tables and figures · web viewis_imidacloprid-d4 252.992 126.000 66 29 16 1 0.4 252.992 90.000 66...

56
Characterization and risk assessment of seasonal and weather dynamics in organic pollutant mixtures from discharge of a separate sewer system Liza-Marie Beckers a,b* , Wibke Busch c , Martin Krauss a , Tobias Schulze a , Werner Brack a,b Affiliations: a Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany b RWTH Aachen University, Institute of Biology V, Worringerweg 1 52074 Aachen, Germany c Helmholtz Centre for Environmental Research - UFZ, Department of Bioanalytical Toxicology; Permoserstrasse 15, 04318 Leipzig, Germany *Corresponding author: Liza-Marie Beckers email: [email protected] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Upload: phungthien

Post on 10-Dec-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

Characterization and risk assessment of seasonal and weather dynamics in organic pollutant mixtures from discharge of a separate

sewer system

Liza-Marie Beckersa,b*, Wibke Buschc, Martin Kraussa, Tobias Schulzea, Werner Bracka,b

Affiliations:

aHelmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis,Permoserstrasse 15, 04318 Leipzig, Germany

bRWTH Aachen University, Institute of Biology V,Worringerweg 152074 Aachen, Germany

cHelmholtz Centre for Environmental Research - UFZ, Department of Bioanalytical Toxicology;Permoserstrasse 15, 04318 Leipzig, Germany

*Corresponding author: Liza-Marie Beckers

email: [email protected]

1

2

3

4

5

6

789

101112

131415

16

17

18

19

Table of contentsTables and Figures

SI 1 Discharge data of the WWTP and rain sewer

SI 2 List of target compounds analyzed on QTrap 6500

SI 3 Sample preparation and LC-MS/MS settings for target screening of WWTP and rain sewer samples

SI 4 Chemical screening LVSPE samples

SI 5 Acute effect concentrations of target compounds

SI 6 Sublethal effect concentrations of target compounds

SI 7 Loads and variation [mg d-1] target compounds WWTPIn excel format

SI 8 Loads [mg month-1] target compounds rain sewerIn excel format

SI 9 Results of factor analysis of mixed data and k-means clustering with reduced data set from rain sewer samples

SI 10 Seasonal TUacute and TUsub and contributions of risk drivers for fish, daphina and algae in WWTP effluent

TUacute

TUsub

SI 11 TUs and contributions of risk drivers for fish and daphnia in the rain sewer in the absence of dimethoate spill event

SI 12 Concentration [ng L-1] of risk driving compounds in LVSPE samplesReferences...................................................................................................................................41

1

20

2122

23

24

2526

27

28

29

30

31

3233

3435

36

37

3839

4041

42

Tables and FiguresTable S 1: Discharge and temperature data from the WWTP on the respective sampling days.............................................................................................................................................................3Table S 2: Discharge data from the rain sewer in dry and rain weather during the sampling period..............................................................................................................................................4Table S 4: List of target compounds analyzed in WWTP and rain sewer samples (DP = declustering potential; CE = collision energy; CXP = collision exit potential; MDL = method detection limit)................................................................................................................................5Table S 4: LC solvent gradient for chromatographic separation of target compounds................18Table S 5: Ion source parameters setting in positive and negative ionization mode ..................18Table S 6: LC solvent gradient for analysis of LVSPE samples with LC-HRMS..........................19Table S 7: Risk driving compounds analyzed in LVSPE river samples including information on ionization mode and MDL [ng L-1].................................................................................................20Table S 8: Acute effect concentrations for each compound and BQE (“PR” = predicted effect concentration via read across; “PE” = predicted effect concentration via ECOSAR; no letter = measured effect concentration)....................................................................................................21Table S 9: Sublethal effect concentrations of target compounds.................................................25Table S 10: Loads [mg d-1] of target compounds detected in WWTP samples. WV = average within-week variation; BV = between-week variation. Emission groups according to Fig. 2 (Group 1= seasonal/random, group 2 = constant, group 3 = season-specific, group 4 = constant/ random). ..................................................................................................................In excel formatTable S 11: Loads [mg month-1] of target compounds detected in rain sewer samples. Emission groups according to Fig. 4 (Group 1 = illicit connections, group 2 = surface runoff)..........................................................................................................................................................In excel formatTable S 12: Concentrations [ng L-1] of 14 main risk driving compounds in LVSPE samples taken during the sampling period April-November 2015........................................................................40

Fig. S 1: Output of factor analysis for mixed data. Rain-weather samples (“R”) colored in blue were separated from dry-weather samples (“D”) colored in red.Fig. S 2: Emission groups of reduced chemical data set in rain sewer effluent based on loads [mg/d] detected in each sample. Data was standardized prior to PCA and clustering; zeros treated by glog transformation. Ellipses represent 95% confidence interval.Fig. S 3: Seasonal variation of TUacute and contribution of individual compounds to sum TUacute in WWTP effluent based on seasonal MEC95 concentrations of all detected target compounds…Fig. S 4: Seasonal variation of TUsub and contribution of individual compounds to sum TUsub in WWTP effluent based on seasonal MEC95 concentrations of all detected target compounds.Fig. S 5: a) Comparison of TUacute and TUsub in presence and absence of dimethoate spill in November dry weather sample as well as contributions of risk drivers to these TUs for fish (b,d) and daphnia (c,e) without dimethoate spill...................................................................................39

2

43444546474849505152535455565758596061626364656667686970717273747576777879808182

SI 1 Discharge data of the WWTP and rain sewerTable S 1: Discharge and temperature data from the WWTP on the respective sampling days

