

tion

. Th

e re

-su

lts o

f the

situ

atio

n a

na

lysis

are

the

b

asis

fo

r go

al

de

finitio

n

an

d

the

se

arc

h fo

r a s

olu

tion

.

Pu

rpo

se

: S

itua

tion

an

aly

sis

acco

mp

lish

es th

e fo

llow

ing:

• H

olis

tic a

ntic

ipa

tion

/ gra

sp

ing o

f the

pro

ble

m u

nd

er a

ll re

leva

nt v

iew

po

ints

• O

utlin

es th

e p

ossib

le a

pp

roa

ch

es a

nd

ma

rgin

s fo

r ne

w

co

nce

pts

a

nd

th

e a

va

ilab

le sco

pe

fo

r n

ew

co

nce

pts

a

nd

me

asu

res

• A

cqu

ires a

n in

form

atio

n b

asis

for th

e fo

llow

ing o

pe

ra-

tion

al s

tep

s, e

sp

ecia

lly fo

r go

al d

efin

ition

an

d c

on

ce

pt

syn

the

sis

.

Co

nte

nts

: T

he

situ

atio

n a

na

lysis

is th

e s

yste

ma

tic in

ve

stig

atio

n a

nd

d

escrip

tion

of a

pe

rce

ive

d p

rob

lem

atic

sta

te o

r be

ha

vio

ur

of a

n o

bje

ct (re

al w

orld

are

a).

Th

e s

itua

tion

an

aly

sis

• is

influ

en

ce

d in

co

nd

ition

an

d tre

nd

de

term

ina

tion

by

the

pa

st, p

rese

nt a

nd

futu

re,

• is

o

pe

n,

rega

rdin

g

go

als

, so

lutio

ns

an

d

utilis

ab

le

me

an

s a

nd

• is

the

ba

sis

for a

ll the

follo

win

g s

tep

s.

Pro

ce

ss

: T

he

co

nte

nts

of th

e s

itua

tion

an

aly

sis

pa

sse

d th

rou

gh

cy-

clic

ally

are

:

• ta

sk a

na

lysis

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

2

2

• a

na

lysis

of th

e a

ctu

al s

tate

an

d b

eh

avio

ur o

f the

sys-

tem

in m

ind

:

-

de

finin

g th

e s

yste

m a

nd

en

viro

nm

en

t bo

un

da

ries

-

an

aly

sin

g s

tructu

re a

nd

fun

ctio

n o

f the

syste

m

-

an

aly

sin

g th

e e

nviro

nm

en

t

-

an

aly

sin

g s

tren

gth

s a

nd

we

akn

esse

s (F

ig. 8

)

-

roo

t-ca

use

-an

aly

sis

• a

na

lysis

of th

e fu

ture

/ futu

re s

ce

na

rios / tre

nd

s:

-

pre

dic

tion

of b

eh

avio

ur o

f the

en

viro

nm

en

t

-

pre

dic

tion

of b

eh

avio

ur o

f the

un

influ

en

ce

d s

ys-

tem

-

op

po

rtun

ities-th

rea

ts a

na

lysis

(Fig

. 9)

• b

rief c

on

clu

sio

ns, fin

al p

rob

lem

de

finitio

n

Sy

ste

ms

De

finitio

n a

s a

sp

ec

ific M

od

ellin

g T

as

k:

In c

on

jun

ctio

n w

ith d

efin

ing b

ou

nd

arie

s fo

r a s

yste

m, th

e te

rms s

yste

m to

inte

r-ve

ne

, exte

rna

l syste

ms a

nd

en

viro

nm

en

t are

imp

orta

nt:

• T

he

syste

m to

inte

rve

ne

inclu

de

s th

e a

rea

s o

f rea

lity, in

wh

ich

inte

rve

ntio

n

an

d c

ha

nge

s a

re p

ossib

le w

ithin

the

sco

pe

of w

ork

ing o

n th

e p

rob

lem

.

• “E

nviro

nm

en

t” inclu

de

s s

yste

ms o

uts

ide

of th

e s

yste

m to

inte

rve

ne

.

Th

e te

rm e

nviro

nm

en

t ca

n le

ad

to m

isu

nd

ers

tan

din

g, if o

nly

giv

en

an

eco

-lo

gic

al m

ea

nin

g. T

he

refo

re, th

e te

rm e

nviro

nm

en

t is u

se

d in

its w

ide

r se

nse

in

the

follo

win

g.

• E

xte

rna

l syste

ms d

escrib

e th

e re

leva

nt p

art o

f the

en

viro

nm

en

t for s

yste

ms

inve

stig

atio

n a

nd

de

sig

n. T

he

y h

ave

rele

va

nt re

latio

ns to

the

syste

ms to

in-

terv

en

e.

Th

e c

rucia

l pre

requ

isite

for s

ucce

ssfu

l syste

ms d

esig

n is

the

co

mp

reh

en

siv

e

un

de

rsta

nd

ing

an

d

se

nsib

le

se

pa

ratio

n

/ d

elim

itatio

n

of

the

p

rob

lem

to

b

e

so

lve

d. O

n th

e o

ne

ha

nd

, syste

ms in

terv

en

tion

s s

ho

uld

no

t me

rely

cu

re s

ym

p-

tom

s b

ut le

ad

to re

al im

pro

ve

me

nts

. On

the

oth

er h

an

d, o

ne

sh

ou

ld a

vo

id c

on

-ce

pts

wh

ich

exce

ed

ava

ilab

le p

ers

on

ne

l an

d m

ate

rial p

ote

ntia

ls, o

r are

no

t co

n-

sis

ten

t with

the

time

requ

irem

en

ts fo

r so

lvin

g th

e p

rob

lem

. Syste

ms d

efin

ition

, th

ere

fore

, ha

s a

de

cis

ive

influ

en

ce

on

the

pro

ble

m-s

olv

ing p

roce

ss. F

irst, th

e

are

a m

ust b

e d

efin

ed

in w

hic

h in

terv

en

tion

an

d a

ltera

tion

s a

re p

ossib

le. S

e-

co

nd

, the

are

a, w

hic

h s

ho

uld

be

inve

stig

ate

d w

ithin

the

fram

ew

ork

of th

e s

tud

y,

mu

st b

e d

efin

ed

.

Th

e p

roce

ss o

f de

finin

g th

e s

yste

m c

an

esse

ntia

lly b

e s

imp

lified

thro

ugh

the

a

na

lysis

of p

ossib

le im

pa

cts

, by w

hic

h th

e in

div

idu

al in

flue

nce

s o

n th

e p

roje

ct

Page 12: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

2

3

ca

n b

e d

ete

rmin

ed

(Fig

. 6). T

he

exte

nt o

f the

influ

en

ce

s o

ve

r the

co

urs

e o

f time

a

nd

the

ir eve

ntu

al fe

ed

ba

ck c

an

be

furth

er in

ve

stig

ate

d in

the

follo

win

g.

Fig

. 6:

Exa

mp

le o

f imp

act a

na

lysis

for a

ne

w lin

e o

f pro

du

cts

, dis

tingu

ish

-in

g in

tern

al a

nd

exte

rna

l imp

act fa

cto

rs

Ad

ditio

na

lly, th

e h

eu

ristic

prin

cip

les o

f mo

de

lling s

yste

ms a

s b

lack-b

oxe

s, re

-ga

rdin

g th

em

un

de

r diffe

ren

t asp

ects

an

d s

tructu

ring th

em

hie

rarc

hic

ally

ca

n b

e

he

lpfu

l in th

e p

roce

ss o

f de

finin

g s

yste

m b

ou

nd

arie

s (F

ig. 7

).

