table s1 the list of original mofmaterials1487.34 0.60 59.47 25 mil-53(al)[11] a = 0.66085,...

35
Supporting Information Design of amine functionalized metal-organic frameworks for CO 2 separation: the more amine, the better? Zhiwei Qiao 1 , Nanyi Wang 2 , Jianwen Jiang 3 , Jian Zhou 1* 1 School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China 2 Institute of Physical Chemistry and Electrochemistry, Leibniz University of Hannover, Callinstrasse 22, 30167 Hannover, Germany 3 Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015

Upload: others

Post on 10-Apr-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

Supporting Information

Design of amine functionalized metal-organic

frameworks for CO2 separation: the more amine, the

better?

Zhiwei Qiao1, Nanyi Wang2, Jianwen Jiang3, Jian Zhou1*

1 School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for

Green Chemical Product Technology, South China University of Technology,

Guangzhou 510640, China

2 Institute of Physical Chemistry and Electrochemistry, Leibniz University of

Hannover, Callinstrasse 22, 30167 Hannover, Germany

3 Department of Chemical and Biomolecular Engineering, National University of

Singapore, 117576, Singapore

Electronic Supplementary Material (ESI) for ChemComm.This journal is © The Royal Society of Chemistry 2015

Page 2: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

Contents1. Simulation Models and Methods ................................................................................................3

1.1. Models.................................................................................................................................31.2 Methods................................................................................................................................6

2. Experimental Methodology.........................................................................................................82.1 Preparation of Mg-MOF-74 membranes.............................................................................82.2 Characterization ..................................................................................................................92.3 Evaluation of single gas permeation and mixed gas separation .........................................9

3. Screening of one amine group functionalized MOFs..............................................................104. Screening of amine functionalized Al-MIL-53, Cr-MIL-53, UiO-66 and UiO-67 ...............135. Screening of amine functionalized M-MOF-74.......................................................................146. Experimental results ..................................................................................................................167. Potential adsorbents for CO2/CH4 mixture (50:50) ................................................................18

7.1 (NH2CH2CH2NH)n-M-MOF-74 .........................................................................................187.1.1 Co-MOF-74.............................................................................................................187.1.2 Mg-MOF-74............................................................................................................197.1.3 Ni-MOF-74 .............................................................................................................197.1.4 Zn-MOF-74.............................................................................................................19

7.2 (NH2)n-M-MOF-74.............................................................................................................207.2.1 Co-MOF-74.............................................................................................................207.2.2 Mg-MOF-74............................................................................................................207.2.3 Ni-MOF-74 .............................................................................................................207.2.4 Zn-MOF-74.............................................................................................................21

7.3 (NHCOH)n-M-MOF-74......................................................................................................217.3.1 Co-MOF-74.............................................................................................................217.3.2 Mg-MOF-74............................................................................................................217.3.3 Ni-MOF-74 .............................................................................................................227.3.4 Zn-MOF-74.............................................................................................................22

7.4 (NH2)n-MIL-53 ...................................................................................................................227.4.1 Cr-MIL-53...............................................................................................................227.4.2 Al-MIL-53...............................................................................................................23

7.5 (NHCOH)n-MIL-53 ............................................................................................................237.5.1 Cr-MIL-53...............................................................................................................237.5.2 Al-MIL-53...............................................................................................................23

7.6 (NH2)n-UiOs .......................................................................................................................247.6.1 UiO-66 ....................................................................................................................247.6.2 UiO-67 ....................................................................................................................24

7.7 (NHCOH)n-UiOs................................................................................................................247.7.1 UiO-66 ....................................................................................................................247.7.2 UiO-67 ....................................................................................................................25

8. Potential adsorbents for CO2/H2 mixture (50:50) ...................................................................258.1 (NH2CH2CH2NH)n-M-MOF-74 .........................................................................................25

8.1.1 Co-MOF-74.............................................................................................................25

S1

Page 3: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

8.1.2 Mg-MOF-74............................................................................................................268.1.3 Ni-MOF-74 .............................................................................................................268.1.4 Zn-MOF-74.............................................................................................................26

8.2 (NH2)n-M-MOF-74.............................................................................................................278.2.1 Co-MOF-74.............................................................................................................278.2.2 Mg-MOF-74............................................................................................................278.2.3 Ni-MOF-74 .............................................................................................................278.2.4 Zn-MOF-74.............................................................................................................28

8.3 (NHCOH)n-M-MOF-74......................................................................................................288.3.1 Co-MOF-74.............................................................................................................288.3.2 Mg-MOF-74............................................................................................................288.3.3 Ni-MOF-74 .............................................................................................................298.3.4 Zn-MOF-74.............................................................................................................29

8.4 (NH2)n-MIL-53 ...................................................................................................................298.4.1 Cr-MIL-53...............................................................................................................298.4.2 Al-MIL-53...............................................................................................................30

8.5 (NHCOH)n-MIL-53 ............................................................................................................308.5.1 Cr-MIL-53...............................................................................................................308.5.2 Al-MIL-53...............................................................................................................30

8.6 (NH2)n-UiOs .......................................................................................................................318.6.1 UiO-66 ....................................................................................................................318.6.2 UiO-67 ....................................................................................................................31

8.7 (NHCOH)n-UiOs................................................................................................................318.7.1 UiO-66 ....................................................................................................................318.7.2 UiO-67 ....................................................................................................................32

References.......................................................................................................................................32

S2

Page 4: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

1. Simulation Models and Methods

1.1. Models

Considering the diversity of MOF structures, 29 classical and experimental MOFs

were firstly selected, including IRMOFs, MILs, M-MOF-74 (M=Mg, Co, Ni, Zn),

ZIFs, UMCMs, UiOs (UiO-66 and UiO-67), Cu-BTC and several recently

synthesized MOFs (e.g., [M(atz)(bdc)0.5]). As listed in Table S1, their structures were

constructed from the experimental single-crystal X-ray diffraction data.

Table S1: Structural properties of 29MOFs.

No. name unit cell (nm)cell angle

(degree)

Sacc a

(m2/g)

Vfree a

(cm3/g)

Helium Void

Fraction (%)