Date Discharge volume [m³]

Temperature [°C] -

Influent

Temperature [°C] -

Aeration tank

Temperature [°C] -

Effluent19.05.2015 10751 14.4 15.1 14.720.05.2015 10789 14.6 15.4 14.921.05.2015 10753 14.7 15.6 14.722.05.2015 10458 14.5 15.8 15.223.05.2015 9888 14.1 16.4 15.224.05.2015 8936 13.5 16.5 14.925.05.2015 9048 13.3 16.4 1527.07.2015 10374 14.1 16 15.128.07.2015 9945 17.4 19.4 18.529.07.2015 10004 17.7 18.9 18.130.07.2015 10202 17.8 18.3 17.531.07.2015 10267 18.1 18.5 16.301.08.2015 10060 18.2 18.5 17.402.08.2015 8731 17.3 19.1 17.603.08.2015 8185 16.7 19.4 1805.10.2015 9362 17.4 19.4 18.706.10.2015 9688 16.8 17.2 16.207.10.2015 10042 17.2 17.7 16.708.10.2015 12298 17.3 17.9 17.909.10.2015 10341 17.6 18.1 17.110.10.2015 11788 17.4 18.3 17.911.10.2015 9580 16.6 18.1 16.812.10.2015 8735 15.7 17.8 15.501.02.2016 11913 16 16.4 14.902.02.2016 14065 11 11.1 1103.02.2016 12866 11.8 11.3 10.604.02.2016 12423 11.8 11.2 10.205.02.2016 12031 11.7 11.2 10.906.02.2016 11133 11.6 11.3 10.207.02.2016 10843 11 11.5 10.508.02.2016 14422 10.9 11.6 10.2

3

8384

85

Table S 2: Discharge data from the rain sewer in dry and rain weather during the sampling period

Month Discharge volume [m³] -Dry weather

Discharge volume [m³] –Rain weather

Rain sample available (Y = yes; N = no)

Monthly precipitation Wernigerode [mm]

April 2015 4473 1869 Y 33.1May 2015* 3161 1456 N 15.3June 2015* 2968 2891 N 27.9July 2015 3714 10577 Y 78.8August 2015 2795 15146 Y 79.1September 2015 2838 1659 Y 34.6October 2015 4131 4423 N 48.0November 2015 3904 3563 N 55.9December 2015 1629 1873 N 12.7January 2016 5769 4378 Y 49.1February 2016 5214 6115 N 53.3March 2016 3268 785 N 19.5April 2016 3015 2884 N No informationMay 2016 3157 11128 Y No information*No chemical analysis performed for May and June 2015 due to transport damage of samples. Precipitation data available at: https://www.wetterkontor.de/de/wetter/deutschland/monatswerte-station.asp (accessed 24.01.2017)

4

86

878889

90

SI 2 List of target compounds analyzed on QTrap 6500Table S 3: List of target compounds analyzed in WWTP and rain sewer samples (DP = declustering potential; CE = collision energy; CXP = collision exit potential; MDL = method detection limit)

Compound Internal standard Q1 mass Q3 mass DP [V]

CE[V]

CXP

[V]

LC-MS method

MDL[ng L-1]

10,11-Dihydro-10,11-dihydroxycarbamazepine IS_Imidacloprid-D4 270.944 179.900 86 39 24 2 5

270.944 235.800 86 17 1210,11-Dihydro-10-hydroxycarbamazepine IS_DEET-D7 255.043 237.100 26 13 14 2 19

255.043 194.000 26 29 121H-Benzotriazole IS_Benzotriazole-D4 119.998 65.000 106 29 8 2 6.9

119.998 91.900 106 25 262(4-morpholinyl)benzothiazole IS_Atrazine-13C3 220.977 177.100 96 31 10 1 0.5

220.977 109.000 96 47 122-(Methylthio)benzothiazole IS_Metolachlor-D6 181.946 166.800 51 33 20 1 14.2

181.946 109.000 51 49 122,4-Dichlorophenoxyacetic acid IS_Mecoprop-D3 218.900 160.700 -20 -18 -13 3 14.2

220.900 162.900 -20 -18 -132,4-Dinitrophenol IS_Nitrophenol-D4 182.910 109.000 -40 -38 -11 3 16.1

182.910 108.800 -40 -36 -132,6-Dichlorobenzamide IS_Cotinine-d3 190.022 173.000 96 25 16 2 1.3

190.022 144.900 96 39 142-Aminobenzimidazole IS_Cotinine-d3 133.984 91.900 86 31 10 2 5.7

133.984 92.900 86 33 102-Hydroxycarbamazepine IS_DEET-D7 252.854 210.100 101 27 6 2 2

252.854 208.000 101 31 102-Mercaptobenzothiazole IS_IsoproturonD3 167.854 135.000 71 33 14 1 29.5

167.854 123.900 130 44 102-Methylbenzothiazole IS_Sulfamethoxazole-D4 149.947 109.000 76 31 12 1 16

149.947 64.900 76 45 10

5

919293

Compound Internal standard Q1 mass Q3 mass DP [V]

CE[V]

CXP

[V]

LC-MS method

MDL[ng L-1]

2-Naphthalenesulfonic acid IS_Mono-isobutyl-phthalate-d4

207.925 144.000 -80 -32 -9 3 22.4

207.925 79.900 -80 -54 -92-Octyl-4-isothiazolin-3-one IS_Metolachlor-D6 214.047 101.900 76 21 12 1 1.2

214.047 43.100 76 39 103-Iodopropynyl butylcarbamate IS_DEET-D7 281.907 164.900 1 33 20 2 12