Fig

. 7:

Bla

ck-b

ox m

od

ellin

g-a

pp

roa

ch

, co

mb

ine

d w

ith a

syste

m h

iera

rch

y

un

de

r diffe

ren

t asp

ects

(acco

rdin

g to

/Zü

st 1

99

7/)

Th

e sim

ple

-min

de

d o

ve

rtakin

g o

f se

em

ingly

o

bvio

us syste

ms b

ou

nd

arie

s is

ris

ky. T

he

se

ofte

n d

o n

ot in

clu

de

rele

va

nt fu

nctio

na

l pe

rform

an

ce

are

as. S

ince

it is

no

t po

ssib

le to

reco

gn

ise

the

effe

cts

of p

ote

ntia

l inte

rfere

nce

on

the

syste

m

at

the

b

egin

nin

g

of

syste

ms

de

sig

n,

syste

ms

bo

un

da

ries

sh

ou

ld

be

w

ide

e

no

ugh

. Du

ring th

e p

lan

nin

g p

ha

se

, the

bo

un

da

ry m

ust b

e c

ritica

lly e

xa

min

ed

. A

t th

e la

test,

the

p

recis

e b

ou

nd

ary

mu

st b

e d

ete

rmin

ed

be

fore

the

pla

nn

ing

ph

ase

is c

on

clu

de

d.

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

2

4

Re

su

lt: T

he

ind

ivid

ua

l resu

lts o

f situ

atio

n a

na

lysis

are

:

• syste

m b

ou

nd

arie

s (o

f the

syste

m to

inte

rve

ne

an

d th

e

exte

rna

l syste

ms)

• a

stru

ctu

re o

f the

syste

m u

nd

er in

ve

stig

atio

n

• th

e d

ete

rmin

atio

n o

f the

ch

ara

cte

ristic

s o

f the

influ

en

c-

ing s

yste

ms a

nd

the

rem

ain

ing e

nviro

nm

en

t

• a

n in

terp

reta

tion

/

eva

lua

tion

o

f th

e situ

atio

n, fo

r ex-

am

ple

a

stre

ngth

s-w

ea

kn

esse

s

an

d

op

po

rtun

ities-

thre

ats

ca

talo

gu

e (F

ig. 8

, Fig

. 9)

• a

lis

t o

f th

e ge

ne

ral

co

nd

ition

s a

nd

furth

er im

po

rtan

t fa

cts

, as w

ell a

s

• a

co

mp

ilatio

n o

f the

exis

ting s

olu

tion

ap

pro

ach

es

• a

su

mm

ary

of th

e p

rob

lem

de

finitio

n a

nd

agre

em

en

t

Fig

. 8:

Exa

mp

le o

f an

an

aly

sis

of s

tren

gth

s a

nd

we

akn

esse

s, b

ase

d o

n

the

pre

se

nt s

tate

an

d b

eh

avio

ur o

f the

syste

m in

the

co

nte

xt o

f an

e

nviro

nm

en

tal m

an

age

me

nt s

yste

m d

esig

n /Z

üst 1

99

7/

Page 13: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

2

5

Fig

. 9:

Exa

mp

le o

f a

o

pp

ortu

nitie

s-th

rea

t a

na

lysis

, b

ase

d o

n th

e fu

ture

a

na

lysis

in th

e c

on

text o

f su

pp

ly c

ha

in m

an

age

me

nt /Z

üst 1

99

7/

Sp

ec

ifics

: S

itua

tion

a

na

lysis

a

lso

re

qu

ires e

lucid

atin

g a

nd

co

nte

m-

pla

ting th

e fu

ture

. T

he

p

rogn

ose

s a

bo

ut

inte

rna

l syste

m

be

ha

vio

ur, a

s w

ell a

s th

e e

nviro

nm

en

t, are

no

t trivia

l, es-

pe

cia

lly w

ith so

cio

-tech

nic

al

syste

ms.

Ge

ne

rally

, n

eith

er

extra

po

latio

ns

no

r gro

wth

m

od

els

su

ffice

o

n

the

ir o

wn

. T

he

be

ha

vio

ur o

f the

actu

al s

yste

m, a

s w

ell a

s its

inte

rac-

tion

an

d lin

ks w

ith its

en

viro

nm

en

t, mu

st b

e fu

nd

am

en

tally

a

na

lyse

d a

nd

asse

sse

d. L

on

g-te

rm p

rogn

ose

s a

re c

ha

rac-

teris

ed

by u

nce

rtain

ty.

Situ

atio

n a

na

lysis

sh

ou

ld c

lose

with

the

revis

ion

an

d re

form

ula

tion

of th

e in

itial

pro

ble

m d

efin

ition

. It sh

ou

ld in

clu

de

a s

ho

rt an

d u

nd

ers

tan

da

ble

ou

tline

of th

e

mo

st im

po

rtan

t situ

atio

n a

na

lysis

resu

lts, a

s fo

r exa

mp

le

• a

de

qu

ate

rep

rese

nta

tion

of th

e d

efin

ed

bo

un

da

ries o

f the

inte

rve

nin

g s

ys-

tem

, ba

se

d o

n k

no

wle

dge

ga

ine

d fro

m s

itua

tion

an

aly

se

s,

• p

recis

e

de

scrip

tion

o

f th

e

pro

ble

m

to

be

so

lve

d,

ba

se

d

on

stre

ngth

s-

we

akn

esse

s a

nd

op

po

rtun

ities-th

rea

ts a

na

lysis

,

• d

escrip

tion

of th

e c

on

ce

ive

d p

erfo

rma

nce

exp

ecte

d fro

m n

ew

so

lutio

ns,

• d

ete

rmin

atio

n o

f the

ge

ne

ral fra

me

wo

rk a

nd

the

sp

ecia

l co

nd

ition

s, a

s w

ell

as

• a

mo

un

t of to

lera

nce

in th

e fo

llow

ing s

ea

rch

for a

so

lutio

ns.

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

2

6

Pe

rso

na

l no

tes

:

Page 14: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

2

7

5.3

G

oa

l De

finitio

n

Go

al

de

finitio

n u

se

s th

e re

su

lts o

f th

e s

itua

tion

an

aly

sis

to id

en

tify re

-qu

irem

en

ts. T

he

se

arc

h fo

r pro

ble

m

so

lutio

ns

ob

tain

s

a

cle

ar

dire

ctio

n

on

ly w

he

n g

oa

ls a

re s

et a

nd

reco

g-

nis

ed

b

y th

e p

lan

nin

g te

am

. G

oa

ls

an

d e

xte

rna

l co

nd

ition

s gu

ide

co

n-

ce

pt s

yn

the

sis

an

d a

re u

se

d a

s c

ri-te

ria fo

r the

late

r eva

lua

tion

of a

lter-

na

tive

so

lutio

ns.

Pu

rpo

se

: T

he

pu

rpo

se

of g

oa

l de

finitio

n is

:

• p

relim

ina

ry, o

bscu

re g

oa

l pro

jectio

ns, w

hic

h re

su

lt from

situ

atio

n a

na

lysis

, are

co

mp

lete

d, e

xa

cte

d, c

orre

cte

d,

syste

ma

tica

lly s

tructu

red

, an

d d

ocu

me

nte

d a

s a

ca

ta-

logu

e o

f go

als

from

the

clie

nt’s

po

int o

f vie

w,

• th

at

all

co

nstra

ints

(e

xte

rna

l co

nd

ition

s)

wh

ich

e

ffect

the

sp

ecific

sp

ace

-time

co

nte

xt, a

re d

ete

rmin

ed

,

• th

e re

qu

irem

en

ts (g

oa

ls a

nd

co

nstra

ints

) are

gu

ide

line

s

for th

e s

ucce

ssiv

e s

ea

rch

for s

olu

tion

s a

nd

are

ava

ila-

ble

to th

e p

lan

nin

g te

am

, an

d

• th

at

an

in

form

atio

n b

asis

e

xis

ts,

ba

se

d o

n a

w

ritten

a

gre

em

en

t with

the

clie

nt, fo

r the

syste

ma

tic e

va

lua

tion

o

f po

ssib

le a

ltern

ativ

es, in

bin

din

g fo

rm.