1 IRMOF-1[1] a = b = c = 2.58320α = β = γ =

903552.62 1.36 82.62

2 IRMOF-2[1] a = b = c = 2.57718α = β = γ =

902761.99 1.00 78.26

3 IRMOF-3[1] a = b = c = 2.57465α = β = γ =

903463.18 1.25 81.06

4 IRMOF-4[1] a = b = c = 2.58493α = β = γ =

901521.48 0.76 51.78

5 IRMOF-5[1] a = b = c = 2.57636α = β = γ =

90796.34 0.58 37.87

6 IRMOF-6[1] a = b = c = 2.58421α = β = γ =

903177.97 1.19 77.97

7 IRMOF-8[1] a = b = c = 3.00915α = β = γ =

904323.39 1.88 86.77

8 IRMOF-9[1]a =1.71470, b = 2.33222, c

= 2.52552

α = β = γ =

903479.08 1.15 76.95

9 IRMOF-10[1] a = b = c = 3.42807α = β = γ =

904932.99 2.67 89.61

10 IRMOF-11[1]a = b = 2.48217,

c = 5.67340

α = β = 90,

γ = 1202710.09 0.93 69.55

11 IRMOF-14[1] a = b = c = 3.43810α = β = γ =

904787.69 2.31 89.81

12 IRMOF-15[1] a = b = c = 2.14594 α = β = γ = 5870.72 2.01 85.22

S3

Page 5: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

90

13 IRMOF-16[1] a = b = c = 2.14903α = β = γ =

905874.53 4.47 92.65

14 MOF-177[2]a = b =3.70720,

c = 3.00333

α = β =90,

γ =1204692.28 1.94 84.98

15 ZIF-8[3] a = b = c = 1.69910α = β = γ =

901245.50 0.65 50.88

16 UMCM-1[4]a = b = 4.15262,

c=1.74916

α = β =90,

γ =1204359.72 2.19 88.59

17 UMCM-150[4] a = b = 1.83532, c=4.0667α = β =90, γ

=1203263.79 1.21 80.93

18 Cu-BTC[5] a = b = c =2.63430 α = β = γ =90 2060.80 0.81 75.92

19 Co-MOF74[6] a=b=2.5885, c=0.6858α = β =90,γ

=1201315.71 0.56 72.14

20 Mg-MOF74[7] a=b=2.58765, c=0.67856α = β =90,γ

=1201657.35 0.71 74.22

21 Ni-MOF74[8] a=b=2.57856, c=0.67701α = β =90,γ

=1201268.98 0.54 70.96

22 Zn-MOF74[7] a=b=2.59322, c=0.68365α = β =90,γ

=1201259.23 0.54 72.7

23 MIL-47(V)[9]a = 0.68180, b = 1.61430,

c = 1.39390

α = β = γ =

901670.54 0.65 62.46

24 MIL-53(Cr)[10]a =1.6733, b = 1.3038, c =

0.6812

α = β = γ =

901487.34 0.60 59.47

25 MIL-53(Al)[11]a = 0.66085, b=1.66750, c

= 1.2813

α = β = γ =

901508.42 0.62 58.93

26 [Zn(atz)(bdc)0.5][12] a=b=2.5169, c=2.54464α = β =90,γ

=12036.41 0.25 21.25

27 [Co(atz)(bdc)0.5][12] a=b=2.53344, c=2.54399α = β =90,γ

=12035.11 0.26 19.26

28 UiO-66[13] a = b = c = 2.07004α = β = γ =

90950.61 0.50 46.07

29 UiO-67[13] a = b = c = 2.70942α = β = γ =

903063.51 1.03 58.02

a The accessible surface area (Sacc) and the total free volume (Vfree) of each MOF were estimated using Materials Studio. The accessible surface area (Sacc) was calculated by a probe with a diameter equal to the kinetic diameter of N2 (0.368 nm).

S4

Page 6: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

Figure S1: List of building blocks in Wilmer and Snurr’s work.[14]

Moreover, a part of ~138,000 hypothetical MOFs (hMOFs)[14] were selected with

unfunctionalized organic linkers such as 1,4-benzenedicarboxylate (BDC) and 4,4’-

biphenyldicarboxylate (BPDC), which could be further functionalized. In the Wilmer

et al.’s work[14], the hMOF structures were constructed from 102 building blocks. As

shown in Figure S1, 1-5 and 6-47 are inorganic and organic building blocks,

respectively; 48-60 are functional groups. The building blocks 6-47 may be

terminated with nitrogen atoms instead of carboxylic acid groups, yielding 102

building blocks in total. Because the unfunctionalized organic linkers were required in

S5

Page 7: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

our work, 48-60 building blocks were removed. After excluding the hMOFs with 48-

60 blocks, 41,825 hMOFs were selected and their performances were evaluated by

molecular simulations.

In previous studies reported in the literature, various amine functional groups were

used to functionalize MOFs. By grafting ethylene diamine (-NHCH2CH2NH2) onto

the open metal sites, Choi et al.[15] modified Mg-MOF-74 and found that both CO2

adsorption capacity and the regenerability of the material were enhanced. Wang et

al.[16] produced two new MOFs with 1,4-benzenedicarboxylic acid (BDC) modified

by -NH2 and -NHCOR. Couck et al.[17] demonstrated that functionalized MIL-53(Al)

with -NH2 can increase its selectivity for CO2/CH4 mixture and maintain an extremely

high CO2 adsorption capacity. Ahnfeldt et al.[18] synthesized four amine

functionalized MOFs including CAU-1-NH2, CAU-1-NHCH3, CAU-1-NH2(OH) and

CAU-1-NHCOCH3; the effects of reaction time and temperature on the synthesized

materials were detailed examined. In this study, four amine functional groups (-NH2, -

NHCH2CH2NH2, -NHCOH, -NHCOCH3) as shown in Figure S2 were adopted to

functionalize MOFs. The functionalization method was the same as that of Mu et al.’s

work.[19] Moreover, the functionalized MOFs were geometrically optimized using the

Forcite module of Materials Studio.

(a) -NH2 (b) -NHCH2CH2NH2 (c) -NHCOH (d) -NHCOCH3

Figure S2: Four amine functional groups (a, -NH2; b, -NHCH2CH2NH2; c, -NHCO; d, -NHCOCH3).

S6

Page 8: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

CO2 separation may be conducted via vacuum-swing adsorption (VSA)[20] or

pressure-swing adsorption (PSA)[21]. Therefore, every MOF was simulated in three

different cases corresponding to CO2 separation from CH4 or H2 at pressures and

compositions of industrial relevance, namely: (1) landfill gas separation using VSA,

(2) natural gas purification using PSA, and (3) hydrogen purification from steam-

methane reforming gas (SMR). The three cases are described in Table S2.

Table S2: The systems for CO2 separation

Case Application Mixture composition Conditions

1 Landfill gas separation using VSA CO2:CH4=50:50 p=1 bar, T=298 K

2 Natural gas purification using PSA CO2:CH4=10:90 p=5 bar, T=298 K

3 Hydrogen gas purification from SMR CO2:H2=50:50 p=1 bar, T=298 K

1.2 Methods

Grand canonical Monte Carlo (GCMC) and Molecular dynamics (MD) simulations

are commonly used to study adsorption and diffusion in porous media.[22, 23, 24, 25, 26, 27,

28] In this work, all simulations were carried out by using RASPA package[29] to

identity the most appropriate amine functional groups in MOFs for CO2 separation.