281.907 57.000 1 13 64+5-Methyl-1H-benzotriazole IS_Imidacloprid-D4 134.016 76.900 91 33 20 2 9

134.016 79.000 91 27 104-Fluorobenzoylproponic acid IS_Nitrophenol-D4 195.100 151.000 -25 -14 -9 3 15

195.100 95.000 -25 -28 -11Acesulfame IS_Acesulfame-D4 161.873 81.800 -20 -18 -9 3 1.9

161.873 77.700 -20 -46 -9Acetamiprid IS_Imidacloprid-D4 223.100 126.100 86 27 8 1 1.3

223.100 90.000 86 45 10Acetylsulfamethoxazole IS_Sulfamethoxazole-D4 295.933 134.000 131 31 16 1 4.6

295.933 64.900 131 57 16Ambroxol IS_Metolachlor-D6 378.837 263.900 1 27 16 2 2.7

378.837 104.000 1 71 12Amitriptyline IS_Metolachlor-D6 278.085 91.200 86 29 10 2 2.1

278.085 104.900 86 29 18Atorvastatin IS_Mecoprop-D3 557.169 278.100 -100 -58 -17 3 19

557.169 397.100 -100 -40 -19Atrazine IS_Atrazine-13C3 216.005 174.000 36 23 20 2 3.3

216.005 96.000 36 31 10Azithromycin IS_Metolachlor-D6 749.474 591.400 1 39 20 2 50

749.474 158.100 1 47 18Azoxystrobin IS_IsoproturonD3 404.113 372.000 6 19 18 1 0.4

404.113 329.100 6 41 16

6

Compound Internal standard Q1 mass Q3 mass DP [V]

CE[V]

CXP

[V]

LC-MS method

MDL[ng L-1]

Bentazone IS_Nitrophenol-D4 238.891 131.900 -45 -36 -9 3 1.2

238.891 196.800 -45 -28 -17Benzocaine IS_Atrazine-13C3 166.015 138.000 11 15 12 1 1.2

166.015 120.000 11 25 14Bicalutamide IS_Diclofenac-D4 428.912 255.000 -70 -22 -9 3 0.5

428.912 178.900 -70 -18 -11Bifonazol IS_DEET-D7 311.014 242.900 1 15 12 1 0.8

311.014 165.000 1 61 8Bisoprolol IS_DEET-D7 326.389 116.100 1 25 14 2 0.7

326.389 99.000 1 10 29Bisphenol A IS_Mecoprop-D3 226.934 212.000 -85 -24 -11 3 16.1

226.934 133.000 -85 -34 -9Bisphenol S IS_Nitrophenol-D4 249.000 107.900 -130 -36 -7 3 1.3

249.000 155.900 -130 -30 -13Boscalid IS_Metolachlor-D6 343.054 306.900 111 27 16 1 1.9

343.054 270.900 111 43 14Bromoxynil IS_Nitrophenol-D4 273.800 78.900 -45 -58 -9 3 13.2

275.800 80.900 -45 -58 -9Butylparaben IS_Mecoprop-D3 192.967 91.900 -60 -34 -11 3 13.5

192.967 136.000 -60 -22 -9Caffeine IS_Caffeine-D3 195.087 138.000 36 27 18 1 14

195.087 110.000 36 31 14Carbamazepine IS_DEET-D7 237.165 194.000 61 29 10 2 4.7

237.165 179.100 61 47 20Carbendazim IS_Imidacloprid-D4 192.015 159.900 61 27 8 2 1

192.015 131.900 61 41 14Cetirizine IS_Atrazine-13C3 389.039 201.000 51 25 12 1 2.2

389.039 165.000 51 87 18

7

Compound Internal standard Q1 mass Q3 mass DP [V]

CE[V]

CXP

[V]

LC-MS method

MDL[ng L-1]

Chloridazone IS_Imidacloprid-D4 222.095 103.900 61 29 12 1 3.9

222.095 91.900 61 33 16Chlorotoluron IS_DEET-D7 213.103 71.900 1 21 16 2 24

213.103 46.000 1 35 12Chloroxuron IS_Metolachlor-D6 291.074 72.000 91 23 8 2 3.6

291.074 46.100 91 51 12Citalopram IS_Isoproturon-D3 325.091 108.900 111 33 14 2 2.2

325.091 262.100 111 27 16Clomazone IS_Isoproturon-D3 240.170 124.900 16 27 20 1 0.6

240.170 89.000 16 63 10Cotinine IS_Cotinine-D3 177.035 79.900 116 29 14 1 2.5

177.035 98.000 116 29 12Cybutryn (Irgarol) IS_Metolachlor-D6 253.869 198.000 1 25 22 2 1.2

253.869 90.900 1 35 12Cyclamate IS_Acesulfame-D4 178.000 80.000 -110 -28 -9 3 24.2

178.000 96.000 -110 -30 -11DCOIT IS_Tri-n-

butylphosphate-D27281.935 170.000 86 21 8 1 12.5

281.935 43.000 86 41 12DEET IS_DEET-D7 192.088 118.900 101 23 14 1 2

192.088 90.900 101 39 10Desethylatrazine IS_Imidacloprid-D4 188.011 146.000 86 23 16 2 2.7

188.011 103.900 86 35 12Desethylterbutylazine IS_DEET-D7 202.061 145.900 91 21 18 2 1.9

202.061 103.900 91 39 18Desisopropylatrazine IS_Caffeine-D3 174.017 103.900 96 31 12 2 2.4