Co

nte

nts

: T

he

ca

talo

gu

e o

f go

als

an

d c

on

stra

ints

de

scrib

es th

e re

-qu

irem

en

ts n

ee

de

d fo

r the

so

lutio

n to

be

wo

rke

d o

ut. T

he

-se

requ

irem

en

ts s

et th

e d

irectio

n fo

r the

so

lutio

n s

ea

rch

. O

n th

e o

ne

ha

nd

, po

sitiv

e e

xp

ecta

tion

s, w

hic

h s

ho

uld

be

in

co

rpo

rate

d in

to th

e s

yste

m d

esig

n, a

s w

ell a

s a

vo

ida

ble

n

ega

tive

co

nd

ition

s o

r be

ha

vio

ur, a

re re

co

rde

d in

the

ca

ta-

logu

e o

f go

als

.

O

n th

e o

the

r h

an

d,

co

nstra

ints

(e

xte

rna

l co

nd

ition

s),

for

exa

mp

le,

from

te

ch

nic

al

or

eth

ica

l a

nd

so

cie

tal

sta

nd

-p

oin

ts, a

re d

ocu

me

nte

d.

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

2

8

With

in th

e fra

me

wo

rk o

f pro

ble

m-s

olv

ing, v

ario

us ty

pe

s o

f go

als

ca

n b

e d

istin

-gu

ish

ed

:

Pro

ject g

oa

ls:

Pro

ject g

oa

ls a

re fo

rmu

late

d a

t the

be

gin

nin

g o

f a p

roje

ct

an

d a

re c

om

po

ne

nts

of th

e p

roje

ct in

itialis

atio

n. T

he

y c

an

in

clu

de

refe

ren

ce

s to

the

syste

m to

be

de

sig

ne

d, a

s w

ell

as to

the

pro

ble

m-s

olv

ing p

roce

ss.

Syste

m g

oa

ls:

Syste

m g

oa

ls d

escrib

e d

em

an

ds o

n th

e s

yste

m to

be

de

-sig

ne

d o

r to b

e c

ha

nge

d, a

nd

are

de

ve

lop

ed

on

the

ba

sis

o

f situ

atio

n a

na

lyse

s a

nd

the

clie

nts

pre

fere

nce

s. S

yste

m

go

als

an

d c

on

stra

ints

(exte

rna

l co

nd

ition

s) d

efin

e th

e d

e-

ma

nd

s o

n th

e s

yste

m.

Pro

ce

ss g

oa

ls:

Pro

ce

ss g

oa

ls re

fer to

the

co

urs

e o

f a p

roje

ct. T

he

y flo

w

prim

arily

into

the

pro

ject m

an

age

me

nt.

Du

ring g

oa

l de

finitio

n, s

yste

m a

nd

pro

ce

ss g

oa

ls, a

s w

ell a

s th

e c

on

stra

ints

are

d

efin

ed

.

Pro

ce

ss

: T

he

pro

ce

ss o

f de

finin

g a

go

al c

ata

logu

e c

an

be

div

ide

d

into

va

riou

s p

lan

nin

g s

tep

s, w

hic

h o

ccu

r cyclic

ally

:

• firs

t dra

ft of a

stru

ctu

red

go

al c

ata

logu

e

-

intu

itive

ga

the

ring o

f ide

as fo

r the

go

al

-

syste

ma

tic s

tructu

ring o

f the

go

als

• syste

ma

tic a

na

lysis

a

nd

se

tting-u

p o

f a

re

vis

ed

go

al

ca

talo

gu

e

-

co

ntro

l o

f so

lutio

n n

eu

trality

a

nd

fu

nctio

na

lity /

me

asu

rab

ility

-

ch

eckin

g th

e b

ala

nce

an

d c

om

ple

ten

ess

-

ch

eckin

g fo

r co

ntra

dic

tion

s a

nd

red

un

da

ncie

s

• a

pp

rova

l of th

e g

oa

l ca

talo

gu

e b

y th

e c

lien

t

Co

nstra

ints

ha

ve

to b

e o

utlin

ed

as th

e ru

ling c

on

text fo

r syste

ms d

esig

n.

• R

es

ult: T

he

resu

lt of g

oa

l de

finitio

n, in

ad

ditio

n to

the

o

utlin

ing o

f the

co

nstra

ints

, is a

co

ncis

ely

form

ula

ted

, stru

ctu

red

go

al c

ata

logu

e (s

ee

Fig

. 10

).

Page 15: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

2

9

Fig

. 10

: S

ch

em

atic

rep

rese

nta

tion

of a

stru

ctu

red

go

al c

ata

logu

e, d

ivid

ed

in

to c

lasse

s o

f go

als

, go

al c

ha

racte

ristic

s a

nd

exte

nt /Z

üst 1

99

7/

Sp

ec

ifics

: T

he

de

sira

ble

sta

tes a

nd

be

ha

vio

ur o

f a s

yste

m, a

s d

e-

scrib

ed

in

th

e go

als

, a

re n

eve

r p

red

ete

rmin

ed

, b

ut

are

b

ase

d o

n th

e c

lien

ts a

nd

the

de

cis

ion

ma

ke

rs’ e

xp

ecta

-tio

ns. G

oa

ls a

re a

lwa

ys s

ub

jectiv

e. T

hro

ugh

ratio

na

l an

d

syste

ma

tic

go

al

ran

kin

g,

co

nflic

ts b

etw

ee

n th

e in

vo

lve

d

pe

op

le c

an

be

ap

pe

ase

d a

nd

ove

rly o

ne

-sid

ed

pro

ce

du

res

ca

n b

e a

vo

ide

d.

Re

qu

irem

en

ts in

clu

de

- th

e ta

rge

t ob

ject (e

.g. a

pro

du

ctio

n s

yste

m),

- th

e c

riterio

n (e

.g. th

e p

roce

ssin

g tim

e),

- th

e a

ctu

al re

su

lt (e. g

. a m

axim

um

of 4

we

eks) a

nd

-

the

time

limit (e

. g. p

rod

uctio

n s

yste

m c

om

ple

ted

by

the

ne

xt 9

mo

nth

s).

Th

ere

are

furth

er fo

rma

l de

ma

nd

s o

n in

div

idu

al g

oa

ls, th

e

go

al c

ata

logu

e a

nd

on

the

rela

tion

sh

ips b

etw

ee

n g

oa

ls:

ind

ivid

ua

l go

als

: so

lutio

n in

de

pe

nd

en

t

an

d m

ea

su

rab

le

go

al c

ata

logu

e:

co

mp

reh

en

siv

e

an

d

ba

l-a

nce

d

rela

tion

sh

ips b

etw

ee

n g

oa

ls:

no

n-c

on

trad

icto

ry a

nd

n

on

-re

du

nd

an

t

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

3

0

Pe

rso

na

l no

tes

Page 16: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

3

1

5.4

C

on

ce

pt S

yn

the

sis

an

d C

on

ce

pt A

na

lys

is

Co

nce

pt

syn

the

sis

a

nd

co

nce

pt

an

aly

sis

bu

ild o

n th

e re

su

lts o

f situ

a-

tion

a

na

lysis

a

nd

go

al

de

finitio

n.

Th

eir p

urp

ose

is to

de

ve

lop

alte

rna

-tiv

e so

lutio

ns a

nd

to

te

st

the

m fo

r su

itab

ility a

nd

fea

sib

ility.