The simulation cells were replicated to at least 25.6 Å along each dimension. The

standard 12-6 Lennard-Jones (LJ) potential was used to mimic the dispersive

interactions with a cutoff of 12.8 Å. The LJ parameters for the MOF atoms were

obtained from the Dreiding force field;[30] if not available, they were then adopted

from the Universal force field (UFF).[31] The parameters are listed in Table S3. The

Lorentz-Berthelot mixing rules were employed to calculate adsorbate/adsorbent cross

S7

Page 9: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

interactions. The atomic charges of 41,825 hMOFs were calculated using the MEPO-

QEq method,[32] while the CHELPG method[33] through density functional theory

(DFT) calculations were adopted for the atomic charges of 29 experimentally

synthesized MOFs and their amine functionalized counterparts. In the DFT

calculations, the B3LYP functional[34, 35] and the LANL2DZ basis set were used. The

frameworks of the amine functionalized MOFs were kept rigid at their DFT optimized

geometries.[27] The LJ parameters for CH4 were given by Goodbody et al.[36] The

atomic charges and LJ parameters for CO2 were taken from the TraPPE force field,

which was fitted to reproduce vapor-liquid equilibrium data.[25, 37] The parameters are

listed in Table S4. The electrostatic interactions for adsorbent-adsorbate and

adsorbate-adsorbate were calculated by the Ewald summation.[38] The Metropolis

method[39] was employed to accept or reject configurational moves (rotation and

translation of adsorbate molecules), as well as for adsorbate insertion and deletion.

The probability of each trial move was the same. In the first screening of 41,825

hMOFs, both equilibration and production of each GCMC simulation were 500 cycles

for CO2/CH4 mixture (case 2 in Table S2). In the amine functionalized MOFs, each

GCMC simulation consisted of 2×107 cycles, where a cycle consisted of N moves (N:

the number of molecules in the system). The first 107 cycles were used for

equilibration and the last 107 cycles were used for ensemble averages. The final

configurations from GCMC simulation were used in MD simulation to evaluate gas

diffusivity. The time sept used was 1 fs and the temperature of system was controlled

using the Andersen thermostat. Each MD simulation was run for 10 ns to collect the

S8

Page 10: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

mean-squared displacement, from which diffusivity was estimated.

Table S3: Lennard Jones parameters for the MOFs under study.

Atoms C O H N Br Al Zn

σ (Å) 3.473 3.033 2.846 3.263 3.523 3.910 4.044

/kB (K) 47.86 48.16 7.650 38.977 186.2 156.03 27.68

Atoms Coa Nia Va Cra Zra Mga Cua

σ (Å) 2.559 2.525 2.800 2.690 2.700 2.691 3.114

/kB (K) 7.045 7.548 8.048 7.545 33.68 55.857 2.516

afrom the UFF force field[31].

Table S4: Lennard Jones parameters and partial charge for CH4 and CO2

Atom pairs σ(Å) /kB(K) q (e)

CH4 CH4 3.73 148.0 --

C_CO2 C_CO2 2.80 27.0 +0.7

O_CO2 O_CO2 3.05 79.0 -0.35

2. Experimental Methodology

2.1 Preparation of Mg-MOF-74 membranes

Seeding on the support surface: 1.5 g MgO and 1.2 g polyethyleneimine (PEI) were

added in 100 mL water to prepare a seeding suspension, and the suspension was

stirred overnight. Thereafter, the -Al2O3 supports were dipped in the seeding

suspension using an automatic dip-coating device; and the seeded supports were then

dried in oven at 100 °C overnight (18 mm in diameter, 1.0 mm in thickness, 70 nm

particles in the top layer, Fraunhofer IKTS, former Hermsdorfer HITK, Germany).

S9

Page 11: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

Synthesis of Mg-MOF-74 membranes: Mg-MOF-74 membranes were prepared by a

solvothermal reaction of Mg2+ and H4dobdc (2,5-dihydroxyterephthalic acid). 0.2375g

Mg(NO3)2·6H2O (0.925 mmol) and 0.1011g H4dobdc (0.509 mmol) were added to a

15 mL solution, which was prepared by mixing DMF, water and ethanol with a

volumetric ratio of 15:1:1. The MgO-coated supports were then placed vertically in a

Teflon-lined stainless steel autoclave, which was filled with the synthesis solution.

The autoclave was then heated at 120 °C in an air-conditioned oven for 24 h. After

that, the Mg-MOF-74 membranes were washed with DMF and dried in air overnight.

Post-modification of the membrane: The as-prepared Mg-MOF-74 membranes

were treated with ethylenediamine (0.5 g in 10 mL toluene) at 110 °C for 2 h under

Ar. The membranes were then directly removed from the solution and dried in Ar at

room temperature.

2.2 Characterization

Scanning electron microscopy (SEM) micrographs were taken on a JEOL JSM-

6700F with a cold field emission gun operating at 2 kV and 10 µA. FT-IR spectrums

were recorded with a Tensor 27 instrument (Bruker) through KBr pellets using Ar/Xe

laser line with λ = 633 nm.

2.3 Evaluation of single gas permeation and mixed gas separation

The gas permeation performances of the as-prepared and amine-modified Mg-

MOF-74 membranes were carried out with the Wicke-Kallenbach technique. The

supported Mg-MOF-74 membrane was sealed in a permeation module with silicone

S10

Page 12: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

O-rings. According to the Wicke-Kallenbach technique, on both sides of the

membrane was atmospheric pressure, N2 was used on the permeate side as sweep gas.

The fluxes of both the feed and sweep gas were controlled by mass flow controllers,

and the flow rate for each gas on the feed side was kept constant (50 mL min-1), while

the flow rate on the permeate side was kept at 50 mL min-1 as well. A calibrated gas

chromatograph (HP6890) was used to detect the gas concentrations on the permeate

side. The permeance P is obtained by the ratio of the flux over the transmembrane

pressure difference, and the separation factor αi,j of a binary mixture permeation is

defined as the quotient of the molar ratios of the components (i,j) in the permeate

divided by the quotient in the retentate. All the permeation data were collected in the

steady state of permeation after at least 5 h equilibration time, and the reported data in

this work were the average values. Since there was no change in the permeation data,

the mixed gas system was considered to be in a steady state.

3. Screening of one amine group functionalized MOFs

0

2

4

6

8

10

12

NH2

NHCOH NH2CH2CH2NH2

NHCOCH3

original

One amine group functionalized MOFs

UIO-67UIO-66

Zn-MOF-74Ni-MOF-74

Co-MOF-74

Tota

l Loa

ding

(mm

ol/g

)

Mg-MOF-74 1

10

100

Se

lectiv

ity

NH2

NHCOH NH2CH2CH2NH2

NHCOCH3

original

One amine group functionalized MOFs

UIO-67UIO-66

Zn-MOF-74Ni-MOF-74

Co-MOF-74Mg-MOF-74

(a) (b)

S11

Page 13: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

0

2

4

6

8

10

12

14

NH2

NHCOH NH2CH2CH2NH2

NHCOCH3

original

MIL-53(Cr)MIL-53(Al)

Tota

l Loa

ding

(mm

ol/g

)

One amine group functionalized MOFs UIO-66

UIO-67Zn-MOF-74

Ni-MOF-74Co-MOF-74

Mg-MOF-741

10

100 NH2

NHCOH NH2CH2CH2NH2

NHCOCH3

original

Se

lectiv

ity

One amine group functionalized MOFs MIL-53(Cr)

MIL-53(Al)UIO-66

UIO-67Zn-MOF-74

Ni-MOF-74Co-MOF-74

Mg-MOF-74

(c) (d)

Figure S3: Comparison of total loadings and adsorption selectivities of four amine functionalized and original MOFs, when the number of functionalized group is one. (a) total loading of

Case 1 (b) selectivity of Case 1 (c) total loading of Case 2 (d) selectivity of Case 2(Operation conditions of Case 1 and Case 2 are shown in Table S2)

Four different amine functional groups (-NH2, -NHCH2CH2NH2, -NHCOH, -

NHCOCH3) were used to modify MOFs to improve CO2/CH4 separation capability.