174.017 131.900 96 23 14Diazinon IS_Diazinon-D10 304.993 169.000 136 27 20 1 0.3

304.993 153.000 136 27 8

8

Compound Internal standard Q1 mass Q3 mass DP [V]

CE[V]

CXP

[V]

LC-MS method

MDL[ng L-1]

Diclofenac IS_Mecoprop-D3 293.850 249.800 -20 -16 -31 3 6.9

293.850 213.900 -20 -28 -15Difenoconazole IS_Metolachlor-D6 406.012 251.100 111 31 14 1 0.6

406.012 337.000 111 23 18Diflufenican IS_Tri-n-

butylphosphate-D27395.069 265.900 86 29 14 2 0.6

395.069 238.100 86 51 12Dimethachlor ESA IS_Mecoprop-D3 299.979 120.800 -85 -28 -13 3 16.1

299.979 80.000 -85 -60 -9Dimethachlor OA IS_Mecoprop-D3 249.965 178.200 -25 -14 -7 3 8.2

249.965 130.100 -25 -32 -9Dimethoate IS_Imidacloprid-D4 230.057 198.800 16 13 10 2 1

230.057 124.900 16 27 14Diphenhydramine IS_Metolachlor-D6 255.890 167.000 141 23 24 2 22.5

255.890 152.100 141 45 12Diuron IS_Isoproturon-D3 232.935 71.900 96 47 8 2 3.3

232.935 46.100 96 39 12Ebastin IS_Tri-n-

butylphosphate-D27470.225 167.100 86 37 20 2 11.7

470.225 203.100 86 41 10Enalapril IS_DEET-D7 376.994 234.100 51 25 14 1 0.7

376.994 117.000 51 47 14Epoxiconazole IS_Tebuconazole-D9 330.048 121.000 1 25 14 1 1.2

330.048 75.000 1 97 12Ethofumesat IS_Metolachlor-D6 287.112 120.900 86 21 16 1 2.3

287.112 121.200 86 21 8Ethylparaben IS_Mecoprop-D3 165.000 136.000 -55 -20 -11 3 6.6

165.000 91.800 -55 -30 -11Fenpropimorph IS_Tri-n-

butylphosphate-D27304.351 147.100 11 39 18 2 0.7

304.351 117.000 11 75 14

9

Compound Internal standard Q1 mass Q3 mass DP [V]

CE[V]

CXP

[V]

LC-MS method

MDL[ng L-1]

Fenuron IS_Imidacloprid-D4 165.059 72.000 46 39 12 2 0.5

165.059 46.000 46 22 16Finasteride IS_Metolachlor-D6 373.150 317.200 131 31 18 1 4.6

373.150 305.000 131 41 16Fipronil IS_Diclofenac-D4 434.879 330.000 -75 -24 -13 3 0.4

434.879 249.800 -75 -38 -13Fipronil desulfinyl IS_Mecoprop-D3 386.887 351.000 -50 -20 -19 3 0.3

386.887 281.900 -50 -46 -17Fipronil sulfide IS_Mecoprop-D3 418.852 382.900 -50 -18 -19 3 0.4

418.852 261.800 -50 -38 -13Fipronil sulfone IS_Mecoprop-D3 450.817 414.900 -55 -24 -19 3 0.4

450.817 281.900 -55 -38 -15Flufenacet IS_Metolachlor-D6 363.983 194.300 31 15 14 2 0.5

363.983 152.000 31 27 20Flurtamone IS_IsoproturonD3 334.141 247.000 71 37 12 1 0.3

334.141 178.100 71 57 22Flusilazole IS_Tebuconazole-D9 316.141 246.900 16 25 12 1 0.9

316.141 164.900 16 33 22Gabapentin IS_Benzotriazole-D4 172.073 154.000 51 19 10 1 3

172.073 137.000 51 21 16Imidacloprid IS_Imidacloprid-D4 256.059 175.100 6 29 20 2 4.6

256.059 209.000 6 19 34Isoproturon IS_Isoproturon-D3 207.130 72.000 76 23 10 2 4.9

207.130 46.000 76 33 4Lenacil IS_Isoproturon-D3 235.193 153.000 21 23 10 2 3.8

235.193 136.000 21 41 14Lidocaine IS_Metolachlor-D6 235.091 86.000 81 21 12 2 0.5

235.091 58.000 81 51 10

10

Compound Internal standard Q1 mass Q3 mass DP [V]

CE[V]

CXP

[V]

LC-MS method

MDL[ng L-1]

Linuron IS_Metolachlor-D6 249.027 160.000 46 21 8 2 4.3

249.027 182.000 46 23 30Loperamide IS_Metolachlor-D6 477.091 266.000 101 35 14 2 1.4

477.091 210.200 101 67 20Losartan IS_Diclofenac-D4 421.068 178.900 -75 -30 -9 3 4.6

421.068 127.000 -75 -34 -9MCPA IS_Mecoprop-D3 198.897 140.800 -25 -20 -13 3 0.8

200.900 142.900 -25 -20 -13Mecoprop IS_Mecoprop-D3 212.900 140.800 -15 -22 -15 3 1.5

214.900 142.800 -15 -22 -15Melperon IS_Isoproturon-D3 264.074 165.100 71 27 18 2 1.4

264.074 122.900 71 41 16Metamitron IS_Benzotriazole-D4 203.042 175.100 96 23 18 1 3.3

203.042 42.000 96 63 12Metazachlor IS_DEET-D7 277.989 134.000 21 29 16 1 0.7

277.989 210.000 21 15 6Metazachlor ESA IS_Mecoprop-D3 321.964 120.900 -90 -28 -5 3 4.5