Pu

rpo

se

: T

he

pu

rpo

se

of c

on

ce

pt s

yn

the

sis

is:

• to

find

ide

as fo

r alte

rna

tive

so

lutio

ns

• to

foste

r the

intu

itive

as w

ell a

s th

e s

yste

ma

tic s

yn

the

-sis

of s

olu

tion

ide

as

Th

e p

urp

ose

of c

on

ce

pt a

na

lysis

is:

• to

de

tect u

nu

sa

ble

or d

efic

ien

t so

lutio

ns

• to

allo

w s

cre

en

ing a

nd

imp

rove

me

nt o

f so

lutio

n id

ea

s

• to

red

uce

the

sp

ectru

m o

f alte

rna

tive

s d

urin

g a

na

lysis

in

ord

er to

rise

the

effic

ien

cy o

f the

ir su

bse

qu

en

t as-

se

ssm

en

t

Co

nte

nts

: C

on

ce

pt s

yn

the

sis

de

no

tes th

e w

ork

ing o

ut o

f alte

rna

tive

so

lutio

ns in

va

ryin

g d

egre

es o

f sp

ecific

atio

n a

nd

d

eta

il. „T

hin

kin

g in

a

ltern

ativ

es “

an

d „fro

m a

ge

ne

ral

to a

d

e-

taile

d v

iew

“ (co

mp

are

with

“ba

sic

be

liefs

an

d p

rincip

les”)

pla

y a

ma

jor ro

le in

this

co

nte

xt (s

ee

Fig

. 11

).

C

on

ce

pt a

na

lysis

de

scrib

es a

pla

nn

ing a

ctiv

ity, b

y w

hic

h

insu

pp

orta

ble

/ un

usa

ble

alte

rna

tive

s a

re d

ete

cte

d a

nd

ei-

the

r e

limin

ate

d

or

tran

sfe

rred

to

fu

rthe

r im

pro

ve

me

nt.

Co

nce

pt a

na

lysis

eva

lua

tes th

e e

xte

nt to

wh

ich

the

sys-

tem

s re

qu

irem

en

ts a

re fu

lfilled

.

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

3

2

Re

su

lt: T

he

resu

lt of c

on

ce

pt s

yn

the

sis

an

d s

ub

se

qu

en

t an

aly

sis

is

a n

um

be

r of fe

asib

le a

ltern

ativ

e s

olu

tion

s fo

r the

pro

b-

lem

at h

an

d, w

hic

h h

ave

to b

e e

va

lua

ted

su

bse

qu

en

tly.

Pro

ce

ss

: S

ee

Fig

. 11

Fig

. 11

: D

eta

iled

wo

rkin

g s

tep

s o

f co

nce

pt s

yn

the

sis

an

d a

na

lysis

(/Zü

st

19

97

/ acco

rdin

g to

/Na

ge

l et a

l. 19

82

/)

Sp

ec

ifics

: In

co

nce

pt

syn

the

sis

, th

e cre

ativ

e p

roce

ss m

ust

be

e

n-

co

ura

ge

d. T

his

ca

n b

e a

cco

mp

lish

ed

by re

mo

vin

g b

arrie

rs

to c

rea

tivity

an

d b

y u

sin

g m

eth

od

s w

hic

h fo

ste

r intu

ition

a

nd

syste

ma

tica

lly p

rom

ote

cre

ativ

ity (e

.g. F

ig. 1

2).

A ro

ugh

an

aly

sis

ma

y b

e u

nd

erta

ke

n o

n th

e b

asis

of th

e

co

nstra

ints

de

no

ted

in th

e re

qu

irem

en

ts c

ata

logu

e. A

lter-

na

tive

s w

hic

h h

ave

pa

sse

d th

rou

gh

this

„co

ars

e filte

r“ are

su

bje

cte

d a

fterw

ard

s to

a d

eta

iled

form

al a

na

lysis

. Via

bil-

ity p

lays a

ma

jor ro

le in

the

asse

ssm

en

t of th

e d

eve

lop

ed

so

lutio

n-c

on

ce

pts

.

Page 17: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

3

3

Fig

. 12

: E

xa

mp

le o

f a m

orp

ho

logic

al m

atrix

/Zü

st 1

99

7/

Exa

mp

les o

f the

asp

ects

of a

form

al a

na

lysis

are

:

• fu

nctio

na

lity: in

no

rma

l an

d u

nu

su

al c

ase

s, a

nd

in c

ase

o

f po

ten

tial a

ccid

en

ts

• p

erfo

rma

nce

an

d e

ffects

:

- d

irect s

yste

m p

erfo

rma

nce

- fu

lfil co

nstra

ints

(exte

rna

l requ

irem

en

ts)

-

fina

ncia

l, pe

rso

nn

el, o

rga

nis

atio

na

l an

d e

co

logi-

ca

l co

nse

qu

en

ce

s

• in

tegra

tion

into

the

en

viro

nm

en

t

• u

se

r-frien

dlin

ess a

nd

ma

inta

ina

bility

• e

ase

of im

ple

me

nta

tion

• p

rere

qu

isite

s

• co

mp

ara

bility

of th

e a

ltern

ativ

es

-

so

lutio

n fo

r the

sa

me

pro

ble

m

-

co

mp

lete

ne

ss o

f the

so

lutio

ns

-

de

gre

e o

f co

nce

pt d

eta

il

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

3

4

Pe

rso

na

l no

tes

:

Page 18: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

3

5

5.5

E

va

lua

tion

an

d D

ec

isio

n

Th

e la

st s

tep

in p

rob

lem

-so

lvin

g in

-clu

de

s

the

p

artia

l ste

ps e

va

lua

tion

a

nd

d

ecis

ion

. T

he

fe

asib

le s

olu

tion

a

ltern

ativ

es

at

ha

nd

h

ave

to

b

e

eva

lua

ted

co

mp

reh

en

siv

ely

, b

ase

d

on

n

on

-ma

nd

ato

ry

requ

irem

en

ts

from

go

al d

efin

ition

an

d p

ossib

ly o

n

en

ha

nce

d c

riteria

from

co

nce

pt s

yn

-th

esis

an

d a

na

lysis

.

Pu

rpo

se

: T

he

pu

rpo

se

of th

e s

ele

ctio

n is

:

• th

e c

lea

r pre

se

nta

tion

of th

e e

va

lua

tion

an

d d

ecis

ion

situ

atio

n

• th

e syste

ma

tic a

nd

co

mp

reh

en

siv

e e

va

lua

tion

o

f th

e

alte

rna

tive

so

lutio

ns

• to

su

pp

ort th

e d

ecis

ion

-ma

ke

rs d

ecis

ion

-ma

kin

g a

nd

• a

ve

rifiab

le a

nd

tran

sp

are

nt s

ele

ctio

n.

Co

nte

nts

: T

he

eva

lua

tion

is th

e b

asis

for th

e d

ecis

ion

. An

eva

lua

tion

is

ne

ve

r “ob

jectiv

e” in

a s

tron

g s

en

se

, be

ca

use

all e

va

lua

-tio

ns c

on

tain

su

bje

ctiv

e a

sse

ssm

en

ts o

f facts

an

d v

alu

es.

Th

e

resu

lting

de

cis

ion

b

y

the

a

uth

oritie

s

an

d

de

cis

ion

-m

ake

rs s

ho

uld

be

a fre

e a

ct o

f will. T

he

refo

re, th

eir v

alu

e

syste

m m

ust b

e c

on

sid

ere

d in

the

pre

pa

ratio

ns fo

r the

de

-cis

ion

.