To comparing the effects of different amine functional groups, each MOF was first

grafted by one amine functional group. Overall, most of the amine functionalized

MOFs have lower total adsorption loadings than unmodified ones, because the amine

functional groups grafted in MOFs reduce free volume. However, the loadings of

NH2-UiO-66, NH2-UiO-67, NHCOH-UiO-66 and NHCOH-UiO-67 in Case 1 are

slightly larger than the original ones. The reason is that the amine functional groups

form stronger interactions with CO2 and directly improve CO2 adsorption and

separation (see Figure S3b). In Figures S3b and S3d, the separation factors of amine

functionalized UiO-66 and UiO-67 are significantly enhanced. This also proves that

greater CO2 adsorption loadings of these MOFs promote their separation efficiency.

The most appropriate amine functional groups are further explored for each MOF. In

both Case 1 and Case 2, all the adsorption loadings of modified M-MOF-74s are

S12

Page 14: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

decreased upon functionalization. In Figure S3, both adsorption loading and

selectivity of NHCOCH3-functionalized M-MOF-74 are lower than those of the

original ones, which indicate that -NHCOCH3 group is relatively unsuitable. In

Figures S3c and S3d, the separation efficiency of MIL-53 functionalized with -NH2

and -NHCOH is improved, especially for -NHCOH. The separation factor of

NHCOH-modified MIL-53 is about 12 times, greater than those of the original ones

and their adsorption loadings only slightly decrease. This suggests that such amine

functionalization is superior. In contrast, both adsorption capacities and separation

efficiencies for the other two amine (-NHCH2CH2NH2 and -NHCOCH3)

modifications decrease substantially. For UiO-66 and UiO-67, we can see from Figure

S3 that the simulation results are similar to those of MIL-53. In either Case 1 or Case

2, the properties of amine functionalized MOFs with -NH2 and -NHCOH are far better

than those with -NHCH2CH2NH2 and -NHCOCH3. Due to the long linkers,

functionalization with -NHCH2CH2NH2 and -NHCOCH3 drastically decreases the

free volume and adsorption loading.

In summary, -NH2 and -NHCOH groups can improve the separation capabilities of

all the selected MOFs, especially for MIL-53, UiO-66 and UiO-67. While -

NHCH2CH2NH2 functionalization for M-MOF-74 would be further studied, -

NHCOCH3 group is unsuitable for functionalization because the adsorption and

separation capabilities are not improved. In the results presented below, the effects of

the numbers of amine functional groups are examined in detail for the enhancement of

CO2 separation.

S13

Page 15: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

4. Screening of amine functionalized Al-MIL-53, Cr-MIL-53, UiO-66 and UiO-67

2 4 6 8 10 12 14

10

100

a)

Sele

ctiv

ity

Total loading (mol/kg)

CO2/CH4

5 bar

2 4 6 8 10 12 14

CO2/H2

5 bar

b)

Total loading (mol/kg)

1 2 3 4

10

100

c)

Number of NH2

Sele

ctiv

ity

1 2 3 4

d)

Number of NHCOHFigure S4: Comparison of total loadings and adsorption selectivities of different amine functional groups at 5 bar and 298 K for (a) CO2/CH4; (b) CO2/H2. Black: NHCH2CH2NH2; red: NH2; blue: NHCOH; green: NHCOCH3. (c) Selectivities-numbers of NH2 group relations; (d) Selectivities-

numbers of NHCOH group relations. Solid: 5 bar for CO2/CH4; hollow: 5 bar for CO2/H2; Black: Al-MIL-53; red: Cr-MIL-53; blue: UiO-66; green: UiO-67.

(a) (b)

Figure S5: Contours of electrostatic potentials for (a) Al-MIL-53 and (b) (NHCOH)4-Al-MIL-53.

S14

Page 16: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

2 4 6 8 10 12 141

10

100

Al-MIL-53 Cr-MIL-53 UIO-66 UIO-67

Selec

tivity

Total loading(mol/kg)4 6 8 10 12 14

1

10

100

Al-MIL-53 Cr-MIL-53 UIO-66 UIO-67

Selec

tivity

Total loading(mol/kg)

(a) (b)

Figure S6: Comparison of total loadings and adsorption selectivities of different MIL-53, UiO-66 and UiO-67 at 5 bar and 298 K for (a) CO2/CH4; (b) CO2/H2.

5. Screening of amine functionalized M-MOF-74

0 1 2 3 4 5 60

10

20

30

40

50

Mg Co Ni Zn

Sele

ctiv

ity

Total loading(mol/kg)0 1 2 3 4 5 6 7

0

10

20

30

40

50 Mg Co Ni Zn

Se

lect

ivity

Total loading(mol/kg)

(a) (b)

0 1 2 3 4 5 6 70

20

40

60

80 Mg Co Ni Zn

Sele

ctiv

ity

Total loading(mol/kg)(c)

Figure S7: Comparison of total loadings and adsorption selectivities of different metal ligand M-MOF-74 (a) Case 1, (b) Case 2, (c) Case 3.

S15

Page 17: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

(Operation conditions of Case 1, Case 2 and Case 3 are shown in Table S2)

0.0 0.2 0.4 0.6 0.8 1.00

2

4

6

8

10

12

14 NH2CH2CH2NH2

NH2

NHCOCH3

NHCOH

T

otal

load

ing(

mol

/kg)

Helium Void Fraction0.0 0.2 0.4 0.6 0.8 1.01

10

100

NH2CH2CH2NH2

NH2

NHCOCH3

NHCOH

Sele

ctiv

ity

Helium Void Fraction

(a) (b)

Figure S8: Structure-property relationships for 157 hypothetical amine functionalized MOFs color-coded by amine species. a) Loading in Case 1 vs. void fraction. b) Selectivity in Case 1 vs.

void fraction. Black: NHCH2CH2NH2; red: NH2; blue: NHCOH; green: NHCOCH3.(Operation conditions of Case 1 are shown in Table S2)

(a)

(b)Figure S9: Contours of CO2 adsorption selectivities in Case 1 (a) unmodified Co-MOF-74 (b)

S16

Page 18: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

(NH2CH2CH2NH)9-Co-MOF-74.(Operation conditions of Case 1 are shown in Table S2)

100 101 102 103 104 105100

101

102

103

Upper bound 2008Upper bound 1991

S per

m(C

H 4/CO 2)

PCO2 (Barrer)

101 102 103 104 105 106100

101

102

103

Upper bound 2008Upper bound 1991

S per

m(H

2/CO 2)

PH2 (Barrer)

(a) (b)

Figure S10: Comparison of permeability and permeation selectivities of different (NH2CH2CH2NH)n-M-MOF-74 at 1bar and 298 K, (a) CO2/CH4, (b) CO2/H2. Black■: Mg-MOF-

74; red●: Co-MOF-74; blue▲: Ni-MOF-74; green▼: Zn-MOF-74; turquoise: simulated unmodified Mg-MOF-74; orange: experimental Mg-MOF-74 membrane; pink★: experimental

NH2CH2CH2NH-Mg-MOF-74 membrane

6. Experimental results

(a) (b)Figure S11: SEM images of Mg-MOF-74 membrane prepared on MgO-seeded α-Al2O3 supports

at 120 °C for 24 h. (a) 20 m, (b) 10 m.