321.964 148.100 -90 -32 -15Metformin IS_Cotinine-D3 130.069 60.000 1 17 16 2 1.4

130.069 71.000 1 27 8Methiocarb IS_Metolachlor-D6 226.182 169.200 36 13 10 1 0.9

226.182 121.000 36 23 16Metolachlor IS_Metolachlor-D6 284.022 251.900 36 21 12 1 1

284.022 176.100 36 35 10Metolachlor ESA IS_Mecoprop-D3 328.002 120.900 -90 -30 -7 3 8.2

328.002 79.900 -90 -72 -9Metolachlor OA IS_Mecoprop-D3 277.988 206.200 -35 -16 -17 3 3.8

277.988 174.100 -35 -22 -5

11

Compound Internal standard Q1 mass Q3 mass DP [V]

CE[V]

CXP

[V]

LC-MS method

MDL[ng L-1]

Metoprolol IS_DEET-D7 268.073 116.000 136 25 12 2 2.7

268.073 77.000 136 77 8Metoprolol acid IS_Caffeine-D3 268.075 144.800 61 33 16 1 1.7

268.075 190.900 61 25 10Miconazole IS_Metolachlor-D6 414.860 158.900 136 37 8 1 2.4

414.860 123.000 136 87 12Myclobutanil IS_Tebuconazole-D9 289.038 69.900 71 21 20 1 0.8

289.038 125.000 71 43 14N-Acetyl-4-aminoantipyrine IS_Benzotriazole-D4 246.014 228.100 81 19 24 1 2.7

246.014 204.000 81 17 4N-cyclohexl-2-benzothiazole-sulfenamide IS_Benzotriazole-D4 264.943 166.000 71 31 10 1 2.5

264.943 183.000 71 23 20N-cyclohexyl-2-benzothiazole-amine IS_Atrazine-13C3 233.022 150.800 76 27 18 1 0.7

233.022 108.900 76 57 12N-Formyl-4-aminoantipyrine IS_Benzotriazole-D4 232.051 214.200 41 19 12 1 3.5

232.051 103.900 41 27 12Nitrendipine IS_Metolachlor-D6 361.035 329.100 56 17 16 1 24

361.035 315.200 56 15 18Oxybutynin IS_Tri-n-

butylphosphate-D27358.085 142.200 1 31 6 2 4.5

358.085 340.000 1 25 18Paroxetine IS_DEET-D7 330.017 191.900 66 29 10 2 4.7

330.017 69.900 66 49 8Pendimethaline IS_Tri-n-

butylphosphate-D27282.187 211.900 26 15 24 2 1.2

282.187 118.000 26 27 12Perfluorobutanoic acid IS_Nitrophenol-D4 212.825 168.900 -10 -12 -11 3 8.15

212.825 168.300 -10 -16 -55Pethoxamid IS_Metolachlor-D6 296.234 131.100 16 25 18 1 0.7

296.234 250.100 16 15 12

12

Compound Internal standard Q1 mass Q3 mass DP [V]

CE[V]

CXP

[V]

LC-MS method

MDL[ng L-1]

Phenazone IS_Imidacloprid-D4 189.034 77.100 1 53 10 2 2.5

189.034 56.000 1 51 8Phenylbenzimidazole sulfonic acid IS_4-Nonylphenol-D4 272.904 192.900 -85 -40 -11 3 1.9

272.904 79.900 -85 -78 -9Picolinafen IS_Tri-n-

butylphosphate-D27377.112 238.000 76 35 12 2 1.2

377.112 144.900 76 69 16Picoxystrobin IS_Diazinon-D10 368.026 205.100 26 13 22 1 2.9

368.026 145.000 26 31 34Pindolol IS_Imidacloprid-D4 249.101 116.200 61 25 12 2 3.2

249.101 172.100 61 25 10Pipamperone IS_DEET-D7 376.103 165.000 106 37 10 2 2.3

376.103 291.000 106 27 14Pirimicarb IS_Imidacloprid-D4 239.149 182.100 1 21 10 1 0.7

239.149 72.000 1 25 14p-Nitrophenol IS_Nitrophenol-D4 137.885 107.800 -55 -24 -5 3 21.1

137.885 91.900 -55 -32 -9Pravastatin IS_Mecoprop-D3 423.112 321.000 -110 -22 -15 3 16.9

423.112 303.200 -110 -24 -5Prochloraz IS_Metolachlor-D6 375.964 307.900 1 15 16 1 1

375.964 265.800 1 23 14Promethazin IS_DEET-D7 285.008 86.000 36 21 10 2 8.3

285.008 198.000 36 35 10Propamocarb IS_Benzotriazole-D4 189.179 101.900 61 23 12 2 0.9

189.179 144.100 61 17 6Propiconazole IS_Tebuconazole-D9 342.091 158.900 81 39 18 1 1.6

342.091 41.100 81 59 18Propoxycarbazone IS_Mono-isobutyl-

phthalate-D4397.100 156.100 -25 -16 -9 3 10

397.100 113.100 -25 -38 -5

13

Compound Internal standard Q1 mass Q3 mass DP [V]

CE[V]

CXP

[V]

LC-MS method

MDL[ng L-1]

Propranolol IS_Isoproturon-D3 260.126 116.000 141 25 16 2 2.7

260.126 183.000 141 21 20Propylparaben IS_Mecoprop-D3 179.000 92.000 -55 -32 -10 3 15.5