Du

ring th

e p

rep

ara

tion

for th

e d

ecis

ion

, on

e s

trive

s to

:

• tra

nsp

are

ntly

mo

de

l / de

scrib

e th

e d

ecis

ion

situ

atio

n

• p

rese

nt a

ll rele

va

nt d

ocu

me

nts

in a

n u

nd

ers

tan

da

ble

fo

rm to

the

de

cis

ion

-ma

ke

rs

As a

n e

xa

mp

le, th

e d

ecis

ion

-ma

kin

g p

roce

ss c

an

be

di-

vid

ed

into

the

follo

win

g s

ub

-ste

ps:

• lis

ting th

e a

ltern

ativ

e s

olu

tion

s

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

3

6

• e

va

lua

ting

an

d

inte

rpre

tatio

n

of

the

a

ltern

ativ

e so

lu-

tion

s

• m

akin

g a

de

cis

ion

• su

bsta

ntia

tion

/ justific

atio

n o

f the

de

cis

ion

• d

ocu

me

nta

tion

Ge

ne

ral P

roc

es

s F

ram

ew

ork

for D

ec

isio

n-M

ak

ing

:

Fig

. 13

: T

he

fo

ur

pa

rtial

ste

ps

of

de

cis

ion

-ma

kin

g

(acco

rdin

g

to

/ISO

1

40

40

/)

Th

e firs

t two

pa

rtial s

tep

s: „d

ete

rmin

atio

n o

f the

de

cis

ion

-ma

kin

g fra

me

wo

rk a

nd

crite

ria,“ a

nd

„accu

rate

an

d g

oa

l-orie

nte

d in

form

atio

n-g

ath

erin

g,“ g

ua

ran

tee

tha

t th

e n

ece

ssa

ry in

form

atio

n a

nd

do

cu

me

nta

tion

is a

va

ilab

le fo

r de

cis

ion

-ma

kin

g.

Th

e p

artia

l ste

p: „e

va

lua

ting a

ltern

ativ

es“ d

en

ote

s e

va

lua

tion

in a

na

rrow

se

nse

. P

ara

llel

to th

is,

a syste

ma

tic in

terp

reta

tion

a

nd

a

sse

ssm

en

t o

f th

e in

div

idu

al

resu

lts h

ave

to b

e u

nd

erta

ke

n.

Th

e p

roce

ss d

ep

icte

d in

Fig

. 13

is a

ge

ne

ral s

ch

em

a, w

hic

h m

ust b

e a

da

pte

d to

th

e d

ecis

ion

-ma

kin

g s

itua

tion

, or if n

ee

d b

e, e

xp

an

de

d. In

pra

ctic

e, th

e in

div

id-

ua

l wo

rk s

tep

s o

ccu

r cyclic

ally

.

Re

su

lt: T

he

resu

lt of th

e e

va

lua

tion

is a

reco

mm

en

da

tion

for a

de

cis

ion

, w

hic

h if

ne

ce

ssa

ry in

clu

de

s su

gge

stio

ns fo

r fu

rthe

r a

ctio

ns a

nd

p

roce

du

res.

Page 19: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

3

7

Sp

ec

ifics

: A

sig

nific

an

t ele

me

nt o

f a m

eth

od

ica

lly s

up

po

rted

eva

lua

tion

is th

e

crite

ria p

lan

. Th

e „c

riteria

“ are

the

op

era

tion

al m

ea

su

res fo

r sys-

tem

atic

ally

de

term

inin

g th

e e

xte

nt to

wh

ich

op

en

go

als

are

fulfille

d.

It is n

ot a

lwa

ys p

ossib

le to

find

ad

equ

ate

qu

an

titativ

e c

riteria

. In

this

ca

se

oth

er re

pre

se

nta

tive

ind

ica

tors

mu

st b

e d

efin

ed

.

Fo

r this

rea

so

n, th

e s

am

e fo

rma

l requ

irem

en

ts a

re p

lace

d o

n th

e

ind

ivid

ua

l crite

ria,

as

on

th

e

go

al

ca

talo

gu

e

as

a

wh

ole

. T

he

m

ea

su

rab

le

va

riab

les

sh

ou

ld

be

o

pe

ratio

na

l. T

he

crite

ria

pla

n

mu

st b

e c

om

pre

he

nsiv

e a

nd

ba

lan

ce

d. T

he

re s

ho

uld

be

no

co

n-

trad

ictio

ns b

etw

ee

n h

ard

crite

ria a

nd

so

fter in

dic

ato

rs, a

nd

if po

s-

sib

le, th

ere

sh

ou

ld b

e n

o re

du

nd

an

cie

s.

Als

o to

be

co

nsid

ere

d w

he

n d

eve

lop

ing th

e c

riteria

pla

n is

tha

t the

crite

ria s

ho

uld

be

as in

de

pe

nd

en

t as p

ossib

le, a

nd

tha

t the

y d

o

no

t influ

en

ce

ea

ch

oth

er, a

t lea

st n

ot s

ign

ifica

ntly

.

Th

e e

ffort

for

eva

lua

ting su

itab

le a

sse

ssm

en

t m

eth

od

s a

nd

th

e

ch

oic

e o

f the

asse

ssm

en

t pro

ce

ss s

ho

uld

no

t be

un

de

restim

ate

d.

Esp

ecia

lly w

ith m

utu

ally

d

ep

en

de

nt

asse

ssm

en

t crite

ria, o

r ind

i-vid

ua

l asse

ssm

en

t crite

ria w

ith in

co

nsis

ten

t me

an

ings, lin

ea

r eva

l-u

atio

n m

eth

od

s, e

.g. g

rad

ing, w

eig

htin

g a

nd

su

mm

ing u

p, c

an

no

t b

e a

pp

lied

, or o

nly

to a

limite

d e

xte

nt.

Fig

. 14

: E

xa

mp

le o

f an

asse

ssm

en

t in th

e c

on

text o

f a tra

ffic e

va

lua

tion

b

ase

d o

n n

om

ina

l va

lua

tion

(acco

rdin

g to

/Zü

st 1

99

7/)

In in

terd

iscip

lina

ry p

roje

cts

with

mu

lti-face

ted

go

als

, or w

he

n la

ck-

ing in

form

atio

n a

bo

ut th

e s

yste

m-e

ffectiv

en

ess o

r wh

en

facin

g d

e-

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

3

8

pe

nd

en

t crite

ria w

hic

h d

o n

ot a

llow

for a

“va

lue

syn

the

sis

” in a

na

r-ro

w s

en

se

, it is u

na

vo

ida

ble

to u

se

no

min

al v

alu

atio

ns. A

dd

ition

al-

ly, th

e in

div

idu

al a

dva

nta

ge

s a

nd

dis

ad

va

nta

ge

s o

f the

alte

rna

tive

so

lutio

ns m

ay b

e d

iscu

sse

d w

ith th

e d

ecis

ion

-ma

ke

r. No

min

al v

al-

ua

tion

s a

re th

us v

ery

imp

orta

nt in

the

asse

ssm

en

t (se

e F

ig. 1

4).

Pe

rso

na

l no

tes

:

Page 20: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

3

9

6

Ars

en

al o

f Meth

od

s in

the fie

ld o

f En

gin

eerin

g &

Man

ag

e-

men

t

A

me

tho

d

de

scrib

es,

resp

ectiv

ely

re

co

mm

en

ds,

a

ce

rtain

p

roce

du

re,

e.g

. a

w

ay

of

rea

ch

ing

a

ce

rtain

go

al.

Syste

ms

En

gin

ee

ring

is

a

me

tho

do

logy

wh

ich

re

gu

late

s

the

u

se

of v

ario

us m

eth

od

s in

a re

lativ

e-

ly

larg

e

pro

ble

m

are

a.