S17

Page 19: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

Figure S12: XRD patterns of Mg-MOF-74 powder.

4500 4000 3500 3000 2500 2000 1500 1000 500

Wavenummer / cm-1

Tran

simitt

ance

/ %

-NH -CH2

-NH2

after ethylene diamine functionalized before ethylene diamine functionalized

Figure S13: FT-IR spectra of unmodified and ethylene diamine functionalized Mg-MOF-74 crystals at room temperature.

5 10 15 20 25 30 35 40

Inte

nsity

2/ degrees

after ethylene diamine functionalized original membrane

Figure S14: XRD patterns of original and ethylene diamine functionalized Mg-MOF-74 membranes at room temperature.

S18

Page 20: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

Table S5: Gas separation performances of the original and amine functionalized Mg-MOF-74 membranes in Case 1 and Case 3.

(Operation conditions of Case 1 and Case 3 are shown in Table S2)

Original Mg-MOF-74 membrane Amine functionalized Mg-MOF-74 membrane

Gasi/j Permeances (i)

(mol·m-2·s-1·Pa-1)

Permeances (j)

(mol·m-2·s-1·Pa-1)

Separation

factor

Permeances (i)

(mol·m-2·s-1·Pa-1)

Permeances (j)

(mol·m-2·s-1·Pa-1)

Separation

factor

H2/CO2 1.2 x 10-7 9.8 x 10-9 12.2 9.0 x 10-8 3.1 x 10-9 29

CH4/ CO2 2.17 x 10-8 1.1 x 10-8 1.96 1.1 x 10-8 2.6 x 10-9 4.23

7. Potential adsorbents for CO2/CH4 mixture (50:50)

7.1 (NH2CH2CH2NH)n-M-MOF-74

7.1.1 Co-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

Load

ing

/(mol

/kg)

Pressure /MPa

CO2_1 CH4_1 CO2_3 CH4_3 CO2_6 CH4_6 CO2_9 CH4_9 CO2_18 CH4_18

0.01 0.1 1 100

10

20

30

40

50

60

Se

lect

ivity

Pressure /MPa

1 3 6 9 18

(a) (b)Figure S15: Isotherm (a) and selectivity (b) of CO2/CH4 in (NH2CH2CH2NH)n-Co-MOF-74

7.1.2 Mg-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

Lo

adin

g /(m

ol/k

g)

Pressure /MPa

CO2_1 CH4_1 CO2_3 CH4_3 CO2_6 CH4_6 CO2_9 CH4_9 CO2_18 CH4_18

0.01 0.1 1 100

10

20

30

40

50

60

Selec

tivity

Pressure /MPa

1 3 6 9 18

(a) (b)Figure S16: Isotherm (a) and selectivity (b) of CO2/CH4 in (NH2CH2CH2NH)n-Mg-MOF-74

S19

Page 21: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

7.1.3 Ni-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

Lo

adin

g /(m

ol/k

g)

Pressure /MPa

CO2_1 CH4_1 CO2_3 CH4_3 CO2_6 CH4_6 CO2_9 CH4_9 CO2_18 CH4_18

0.01 0.1 1 10

0

10

20

30

40

50

60

Selec

tivity

Pressure /MPa

1 3 6 9 18

(a) (b)Figure S17: Isotherm (a) and selectivity (b) of CO2/CH4 in (NH2CH2CH2NH)n-Ni-MOF-74

7.1.4 Zn-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

Lo

adin

g /(m

ol/k

g)

Pressure /MPa

CO2_1 CH4_1 CO2_3 CH4_3 CO2_6 CH4_6 CO2_9 CH4_9 CO2_18 CH4_18

0.01 0.1 1 100

10

20

30

40

50

60

Selec

tivity

Pressure /MPa

1 3 6 9 18

(a) (b)Figure S18: Isotherm (a) and selectivity (b) of CO2/CH4 in (NH2CH2CH2NH)n-Zn-MOF-74

7.2 (NH2)n-M-MOF-74

7.2.1 Co-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

Load

ing

/(mol

/kg)

Pressure /MPa

CO2_1 CH4_1 CO2_3 CH4_3 CO2_6 CH4_6 CO2_9 CH4_9 CO2_18 CH4_18

0.01 0.1 1 100

5

10

15

20

25

Selec

tivity

Pressure /MPa

1 3 6 9 18

(a) (b)Figure S19: Isotherm (a) and selectivity (b) of CO2/CH4 in (NH2)n-Co-MOF-74

S20

Page 22: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

7.2.2 Mg-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

Pressure /MPa

CO2_1 CH4_1 CO2_3 CH4_3 CO2_6 CH4_6 CO2_9 CH4_9 CO2_18 CH4_18

Load

ing

/(mol

/kg)

0.01 0.1 1 100

5

10

15

20

25

Selec

tivity

Pressure /MPa

1 3 6 9 18

(a) (b)Figure S20: Isotherm (a) and selectivity (b) of CO2/CH4 in (NH2)n-Mg-MOF-74

7.2.3 Ni-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14 CO2_1 CH4_1 CO2_3 CH4_3 CO2_6 CH4_6 CO2_9 CH4_9 CO2_18 CH4_18

Load

ing

/(mol

/kg)

Pressure /MPa0.01 0.1 1 10

0

5

10

15

20

25Se

lectiv

ity

Pressure /MPa

1 3 6 9 18

(a) (b)Figure S21: Isotherm (a) and selectivity (b) of CO2/CH4 in (NH2)n-Ni-MOF-74

7.2.4 Zn-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

Load

ing

/(mol

/kg)

Pressure /MPa

CO2_1 CH4_1 CO2_3 CH4_3 CO2_6 CH4_6 CO2_9 CH4_9 CO2_18 CH4_18

0.01 0.1 1 100

5

10

15

20

25

Selec

tivity

Pressure /MPa

1 3 6 9 18

(a) (b)Figure S22: Isotherm (a) and selectivity (b) of CO2/CH4 in (NH2)n-Zn-MOF-74

S21

Page 23: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

7.3 (NHCOH)n-M-MOF-74

7.3.1 Co-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

Load

ing

/(mol

/kg)

Pressure /MPa

CO2_1 CH4_1 CO2_3 CH4_3 CO2_6 CH4_6 CO2_9 CH4_9 CO2_18 CH4_18

0.01 0.1 1 100

10

20

30

40

50

Selec

tivity

1 3 6 9 18

Pressure /MPa(a) (b)

Figure S23: Isotherm (a) and selectivity (b) of CO2/CH4 in (NHCOH )n-Co-MOF-74

7.3.2 Mg-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14 CO2_1 CH4_1 CO2_3 CH4_3 CO2_6 CH4_6 CO2_9 CH4_9 CO2_18 CH4_18

Pressure /MPa

Load

ing

/(mol

/kg)