178.891 136.000 -55 -22 -10Prosulfocarb IS_Tri-n-

butylphosphate-D27252.222 91.000 1 27 10 2 2.1

252.222 127.900 1 17 14Prothioconazole-desthio IS_Metolachlor-D6 312.121 70.000 26 49 18 2 3.9

312.121 124.900 26 41 16p-Toluenesulfonamide IS_Caffeine-D3 172.000 90.900 71 23 10 2 12

172.000 154.900 71 11 18Pyraclostrobin IS_Metolachlor-D6 388.055 194.000 11 15 24 1 0.8

388.055 163.000 11 33 26Quinmerac IS_Caffeine-D3 222.073 203.800 16 23 10 1 2.1

222.073 141.000 16 43 16Saccharin IS_Acesulfame-D4 182.000 106.000 -25 -24 -19 3 15

182.000 41.900 -25 -54 -19Scopolamine-N-butyl IS_DEET-D7 360.083 194.100 81 31 10 2 1.4

360.083 103.000 81 67 12Sertraline IS_Metolachlor-D6 306.065 275.000 1 17 14 2 1.8

306.065 158.900 1 37 20Simazine IS_DEET-D7 202.079 124.000 96 25 12 2 8.5

202.079 132.000 96 25 54Spiroxamine IS_Tri-n-

butylphosphate-D27298.316 144.000 46 27 22 2 0.8

298.316 100.000 46 39 10Sulfamethoxazole IS_Sulfamethoxazole-D4 253.940 155.900 86 23 8 1 1.1

253.940 91.900 86 35 10Tebuconazole IS_Tebuconazole-D9 308.209 70.000 76 55 8 2 2.8

308.209 124.900 76 49 18

14

Compound Internal standard Q1 mass Q3 mass DP [V]

CE[V]

CXP

[V]

LC-MS method

MDL[ng L-1]

Terbuthylazine IS_Metolachlor-D6 230.002 173.900 121 21 8 2 1.9

230.002 68.100 121 47 32Terbuthylazine-2-hydroxy IS_Benzotriazole-D4 212.192 156.000 6 21 20 1 0.5

212.192 86.000 6 31 10Terbutryn IS_Metolachlor-D6 242.064 186.000 96 27 8 2 0.7

242.064 90.900 96 35 10Tetracaine IS_Metolachlor-D6 265.091 175.900 71 21 22 2 0.7

265.091 71.900 71 33 8Thiabendazole IS_Caffeine-D3 201.990 175.000 121 35 20 1 0.6

201.990 131.000 121 45 14Thiacloprid IS_Imidacloprid-D4 252.992 126.000 66 29 16 1 0.4

252.992 90.000 66 47 12Thiamethoxam IS_Benzotriazole-D4 291.955 211.100 31 17 22 1 1.3

291.955 180.900 31 29 46Tramadol IS_Imidacloprid-D4 264.062 58.000 61 47 16 2 4.4

264.062 42.000 61 109 10Triclosan IS_Triclosan-D3 287.000 35.000 -35 -40 -15 3 23.1

287.000 142.000 -35 -44 -9Trifloxystrobin IS_Tri-n-

butylphosphate-D27409.115 186.100 6 23 10 1 0.8

409.115 206.000 6 19 20Trimethoprim IS_Imidacloprid-D4 291.005 230.200 101 31 14 2 2.2

291.005 123.100 101 31 14IS_4-Nonylphenol-D4 223.078 109.900 -115 -28 -13

223.078 123.000 -115 -50 -11IS_Acesulfame-D4 166.000 86.000 -10 -20 -11

166.000 78.000 -10 -46 -9IS_Atrazine-13C3 219.100 177.000 106 23 8

219.100 69.900 106 47 8

15

Compound Internal standard Q1 mass Q3 mass DP [V]

CE[V]

CXP

[V]

LC-MS method

MDL[ng L-1]

IS_Benzotriazole-D4 124.086 69.000 106 31 8

124.086 41.100 106 49 10IS_BisphenolA-13C12 239.000 224.000 -85 -24 -11

239.000 223.000 -85 -40 -11IS_Caffeine-D3 198.135 138.000 36 27 18

198.135 110.000 36 31 14IS_Cotinine-D3 180.095 80.000 56 29 10

180.095 101.000 56 31 18IS_DEET-D7 199.192 126.000 121 23 6

199.192 98.000 121 41 10IS_Diazinon-D10 314.926 170.000 131 29 26

314.926 154.000 131 29 20IS_Diclofenac-D4 297.775 253.900 -15 -16 -23

297.775 216.900 -15 -30 -13IS_Imidacloprid-D4 259.989 213.000 36 21 12

259.989 179.100 36 27 10IS_IsoproturonD3 210.131 74.900 91 21 8

210.131 49.000 91 31 12IS_Mecoprop-D3 215.900 143.900 -25 -18 -7

217.900 145.900 -25 -18 -7IS_Metolachlor-D6 290.166 258.100 56 19 12

290.166 182.100 56 35 10IS_Mono-isobutyl-phthalate-D4 224.993 81.000 -30 -22 -9

224.993 181.100 -30 -14 -11IS_Nitrophenol-D4 141.927 112.000 -50 -24 -7

141.927 95.900 -50 -32 -11IS_Sulfamethoxazole-D4 258.106 95.900 111 35 10

258.106 111.900 111 31 14

16

Compound Internal standard Q1 mass Q3 mass DP [V]

CE[V]

CXP

[V]

LC-MS method

MDL[ng L-1]