Ev

alu

atio

n:

Th

ere

are

ba

sic

ally

two

po

ssib

ilities fo

r exp

lorin

g, fin

din

g,

an

d e

va

lua

ting a

de

qu

ate

me

tho

ds:

• M

ost s

pe

cific

me

tho

ds a

re b

roa

dly

de

scrib

ed

in lite

r-a

ture

. Th

ey c

an

be

fou

nd

thro

ugh

litera

ture

rese

arc

h

• E

ach

sp

ecia

lise

d

field

a

nd

d

iscip

line

h

as

its

ow

n

sp

ecific

me

tho

ds. F

or a

sp

ecific

qu

ery

in th

e p

rob

-le

m-s

olv

ing p

roce

ss, c

on

ferrin

g w

ith e

xp

erts

ma

y b

e

he

lpfu

l.

Th

e co

nscio

us se

lectio

n a

nd

h

an

dlin

g o

f m

eth

od

s in

a

p

rob

lem

-so

lvin

g p

roce

ss is

ve

ry im

po

rtan

t. Th

e q

ue

stio

n o

f w

hic

h m

eth

od

s s

ho

uld

be

pre

ferre

d fo

r a s

pe

cific

pla

nn

ing

ste

p re

pe

ate

dly

aris

es. T

his

qu

estio

n is

esp

ecia

lly d

ifficu

lt to

an

sw

er w

he

n little

is k

no

wn

ab

ou

t the

syste

m, a

s is

the

ca

se

with

a p

relim

ina

ry s

tud

y.

In p

ractic

e, it c

an

ofte

n b

e o

bse

rve

d, th

at m

eth

od

imp

le-

me

nta

tion

is n

ot c

arrie

d o

ut c

orre

ctly

. Th

ere

fore

, the

fol-

low

ing s

ho

uld

be

ob

se

rve

d w

he

n a

pp

lyin

g m

eth

od

s,

• th

at c

erta

in m

eth

od

s c

an

on

ly b

e a

pp

lied

un

de

r sp

e-

cific

co

nd

ition

s c

on

text

• th

at m

eth

od

s m

ust b

e h

an

dle

d c

orre

ctly

, an

d

• th

at re

su

lts a

ch

ieve

d th

rou

gh

ap

ply

ing c

erta

in m

eth

-o

ds a

re n

ot n

ece

ssa

rily re

pre

se

nta

tive

for o

the

r pro

b-

lem

s.

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

4

0

Ch

ec

klis

t for th

e E

va

lua

tion

of s

pe

cific

Me

tho

ds

• Is

the

me

tho

d a

de

qu

ate

, po

we

rful e

no

ugh

an

d c

ap

ab

le o

f so

lvin

g th

e p

re-

se

nt p

rob

lem

?

• W

hic

h p

rere

qu

isite

s m

ust b

e m

et fo

r a m

eth

od

ap

plic

atio

n?

• H

ow

relia

ble

is th

e m

eth

od

? W

hic

h fa

cto

rs lim

it the

ap

plic

atio

n?

Are

the

y

pe

rtine

nt?

Ho

w d

o th

ey in

flue

nce

the

resu

lts?

• H

ow

mu

ch

effo

rt do

es th

e a

pp

lica

tion

ne

ed

? Is

the

me

tho

d e

fficie

nt?

• A

re th

e d

ata

an

d in

form

atio

n n

ece

ssa

ry fo

r the

ap

plic

atio

n a

va

ilab

le?

(Acco

rdin

g to

/Sch

rege

nb

erg

er/ a

nd

/Zü

st 1

99

7/)

Pe

rso

na

l no

tes

:

Page 21: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

4

1

7

Syste

ms E

ng

ineerin

g a

nd

Pro

ject M

an

ag

em

en

t

Pro

ject m

an

age

me

nt h

as to

en

su

re a

su

cce

ssfu

l pro

ject c

ou

rse

, wh

ile S

yste

ms

En

gin

ee

ring h

as to

e

nsu

re th

e d

eve

lop

me

nt

of

an

o

ptim

al

pro

du

ct.

Pro

ject

ma

na

ge

me

nt c

o-o

rdin

ate

s a

nd

co

ntro

ls th

e w

ho

le p

roje

ct

De

finitio

n:

A p

roje

ct is

a u

niq

ue

an

d tim

e-lim

ited

op

era

tion

or u

nd

er-

takin

g

A

pro

ject is

usu

ally

exte

nsiv

e a

nd

co

mp

lex. T

he

refo

re it

mu

st b

e b

roke

n d

ow

n in

to s

ub

tasks. S

ince

se

ve

ral d

isci-

plin

es a

re u

su

ally

invo

lve

d in

a p

roje

ct, c

on

cu

rring o

pin

-io

ns te

nd

to e

xis

t ab

ou

t the

ava

ilab

le a

nd

dis

po

sa

ble

pe

r-so

nn

el, fin

an

ce

s, m

ate

rials

an

d tim

e.

Pu

rpo

se

: P

roje

ct

ma

na

ge

me

nt

ha

s

to

en

su

re

an

o

ptim

al

pro

ject

co

urs

e. P

roje

ct m

an

age

me

nt in

clu

de

s a

ll activ

ities to

co

n-

trol th

e p

roje

ct. T

his

do

es n

ot in

clu

de

activ

ities w

hic

h in

-vo

lve

the

co

nte

nts

of th

e p

rob

lem

to b

e s

olv

ed

, bu

t the

gu

ida

nce

of th

e p

rob

lem

-so

lvin

g p

roce

ss.

Co

nte

nts

: P

roje

ct m

an

age

me

nt h

as th

e fo

llow

ing d

ime

nsio

ns:

• F

un

ctio

na

l dim

en

sio

n

-

initia

ting p

roje

cts

- h

an

dlin

g p

roje

cts

- clo

sin

g p

roje

cts

• In

stitu

tion

al d

ime

nsio

n

-

de

ve

lop

ing p

roje

ct o

rga

nis

atio

n

-

inte

gra

ting

an

d

inte

rco

nn

ectin

g

the

p

roje

ct

or-

ga

nis

atio

n in

to th

e e

xis

ting o

rga

nis

atio

n o

f th

e

clie

nt

• P

ers

on

ne

l dim

en

sio

n

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

4

2

-

de

finin

g ta

sks a

nd

role

s o

f the

pro

ject m

em

be

rs

-

invo

lvin

g th

e p

eo

ple

affe

cte

d b

y th

e p

roje

ct

• In

stru

me

nta

l dim

en

sio

n

-

eva

lua

ting a

nd

inco

rpo

ratin

g a

de

qu

ate

me

tho

ds

for a

n o

ptim

al p

roje

ct c

ou

rse

- p

rovid

ing a

de

qu

ate

to

ols

fo

r a

n o

ptim

al

pro

ject

co

urs

e

Th

e ro

les a

nd

resp

on

sib

ilities o

f pro

ject m

an

age

me

nt m

ust b

e c

lea

rly d

efin

ed

.

Ch

ec

klis

t for P

roje

ct M

an

ag

em

en

t

Se

tting u

p p

roje

ct m

an

age

me

nt w

ith a

cle

ar v

isio

n o

f the

un

de

rtakin

g is

esp

e-

cia

lly b

en

efic

ial. F

or th

is p

urp

ose

, a fe

w q

ue

stio

ns a

re lis

ted

in th

e fo

llow

ing,

wh

ich

mu

st b

e a

nsw

ere

d b

efo

re s

tartin

g th

e p

roje

ct:

• W

ha

t is th

e p

roje

ct c

alle

d?

Wh

y is

this

pro

ject b

ein

g im

ple

me

nte

d?

Wh

at

are

the

rea

so

ns a

nd

ince

ntiv

es?

Wh

at a

re th

e o

bvio

us im

po

rtan

t asp

ects

of

the

pro

ble

m?