0.01 0.1 1 100

10

20

30

40

50

Selec

tivity

1 3 6 9 18

Pressure /MPa(a) (b)

Figure S24: Isotherm (a) and selectivity (b) of CO2/CH4 in (NHCOH )n-Mg-MOF-74

7.3.3 Ni-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

CO2_1 CH4_1 CO2_3 CH4_3 CO2_6 CH4_6 CO2_9 CH4_9 CO2_18 CH4_18

Pressure /MPa

Load

ing

/(mol

/kg)

0.01 0.1 1 100

10

20

30

40

50

Selec

tivity

1 3 6 9 18

Pressure /MPa(a) (b)

Figure S25: Isotherm (a) and selectivity (b) of CO2/CH4 in (NHCOH )n-Ni-MOF-74

S22

Page 24: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

7.3.4 Zn-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

CO2_1 CH4_1 CO2_3 CH4_3 CO2_6 CH4_6 CO2_9 CH4_9 CO2_18 CH4_18

Pressure /MPa

Load

ing

/(mol

/kg)

0.01 0.1 1 100

10

20

30

40

50

Selec

tivity

1 3 6 9 18

Pressure /MPa(a) (b)

Figure S26: Isotherm (a) and selectivity (b) of CO2/CH4 in (NHCOH )n-Zn-MOF-74

7.4 (NH2)n-MIL-53

7.4.1 Cr-MIL-53

1 100

2

4

6

8

10

12

CO2_1 CH4_1 CO2_2 CH4_2 CO2_4 CH4_4Lo

adin

g /(m

ol/k

g)

Pressure /MPa1 10

0

5

10

15

20

25

1 2 4

Selec

tivity

Pressure /MPa(a) (b)

Figure S27: Isotherm (a) and selectivity (b) of CO2/CH4 in (NH2)n-Cr-MIL-53

7.4.2 Al-MIL-53

1 100

2

4

6

8

10

12

CO2_1 CH4_1 CO2_2 CH4_2 CO2_4 CH4_4

Load

ing

/(mol

/kg)

Pressure /MPa1 10

0

5

10

15

20

25

1 2 4

Selec

tivity

Pressure /MPa(a) (b)

Figure S28: Isotherm (a) and selectivity (b) of CO2/CH4 in (NH2)n-Al-MIL-53

S23

Page 25: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

7.5 (NHCOH)n-MIL-53

7.5.1 Cr-MIL-53

1 10

0

2

4

6

8

10

12

CO2_1 CH4_1 CO2_2 CH4_2 CO2_4 CH4_4Lo

adin

g /(m

ol/k

g)

Pressure /MPa1 10

0

50

100

150

200

1 2 4

Selec

tivity

Pressure /MPa (a) (b)

Figure S29: Isotherm (a) and selectivity (b) of CO2/CH4 in (NHCOH)n-Cr-MIL-53

7.5.2 Al-MIL-53

1 10

0

2

4

6

8

10

12

CO2_1 CH4_1 CO2_2 CH4_2 CO2_4 CH4_4

Load

ing

/(mol

/kg)

Pressure /MPa1 10

0

50

100

150

200

1 2 4

Selec

tivity

Pressure /MPa(a) (b)

Figure S30: Isotherm (a) and selectivity (b) of CO2/CH4 in (NHCOH)n-Al-MIL-53

7.6 (NH2)n-UiOs

7.6.1 UiO-66

0.01 0.1 1 10

0

2

4

6

8

Load

ing

/(mol

/kg)

Pressure /MPa

CO2_1 CH4_1 CO2_2 CH4_2 CO2_4 CH4_4

0.01 0.1 1 100

20

40

60

80

100

120

Pressure /MPa

Selec

tivity

1 2 4

(a) (b)Figure S31: Isotherm (a) and selectivity (b) of CO2/CH4 in (NH2)n-UiO-66

S24

Page 26: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

7.6.2 UiO-67

0.01 0.1 1 10

0

3

6

9

12

15

18

CO2_1 CH4_1 CO2_2 CH4_2 CO2_4 CH4_4Lo

adin

g /(m

ol/k

g)

Pressure /MPa0.01 0.1 1 10

20

40

60

80

100

120

140

160

1 2 4

Pressure /MPa

Selec

tivity

(a) (b)Figure S32: Isotherm (a) and selectivity (b) of CO2/CH4 in (NH2)n-UiO-67

7.7 (NHCOH)n-UiOs

7.7.1 UiO-66

0.01 0.1 1 10

0

2

4

6

8

Load

ing

/(mol

/kg)

Pressure /MPa

CO2_1 CH4_1 CO2_2 CH4_2 CO2_4 CH4_4

0.01 0.1 1 100

50

100

150

200

250

Pressure /MPa

Selec

tivity

1 2 4

(a) (b)Figure S33: Isotherm (a) and selectivity (b) of CO2/CH4 in (NHCOH)n-UiO-66

7.7.2 UiO-67

0.01 0.1 1 10

0

3

6

9

12

15

18

CO2_1 CH4_1 CO2_2 CH4_2 CO2_4 CH4_4

Load

ing

/(mol

/kg)

Pressure /MPa0.01 0.1 1 10

0

20

40

60

80

100

120

140

160 1 2 4

Pressure /MPa

Selec

tivity

(a) (b)Figure S34: Isotherm (a) and selectivity (b) of CO2/CH4 in (NHCOH)n-UiO-67

S25

Page 27: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

8. Potential adsorbents for CO2/H2 mixture (50:50)

8.1 (NH2CH2CH2NH)n-M-MOF-74

8.1.1 Co-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

Lo

adin

g /(m

ol/k

g)

Pressure /MPa

CO2_1 H2_1 CO2_3 H2_3 CO2_6 H2_6 CO2_9 H2_9 CO2_18 H2_18

0.01 0.1 1 100

20

40

60

80

100

Selec

tivity

Pressure /MPa

1 3 6 9 18

(a) (b)Figure S35: Isotherm (a) and selectivity (b) of CO2/H2 in (NH2CH2CH2NH)n-Co-MOF-74

8.1.2 Mg-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

Lo

adin

g /(m

ol/k

g)

Pressure /MPa

CO2_1 H2_1 CO2_3 H2_3 CO2_6 H2_6 CO2_9 H2_9 CO2_18 H2_18

0.01 0.1 1 100

20

40

60

80

100

Selec

tivity

1 3 6 9 18

Pressure /MPa(a) (b)

Figure S36: Isotherm (a) and selectivity (b) of CO2/H2 in (NH2CH2CH2NH)n-Mg-MOF-74

8.1.3 Ni-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

Load

ing

/(mol

/kg)

Pressure /MPa

CO2_1 H2_1 CO2_3 H2_3 CO2_6 H2_6 CO2_9 H2_9 CO2_18 H2_18

0.01 0.1 1 100

20

40

60

80

100

Selec

tivity

1 3 6 9 18

Pressure /MPa

(a) (b)Figure S37: Isotherm (a) and selectivity (b) of CO2/H2 in (NH2CH2CH2NH)n-Ni-MOF-74

S26

Page 28: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

8.1.4 Zn-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

Lo

adin

g /(m

ol/k

g)