IS_Tebuconazole-D9 317.046 70.000 51 61 18

317.046 124.900 51 57 14IS_Triclosan-D3 290.000 35.000 -35 -40 -15

292.000 35.000 -35 -40 -15IS_Tri-n-butylphosphate-D27 294.303 101.900 66 25 26

294.303 82.900 130 44 10

17

94

95

SI 3 Sample preparation and LC-MS/MS settings for target screening of WWTP and rain sewer samplesTo avoid any losses due to sample enrichment, the 1 mL aliquots were prepared for direct large volume injection (100 µL). To each aliquot, 10 µL of a 2 mM ammonium formate buffer, 25 µL of methanol and 25 µL of an internal standard mixture containing 40 isotope-labelled compounds (40 ng mL-1) were added. Chromatographic separation was performed by gradient elution on a 1260 Infinity LC system (Agilent) with a Kinetex C18 column (50 x 3 mm x 2.6 µm particle size, Phenomenex) guarded by a pre-column (5 x 3 mm) of the same type and an in-line filter (0.2 µm). A QTrap 6500 MS/MS (ABSciex) with an IonDrive Turbo V electrospray ion source was used for detection in scheduled multiple reaction monitoring mode. The solvent gradient is shown in Table S4. Table S5 provides parameter settings for the ion source in positive and negative ionization mode.

Table S 4: LC solvent gradient for chromatographic separation of target compounds

Time [min] Solvent A [%] Solvent B [%]0 95 51 95 56.2 5 9511.4 5 9511.7 95 516 95 5

Table S 5: Ion source parameters setting in positive and negative ionization mode

Parameter Positive mode Negative modeCurtain gas 50 50Collision gas Medium MediumIonSpray Voltage 2900 -2800Temperature 400 400Ion source gas 1 60 60Ion source gas 2 60 60Entrance potential 10 -10

For quantification, matrix-matched calibration standards were prepared with water from a pristine stream (Wormsgraben, Harz Mountains, Germany). The calibration included ten standards covering a range from 1 to 1000 ng L-1. The method detection limits (MDL) ranged from 0.3 to 50 ng L-1 (Table S3). For each sample batch, quality control (QC) samples were prepared accordingly using selected analyzed river water samples spiked with 10, 50 and 200 ng L-1, respectively. The compound concentrations in WWTP and rain sewer samples were quantified with internal standards using the MultiQuantTM Software (Sciex). For the QC samples a deviation of ±20% from the expected value was allowed.

18

96

979899

100101102103104105106107

108

109

110

111

112113114115116117118119

120

SI 4 Chemical screening LVSPE samplesCartridges were freeze-dried and eluted with 100 ml of ethyl acetate and 100 ml of methanol, followed by 100 ml of methanol containing 1% of formic acid and 100 ml of methanol with 2% 7N ammonia solution. The extracts were evaporated to dryness under nitrogen and reconstituted to 1.5 ml in methanol resulting in a concentration factor of 1000. For chemical analysis, aliquots of 100 µL were taken from each sample and brought to a final volume of 200 µL methanol/water (70:30) including 10 µL of a mixture of 31 isotope-labelled internal standards (1 µg ml-1). Chemical screening was performed on an UltiMate 3000 LC system (Thermo Scientific) coupled to a hybrid quadrupole - Orbitrap MS (Q ExactiveTM Plus, Thermo Scientific) with a heated electrospray ionization (HESI) source. For chromatographic separation, a Kinetex 2.6 μm EVO C18 (50x2.1 mm) column equipped with a pre-column (C18 EVO 5.x2.1 mm) and an inline filter was used. The injection volume was 5 µL. The column temperature was 40°C and the LC gradient is shown in Table S6.

Table S 6: LC solvent gradient for analysis of LVSPE samples with LC-HRMS

Time [min] Flow rate [µL] Solvent A [%]Water + 0.1% formic acid

Solvent B [%]MeOH + 0.1% formic acid

Solvent C [%]Acetone/Isopropanol (50:50)

0 0.3 95 5 01 0.3 95 5 013 0.3 0 100 024 0.3 0 100 024.1 0.35 5 10 8526.2 0.35 5 10 8526.3 0.35 95 5 031.9 0.35 95 5 032.0 0.3 95 5 0

For quantification, method-matched calibrations standard were prepared with pristine river water from Wormsgraben. The spiked standards were extracted by SPE to match the sample preparation procedure and concentration factor of the LVSPE samples. The eleven-point calibration ranged from 0.1 to 1000 ng L-1. LVSPE samples were evaluated for the main risk driving compounds identified in the WWTP and rain sewer samples. The software TraceFinder 3.2 (Thermo Scientific) was used for evaluation of the LVSPE data. Details on MDLs and ionization modes are shown in Table S7. For MS/MS analysis, a full scan experiment (100-1000 m/z) at a nominal resolving power of 70,000 (referenced to m/z 200) was combined with data-independent (DIA) MS/MS experiments at a nominal resolving power of 35,000. For DIA experiments, broad isolation windows of about 50 (i.e., m/z ranges 97-147, 144-194, 191-241, 238-288, 285-335, 332-382, 379-429, 426-476) and 280 (i.e., m/z ranges 460-740, 730-1010), respectively, were used for data acquisition.