• W

ha

t is th

e g

oa

l of th

e p

roje

ct, i.e

. wh

at s

ho

uld

be

ach

ieve

d?

Wh

at b

en

efits

a

re to

be

exp

ecte

d?

Ha

ve

sim

ilar p

roje

cts

alre

ad

y b

ee

n u

nd

erta

ke

n?

• W

ho

is g

oin

g to

be

invo

lve

d in

the

pro

ject?

Wh

o a

re th

e p

eo

ple

invo

lve

d?

W

ho

are

the

pe

op

le b

ein

g a

ffecte

d?

Wh

ere

do

es th

e p

roje

ct o

ve

rlap

with

o

the

r un

de

rtakin

gs?

Ho

w a

re th

e p

roje

ct’s

bo

un

da

ries d

efin

ed

? W

ho

is th

e

pro

ject

lea

de

r? W

ho

is

in

th

e p

roje

ct

tea

m?

W

hic

h co

nta

ct

pe

rso

ns a

re

ava

ilab

le o

uts

ide

of th

e p

roje

ct te

am

? H

ow

is th

e p

roje

ct c

om

mitte

e o

r the

d

ecis

ion

-ma

kin

g b

oa

rd p

ut to

ge

the

r?

• W

ha

t mu

st b

e ta

ke

n in

to c

on

sid

era

tion

? W

ha

t are

the

co

nstra

ints

(exte

rna

l co

nd

ition

s?

) W

ha

t a

re th

e d

egre

es o

f fre

ed

om

? W

ha

t in

flue

nce

s a

re th

e

mo

st im

po

rtan

t?

• H

ow

sh

ou

ld th

e s

et g

oa

ls b

e a

ch

ieve

d?

Wh

at is

the

so

lutio

n s

trate

gy?

Wh

at

ap

pro

ach

will b

e u

se

d?

Are

ce

rtain

mile

sto

ne

s a

lrea

dy k

no

wn

?

• W

he

n s

ho

uld

info

rma

tion

ab

ou

t the

cu

rren

t pla

nn

ing re

su

lts b

e p

asse

d o

n?

If n

ece

ssa

ry, h

ow

will p

ub

lic re

latio

ns w

ork

be

ha

nd

led

? C

an

so

me

thin

g b

e

sa

id a

lrea

dy a

bo

ut th

e in

term

ed

iate

an

d fin

al d

ecis

ion

s to

be

ma

de

? W

ha

t a

re th

ey lik

e?

• W

hic

h p

lan

nin

g re

su

lts s

ho

uld

be

do

cu

me

nte

d?

Ho

w m

ust th

e d

ocu

me

nta

-tio

n b

e p

lan

ne

d, in

ord

er to

co

mp

ly w

ith c

lien

ts n

ee

ds?

• W

hic

h p

lan

nin

g p

roce

ss sh

ou

ld b

e e

va

lua

ted

? W

hic

h m

eth

od

s co

uld

b

e

va

lua

ble

at w

hic

h p

oin

t in tim

e?

Wh

ich

so

urc

es o

f info

rma

tion

are

ava

ilab

le?

W

hic

h s

ou

rce

s o

f info

rma

tion

mu

st b

e a

cqu

ired

?

• H

ow

mu

ch

do

es th

e p

roje

ct c

ost?

Ho

w d

oe

s th

e p

roje

ct b

ud

ge

t loo

k?

Ho

w

ca

n th

e p

roje

ct b

e fin

an

ce

d?

/Zü

st 1

99

7/

Page 22: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

4

3

Ex

ec

utio

n:

Du

ring p

roje

ct p

lan

nin

g, th

e fo

llow

ing s

equ

en

ce

of s

tep

s

ca

n b

e e

ffectiv

e (/N

age

l et a

l. 19

82

/):

• D

efin

e in

term

ed

iate

go

als

fo

r in

div

idu

al

de

ve

lop

me

nt

an

d re

alis

atio

n p

ha

se

s

• D

efin

e p

roje

ct s

tructu

re b

y d

iffere

ntia

ting p

artia

l tasks

• D

efin

e

the

co

-ord

ina

tion

a

nd

e

xe

cu

tion

o

f in

div

idu

al

pa

rtial ta

sks

• Q

ua

litativ

e a

nd

qu

an

titativ

e e

stim

ate

s o

f pe

rso

nn

el, fi-

na

ncia

l, ma

teria

l an

d tim

e re

qu

irem

en

ts

• O

rga

nis

atio

na

l pla

nn

ing: b

uild

wo

rk g

rou

ps fo

r pa

rtial

tasks, p

lan

utilis

atio

n o

f reso

urc

es, a

pp

oin

t co

mm

ittee

s

for p

roje

ct g

uid

an

ce

, de

term

ine

wo

rk re

gu

latio

ns,...

• E

stim

ate

exp

en

ditu

res (th

rou

gh

the

pro

ject g

rou

p) a

nd

h

ave

clie

nt a

pp

rove

bu

dge

t (with

rese

rve

s)

• P

lan

inte

rme

dia

te a

nd

fina

l de

ad

line

s (m

ilesto

ne

s)

• D

ete

rmin

e p

roje

ct in

form

atio

n a

nd

do

cu

me

nta

tion

sys-

tem

With

in

the

sco

pe

o

f p

roje

ct

co

ntro

l, th

e

follo

win

g

me

asu

res a

re n

ece

ssa

ry:

• A

ssig

n ta

sks, in

clu

din

g re

sp

on

sib

ility a

nd

role

s

• D

irect, m

otiv

ate

an

d p

rote

ct e

mp

loye

es

• S

up

erv

ise

the

pro

ble

m-s

olv

ing p

roce

ss, a

nd

if ne

ce

s-

sa

ry, a

dju

st s

co

pe

, go

als

an

d s

ch

ed

ule

• C

o-o

rdin

ate

be

twe

en

the

clie

nt a

nd

the

pro

ject g

rou

p,

as w

ell a

s b

etw

ee

n w

ork

gro

up

s o

ve

r all life

cycle

s

• C

he

ck th

e d

ea

dlin

es, th

e e

fforts

, as w

ell a

s th

e e

ffec-

tive

ne

ss o

f pro

ject o

rga

nis

atio

n a

nd

pla

nn

ing o

f op

era

-tio

ns

As fa

r as p

roje

ct in

form

atio

n a

nd

do

cu

me

nta

tion

syste

ms

are

co

nce

rne

d, th

e fo

llow

ing ta

sks a

re im

po

rtan

t:

• d

ete

rmin

e in

form

atio

n s

trate

gy in

clu

din

g its

op

era

tion

s

• p

roje

ct

rep

rotin

g

(e.g

. a

bo

ut

the

situ

atio

n

an

aly

sis

, a

bo

ut th

e e

va

lua

tion

,...)

• d

ocu

me

nt th

e k

no

wle

dge

acqu

ired

• re

po

rt de

cis

ion

s

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

4

4

14

Critic

al S

uc

ce

ss

Fa

cto

rs o

f Pro

jec

t Ma

na

ge

me

nt

Results

of a

n e

mpiric

al in

vestig

atio

n (K

eplin

ger 1

991)

1.

(Top) M

anag

em

ent s

upport o

f the p

roje

ct a

nd th

e re

spectiv

e g

oals

facilita

tes s

uc-

cess, e

.g. e

ases re

sourc

e a

llocatio

n.

2.

Good e

xte

rnal re

latio

nship

s w

ith im

ple

mente

rs, c

usto

mers

and u

sers

.

3.

Cle

arly

defin

ed p

roje

ct g

oals

, and in

the c

ase o

f chang

es, a

gain

cle

arly

defin

ed

ag

reem

ents

.

4.