Pressure /MPa

CO2_1 H2_1 CO2_3 H2_3 CO2_6 H2_6 CO2_9 H2_9 CO2_18 H2_18

0.01 0.1 1 100

20

40

60

80

100

Selec

tivity

1 3 6 9 18

Pressure /MPa(a) (b)

Figure S38: Isotherm (a) and selectivity (b) of CO2/H2 in (NH2CH2CH2NH)n-Zn-MOF-74

8.2 (NH2)n-M-MOF-74

8.2.1 Co-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

CO2_1 H2_1 CO2_3 H2_3 CO2_6 H2_6 CO2_9 H2_9 CO2_18 H2_18

Pressure /MPa

Load

ing

/(mol

/kg)

0.01 0.1 1 100

10

20

30

40

50

1 3 6 9 18

Selec

tivity

Pressure /MPa(a) (b)

Figure S39: Isotherm (a) and selectivity (b) of CO2/H2 in (NH2)n-Co-MOF-74

8.2.2 Mg-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

CO2_1 H2_1 CO2_3 H2_3 CO2_6 H2_6 CO2_9 H2_9 CO2_18 H2_18

Pressure /MPa

Load

ing

/(mol

/kg)

0.01 0.1 1 100

10

20

30

40

50

1 3 6 9 18Se

lectiv

ity

Pressure /MPa(a) (b)

Figure S40: Isotherm (a) and selectivity (b) of CO2/H2 in (NH2)n-Mg-MOF-74

S27

Page 29: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

8.2.3 Ni-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

CO2_1 H2_1 CO2_3 H2_3 CO2_6 H2_6 CO2_9 H2_9 CO2_18 H2_18

Pressure /MPa

Load

ing

/(mol

/kg)

0.01 0.1 1 100

10

20

30

40

50

1 3 6 9 18

Selec

tivity

Pressure /MPa(a) (b)

Figure S41: Isotherm (a) and selectivity (b) of CO2/H2 in (NH2)n-Ni-MOF-74

8.2.4 Zn-MOF-74

0.01 0.1 1 10

0

2

4

6

8

10

12

14

CO2_1 H2_1 CO2_3 H2_3 CO2_6 H2_6 CO2_9 H2_9 CO2_18 H2_18

Pressure /MPa

Load

ing

/(mol

/kg)

0.01 0.1 1 100

10

20

30

40

50

1 3 6 9 18

Selec

tivity

Pressure /MPa(a) (b)

Figure S42: Isotherm (a) and selectivity (b) of CO2/H2 in (NH2)n-Zn-MOF-74

8.3 (NHCOH)n-M-MOF-74

8.3.1 Co-MOF-74

0.01 0.1 1 10

0

3

6

9

12

15

CO2_1 H2_1 CO2_3 H2_3 CO2_6 H2_6 CO2_9 H2_9 CO2_18 H2_18

Load

ing

/(mol

/kg)

Pressure /MPa0.01 0.1 1 10

0

10

20

30

40

50 1 3 6 9 18

Se

lectiv

ity

Pressure /MPa(a) (b)

Figure S43: Isotherm (a) and selectivity (b) of CO2/H2 in (NHCOH)n-Co-MOF-74

S28

Page 30: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

8.3.2 Mg-MOF-74

0.01 0.1 1 10

0

3

6

9

12

15

CO2_1 H2_1 CO2_3 H2_3 CO2_6 H2_6 CO2_9 H2_9 CO2_18 H2_18

Load

ing

/(mol

/kg)

Pressure /MPa0.01 0.1 1 10

0

10

20

30

40

50 1 3 6 9 18

Se

lectiv

ity

Pressure /MPa(a) (b)

Figure S44: Isotherm (a) and selectivity (b) of CO2/H2 in (NHCOH)n-Mg-MOF-74

8.3.3 Ni-MOF-74

0.01 0.1 1 10

0

3

6

9

12

15

CO2_1 H2_1 CO2_3 H2_3 CO2_6 H2_6 CO2_9 H2_9 CO2_18 H2_18

Load

ing

/(mol

/kg)

Pressure /MPa0.01 0.1 1 10

0

10

20

30

40

50 1 3 6 9 18

Selec

tivity

Pressure /MPa(a) (b)

Figure S45: Isotherm (a) and selectivity (b) of CO2/H2 in (NHCOH)n-Ni-MOF-74

8.3.4 Zn-MOF-74

0.01 0.1 1 10

0

3

6

9

12

15

CO2_1 H2_1 CO2_3 H2_3 CO2_6 H2_6 CO2_9 H2_9 CO2_18 H2_18

Load

ing

/(mol

/kg)

Pressure /MPa0.01 0.1 1 10

0

10

20

30

40

50

1 3 6 9 18

Selec

tivity

Pressure /MPa(a) (b)

Figure S46: Isotherm (a) and selectivity (b) of CO2/H2 in (NHCOH)n-Zn-MOF-74

S29

Page 31: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

8.4 (NH2)n-MIL-53

8.4.1 Cr-MIL-53

1 10

0

2

4

6

8

10

CO2_1 CH4_1 CO2_2 CH4_2 CO2_4 CH4_4

Load

ing

/(mol

/kg)

Pressure /MPa1 10

0

10

20

30

40

50

1 2 4

Pressure /MPa

Selec

tivity

(a) (b)Figure S47: Isotherm (a) and selectivity (b) of CO2/H2 in (NH2)n-Cr-MIL-53

8.4.2 Al-MIL-53

1 10

0

2

4

6

8

10

12

CO2_1 CH4_1 CO2_2 CH4_2 CO2_4 CH4_4

Load

ing

/(mol

/kg)

Pressure /MPa1 10

0

20

40

60

80

1 2 4

Pressure /MPa

Selec

tivity

(a) (b)Figure S48: Isotherm (a) and selectivity (b) of CO2/H2 in (NH2)n-Al-MIL-53

8.5 (NHCOH)n-MIL-53

8.5.1 Cr-MIL-53

1 10

0

2

4

6

8

10

12

CO2_1 CH4_1 CO2_2 CH4_2 CO2_4 CH4_4Lo

adin

g /(m

ol/k

g)

Pressure /MPa1 10

0

20

40

60

80

1 2 4

Pressure /MPa

Selec

tivity

(a) (b)Figure S49: Isotherm (a) and selectivity (b) of CO2/H2 in (NHCOH)n-Cr-MIL-53

S30

Page 32: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

8.5.2 Al-MIL-53

1 10

0

2

4

6

8

10

12

CO2_1 CH4_1 CO2_2 CH4_2 CO2_4 CH4_4Lo

adin

g /(m

ol/k

g)

Pressure /MPa0 1 2 3 4 5

0

50

100

150

200

250

300

1 2 4

Pressure /MPa

Selec

tivity

(a) (b)Figure S50: Isotherm (a) and selectivity (b) of CO2/H2 in (NHCOH)n-Al-MIL-53

8.6 (NH2)n-UiOs

8.6.1 UiO-66

0.01 0.1 1 10

0

2

4

6

8

CO2_1 CH4_1 CO2_2 CH4_2 CO2_4 CH4_4

Load

ing

/(mol

/kg)

Pressure /MPa0.01 0.1 1 10

0

20

40

60

80

100 1 2 4

Se

lectiv

ity

Pressure /MPa(a) (b)

Figure S51: Isotherm (a) and selectivity (b) of CO2/H2 in (NH2)n-UiO-66

8.6.2 UiO-67

0.01 0.1 1 10

0

2

4

6

8

10

12

14

16

CO2_1 CH4_1 CO2_2 CH4_2 CO2_4 CH4_4

Load

ing

/(mol

/kg)

Pressure /MPa0.01 0.1 1 10

0

10

20

30

40

50

1 2 4

Selec

tivity

Pressure /MPa

(a) (b)Figure S52: Isotherm (a) and selectivity (b) of CO2/H2 in (NH2)n-UiO-67

S31

Page 33: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

8.7 (NHCOH)n-UiOs

8.7.1 UiO-66

0.01 0.1 1 10

0

2

4

6

8

CO2_1

CH4_1 CO2_2 CH4_2 CO2_4 CH4_4Lo

adin

g /(m

ol/k

g)

Pressure /MPa0.01 0.1 1 10

0

20

40

60

80

100

120

140

160

1 2 4

Selec

tivity

Pressure /MPa(a) (b)

Figure S53: Isotherm (a) and selectivity (b) of CO2/H2 in (NHCOH)n-UiO-66

8.7.2 UiO-67

0.01 0.1 1 10

0

2

4

6

8

10

12

14

16

CO2_1 CH4_1 CO2_2 CH4_2 CO2_4 CH4_4

Load

ing

/(mol

/kg)

Pressure /MPa0.01 0.1 1 10

0

20

40

60

80

100

120

1 2 4

Selec

tivity

Pressure /MPa(a) (b)

Figure S54: Isotherm (a) and selectivity (b) of CO2/H2 in (NHCOH)n-UiO-67

References

[1] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Science 2002, 295, 469-472.

[2] H. K. Chae, D. Y. Siberio-Pérez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe, O. M. Yaghi, Nature 2004, 427, 523-527.

[3] K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci. 2006, 103, 10186-10191.

[4] K. Koh, A. G. Wong-Foy, A. J. Matzger, Angew. Chem. Int. Ed. 2008, 47, 677-680.[5] S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283,

1148-1150.[6] P. D. C. Dietzel, Y. Morita, R. Blom, H. Fjellvåg, Angew. Chem. 2005, 117, 6512-6516.[7] S. R. Caskey, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2008, 130, 10870-10871.[8] P. D. C. Dietzel, B. Panella, M. Hirscher, R. Blom, H. Fjellvåg, Chem. Commun. 2006, 959-

961.

S32

Page 34: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

[9] K. Barthelet, J. Marrot, D. Riou, G. Férey, Angew. Chem. 2002, 114, 291-294.[10] C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër, G. Férey, J. Am.

Chem. Soc. 2002, 124, 13519-13526.[11] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey,

Chem-eur. J. 2004, 10, 1373-1382.[12] B. Liu, R. Zhao, G. Yang, L. Hou, Y. Y. Wang, Q. Z. Shi, CrystEngComm 2013, 15, 2057-

2060.[13] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J.

Am. Chem. Soc. 2008, 130, 13850-13851.[14] C. E. Wilmer, M. Leaf, C. Y. Lee, O. K. Farha, B. G. Hauser, J. T. Hupp, R. Q. Snurr, Nature

Chem. 2012, 4, 83-89.[15] S. Choi, T. Watanabe, T.-H. Bae, D. S. Sholl, C. W. Jones, J. Phys. Chem. Lett. 2012, 3, 1136-

1141.[16] Z. Wang, K. K. Tanabe, S. M. Cohen, Inorg. Chem. 2009, 48, 296-306.[17] S. Couck, J. F. M. Denayer, G. V. Baron, T. Rémy, J. Gascon, F. Kapteijn, J. Am. Chem. Soc.

2009, 131, 6326-6327.[18] T. Ahnfeldt, D. Gunzelmann, J. Wack, J. Senker, N. Stock, CrystEngComm 2012, 14, 4126-

4136.[19] W. Mu, D. Liu, Q. Yang, C. Zhong, Micropor. Mesopor. Mat. 2010, 130, 76-82.[20] S. Cavenati, A. Carlos, A. E. Rodrigues, Energ. Fuel. 2006, 20, 2648-2659.[21] M. Tagliabue, D. Farrusseng, S. Valencia, S. Aguado, U. Ravon, C. Rizzo, A. Corma, C.

Mirodatos, Chem. Eng. J. 2009, 155, 553-566.[22] Z. Qiao, A. Torres-Knoop, D. Fairen-Jimenez, D. Dubbeldam, J. Zhou, R. Q. Snurr, AIChE J.

2014, 60, 2324-2334.[23] B. J. Sikora, C. E. Wilmer, M. L. Greenfield, R. Q. Snurr, Chem. Sci. 2012, 3, 2217-2223.[24] Z. Qiao, J. Zhou, X. Lu, Fluid. Phase. Equilibr. 2014, 362, 342-348.[25] C. E. Wilmer, O. K. Farha, Y. S. Bae, J. T. Hupp, R. Q. Snurr, Energy Environ. Sci. 2012, 5,

9849-9856.[26] Z. Qiao, Y. Wu, X. Li, J. Zhou, Fluid. Phase. Equilibr. 2011, 302, 14-20.[27] A. Torrisi, R. G. Bell, C. Mellot-Draznieks, Micropor. Mesopor. Mat. 2013, 168, 225-238.[28] Z. Qiao, S. Ren, J. Zhou, Chem. J. Chinese U. 2012, 33, 800-805.[29] D. Dubbeldam, S. Calero, D. E. Ellis, R. Q. Snurr, Northwestern University: Evanston, IL,

2008.[30] S. L. Mayo, B. D. Olafson, W. A. Goddard, J. Phys. Chem. 1990, 94, 8897-8909.[31] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard Iii, W. M. Skiff, J. Am. Chem. Soc.

1992, 114, 10024-10035.[32] E. S. Kadantsev, P. G. Boyd, T. D. Daff, T. K. Woo, J. Phys. Chem. Lett. 2013, 4, 3056-3061.[33] C. M. Breneman, K. B. Wiberg, J. Comput. Chem. 1990, 11, 361-373.[34] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.[35] A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.[36] S. J. Goodbody, K. Watanabe, D. MacGowan, J. P. R. B. Walton, N. Quirke, J. Chem. Soc.,

Faraday Trans. 1991, 87, 1951-1958.[37] J. J. Potoff, J. I. Siepmann, AIChE J. 2001, 47, 1676-1682.[38] P. P. Ewald, Ann. Phys-new. York. 1921, 64, 253-287.

S33

Page 35: Table S1 The list of original MOFmaterials1487.34 0.60 59.47 25 MIL-53(Al)[11] a = 0.66085, b=1.66750, c = 1.2813 α = β = γ = 90 1508.42 0.62 58.93 26 [Zn(atz)(bdc)0.5][12] a=b=2.5169,

[39] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, J. Chem. Phys. 1953, 21, 1087-1092.

S34