Concentra

tion o

n th

e s

tartin

g p

hase, i.e

. the d

evelo

pm

ent o

f a c

om

mon p

roble

m

unders

tandin

g, c

reatio

n o

f a fu

nctio

nal te

am

and jo

int p

lannin

g o

f the e

xecutio

n a

c-

tivitie

s.

5.

Suffic

ient p

roje

ct p

lannin

g (o

rganis

atio

n, p

rocess s

chedule

), join

t, brie

f and in

ten-

siv

e, n

ot to

o d

eta

iled in

the b

eg

innin

g a

nd re

cog

nis

e p

hase g

oals

/ mile

sto

nes.

6.

Appro

pria

te p

roje

ct c

ontro

l, i.e. re

gula

r com

pila

tion o

f sta

tus a

nd p

rog

ress w

hile

fo

cusin

g o

n k

ey fa

cto

rs.

7.

Open, d

irect c

om

munic

atio

n a

nd in

form

atio

n, i.e

. info

rm y

ours

elf a

nd d

o n

ot w

ait to

be a

sked, in

tern

al a

nd e

xte

rnal w

ritten b

rief re

ports

, as w

ell a

s v

erb

al c

om

munic

a-

tion.

8.

Situ

atio

n-a

ppro

pria

te m

eth

ods a

nd to

ols

: sim

ple

aid

s a

re h

elp

ful, n

etw

ork

sched-

ule

s a

nd IT

-supporte

d p

roje

ct m

anag

em

ent s

yste

ms a

re n

ot th

e (o

nly

) facto

rs o

f success.

9.

Purp

osefu

l, not b

ure

aucra

tic, o

rganiz

atio

nal s

tructu

re, i.e

. keep te

am

s s

mall, in

-clu

de a

wid

er c

ircle

of p

eople

by c

onveyin

g in

form

atio

n, tra

nspare

nt ta

sks a

nd re

-sponsib

ility s

harin

g w

ithin

the p

roje

ct te

am

, as w

ell a

s b

etw

een th

e te

am

and th

e

decis

ion-m

akin

g c

om

mitte

e. T

he c

ore

team

should

work

as in

tensiv

ely

as p

ossib

le

on th

e p

roje

ct.

10. S

uffic

ient m

anag

em

ent c

om

pete

nce o

f the p

roje

ct le

ader. S

uccessfu

l pro

ject le

ad-

ers

only

make u

se o

f their a

uth

ority

in e

xceptio

nal c

ases. T

hey le

ad th

roug

h p

ow

-ers

of p

ers

uasio

n.

11. A

bility

, auth

ority

, experie

nce o

f the p

roje

ct le

ader, i.e

. leaders

hip

qualitie

s a

re m

ore

im

porta

nt th

an d

iscip

line-s

pecific

and a

dm

inis

trativ

e a

bilitie

s. T

he p

roje

ct le

ader is

th

e s

uccess fa

cto

r.

12. S

ituatio

n-a

ppro

pria

te le

aders

hip

sty

le o

f the p

roje

ct le

ader, i.e

. coopera

tive in

nor-

mal c

ases, a

uth

orita

tive in

exceptio

nal s

ituatio

ns, p

rimarily

task o

riente

d, a

ble

to

solv

e c

onflic

ts q

uic

kly

, chro

nic

conflic

t partn

ers

may b

e re

moved fro

m th

e te

am

(in

a fa

ir way).

13. C

onste

llatio

n o

f a c

om

pete

nt p

roje

ct g

roup, i.e

. pre

fera

bly

qualifie

d a

nd te

am

ori-

ente

d e

mplo

yees, a

sta

bile

team

, suffic

ient tim

e fo

r pro

ject w

ork

, avoid

substitu

tes

as m

uch a

s p

ossib

le.

14. M

otiv

ate

d p

roje

ct te

am

s.

/Keplin

ger 1

991/

Page 23: Systems Engineering – A Summary...SYSTEMS ENGINEERING – A Summary 3 1 Introduction Integral planning methodologies are necessary to al low companies to design successful products

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

4

5

Pe

rso

na

l no

tes

:

SY

ST

EM

S E

NG

INE

ER

ING

– A

Sum

mary

4

6

8

Refe

ren

ces

/Bü

ch

el 1

96

9/

ch

el, A

. (19

69

): Syste

ms E

ngin

ee

ring, In

: io-

Ma

na

ge

me

nt Z

eits

ch

rift, Vo

l. 38

, No

.9, p

. 37

3-

38

5.

/ISO

14

04

0/

ISO

14

04

0 - E

nviro

nm

en

tal M

an

age

me

nt S

ys-

tem

s -

Prin

cip

les a

nd

F

ram

ew

ork

. C

EN

(P

ub

-lis

he

r). B

russe

ls:

Eu

rop

ea

n

Co

mm

ittee

fo

r S

tan

da

rdis

atio

n.

/Ha

be

rfelln

er e

t al. 1

97

6/

Ha

be

rfelln

er,

R.,

Na

ge

l, P

., B

üch

el,

A.,

vo

n

Ma

sso

w, H

. (19

76

): Syste

ms E

ngin

ee

ring. D

a-

en

ze

r, W. (P

ub

lish

er). 1

st e

ditio

n. Z

uric

h: V

er-

lag In

du

strie

lle O

rga

nis

atio

n.

/Ha

be

rfelln

er e

t al. 2

00

0/

Ha

be

rfelln

er,

R.

et

al.

(20

00

): S

yste

ms

En

gin

ee

ring.

Da

en

ze

r, W

. e

t a

l. (P

ub

lish

er).

10

th E

ditio

n. Z

uric

h: V

erla

g In

du

strie

lle O

rga

ni-

sa

tion

.

/Ha

ll 19

62

/ H

all, A

.D. (1

96

2): A

Me

tho

do

logy fo

r Syste

ms

En

gin

ee

ring. P

rince

ton

: Vo

n N

ostra

nd

.

/Ke

plin

ge

r 19

91

/ K

ep

linge

r, W

. (1

99

1):

Me

rkm

ale

e

rfolg

reic

he

n

Pro

jektm

an

age

me

nts

. P

h.D

.-Th

esis

. G

raz:

Te

ch

nis

ch

e U

niv

ers

ität G

raz.

/Na

ge

l et a

l. 19

82

/ N

age

l e

t a

l. (1

98

2):

SE

-Me

mo

, Z

uric

h:

Be

-trie

bsw

isse

nsch

aftlic

he

s In

stitu

t.

/Ro

po

hl 1

99

6/

Ro

po

hl,

G.

(19

96

): E

thik

u

nd

T

ech

nik

be

we

r-tu

ng. F

ran

kfu

rt am

Ma

in, S

uh

rka

mp

, 19

96

.

/Zü

st 1

99

7/

st, R

. (19

97

): Ein

stie

g in

s S

yste

ms E

ngin

ee

-rin

g - S

yste

ma

tisch

de

nke

n, h

an

de

ln u

nd

um

-se

tze

n, Z

uric

h: V

erla

g In

du

strie

lle O

rga

nis

atio

n

/Zü

st 2

00

4/

st, R

. (20

04

): Ein

stie

g in

s S

yste

ms E

ngin

ee

-rin

g - S

yste

ma

tisch

de

nke

n, h

an

de

ln u

nd

um

-se

tze

n,

3rd

E

ditio

n

(ad

op

ted

), Z

uric

h:

Ve

rlag

Ind

ustrie

lle O

rga

nis

atio

n.

/Zü

st 2

00

6/

st, R

., Tro

xle

r, P. (2

00

6): N

o M

ore

Mu

dd

ling

Th

rou

gh

– M

aste

ring C

om

ple

x P

roje

cts

in E

n-

gin

ee

ring a

nd

Ma

na

ge

me

nt, D

ord

rech

t: Sp

ring-

er