19

121122123124125126127128129130131132133

134

135

136137138139140141142143144145146147

148

Table S 7: Risk driving compounds analyzed in LVSPE river samples including information on ionization mode and MDL [ng L-1]

Compound Ionization mode MDL [ng L-1] Internal standard

Amitriptyline Positive 1 Decyltrimethylammonium-D30

Carbendazim Positive 1 Carbendazim-D4Citalopram Positive 0.7 Verapamil-D6Diazinon Positive 0.7 Diazinon-D10Diclofenac Negative 1 Diclofenac-D4Dimethoate Positive 1 Imidacloprid-D4Diuron Positive 1 Isoproturon-D3Fipronil Negative 0.5 Diclofenac-D4

MCPA Negative 1 Mono-isobutylphthalate-D4

Metolachlor Positive 0.7 Metolachlor-D6N-Formyl-4-aminoantipyrine Positive 3 Deisopropylatrazine-D5

Spiroxamine Positive 2 Atrazine-13C3Terbuthylazine Positive 1 Bezafibrate-D4Terbutryn Positive 1 Atrazine-13C3

20

149150

151

152

SI 5 Acute effect concentrations of target compoundsIn case of missing measured effect concentrations, predicted effect concentrations (ECP) were used for the calculation of toxic units. ECPs were provided for all BQE were based on read-across or QSAR models (according to Busch et al. (2016)). Data from read-across models was preferred but was not always available for every compound, especially for fish.

Table S 8: Acute effect concentrations for each compound and BQE (“PR” = predicted effect concentration via read-across; “PE” = predicted effect concentration via ECOSAR; no letter = measured effect concentration).

Compound Use class LC50 fish [mg L-1]

LC50 daphnia[mg L-1]

EC50 algae [mg L-1]

10,11-Dihydro-10,11-dihydroxycarbamazepine TP of carbamazepine 2.78E+02 (PE) 1.18E+03 (PE) 2.29E+00 (PR)10,11-Dihydro-10-hydroxycarbamazepine TP of carbamazepine 6.50E+01 (PE) 2.15E+01 (PE) 1.61E+00 (PR)1H-Benzotriazole wastewater marker 2.41E+01 (PE) 5.67E+01 (PE) 1.10E+01 (PR)2(4-morpholinyl)benzothiazole industrial chemical 4.17E+01 (PE) 2.53E+01 (PE) 2.47E+01 (PR)2-(methylthio)benzothiazole industrial chemical 2.25E+00 (PE) 4.92E-01 (PE) 2.38E+00 (PR)2,4-Dinitrophenol industrial chemical 5.55E-01 3.09E+00 1.24E+01

2-AminobenzimidazoleTP of carbendazim(fungicide) 6.49E+01 (PE) 2.01E+00 (PE) 5.23E+00 (PR)

2-Hydroxycarbamazepine TP of carbamazepine 8.26E+00 (PE) 5.90E+01 (PR) 1.12E+01 (PR)2-Naphthalenesulfonic acid industrial chemical 4.86E+01 2.94E+02 (PE) 1.24E+00 (PR)2-Octyl-4-isothiazolinone biocide 3.07E-02 (PE) 3.99E-02 (PR) 1.30E+00 (PR)4+5-Methyl-1H-benzotriazole industrial chemical 1.56E+01 (PE) 1.51E+02 (PR) 2.16E+00 (PR)Acesulfame food constituent 2.57E+03 (PE) 5.82E+02 (PE) 9.93E-01 (PR)Acetyl-Sulfamethoxazole TP of sulfamethoxazole 1.36E+02 (PE) 6.03E+01 (PE) 1.93E+01 (PR)Ambroxol pharmaceutical 1.32E+01(PE) 1.79E+00 (PE) 1.14E+00 (PE)Amitriptyline pharmaceutical 7.80E-01 9.42E-01 1.86E+00 (PR)Atrazine legacy herbicide 9.13E-01 1.24E-01 7.86E-03Azoxystrobin fungicide 4.87E-01 5.94E-02 2.09E-02Bentazon herbicide 1.48E+02 (PE) 1.49E+02 5.00E-02Bicalutamide pharmaceutical 1.66E+01 (PE) 1.18E+01 (PE) 5.26E-01 (PR)Bisoprolol pharmaceutical 3.75E+01 (PE) 4.01E+00 (PE) 2.39E+00 (PR)

21

153154155156

157158

Compound Use class LC50 fish [mg L-1]

LC50 daphnia[mg L-1]

EC50 algae [mg L-1]

Boscalid fungicide 2.79E+00 3.81E+00 5.96E-01Carbamazepine pharmaceutical 3.63E+01 1.11E+02 1.65E+01Carbendazim biocide 1.21E-02 2.51E-02 4.20E-01Cetirizine pharmaceutical 1.24E+01 (PE) 2.27E+00 (PR) 2.72E+00 (PR)Citalopram pharmaceutical 3.70E+00 (PE) 3.92E+00 3.75E+00 (PR)Clomazone herbicide 7.54E+00 2.20E-01 1.79E-01Cotinine Nicotine TP 2.71E+02 (PE) 1.29E+01 (PR) 8.09E+00 (PR)Cyclamate food constituent 8.14E+02 (PE) 2.33E+02 (PE) 1.01E+01 (PR)Desethylatrazine TP of atrazine 5.60E+01 (PE) 1.26E+02 (PR) 3.08E-02 (PR)Desethylterbuthylazine TP of terbuthylazine 3.94E+01 (PE) 7.86E+01 (PR) 1.54E-02 (PR)Desisopropylatrazine TP of atrazine 8.19E+01 (PE) 2.07E+02 (PR) 6.77E-04Diazinon biocide 3.00E-02 1.00E-05 1.00E+00Diclofenac pharmaceutical 1.01E+01 1.86E+01 6.46E+00DEET insect repellent 7.20E+01 6.12E+01 (PR) 4.05E+00 (PR)Difenoconazole fungicide 2.83E-01 1.50E-01 8.29E-03Diflufenican herbicide 5.36E-01 (PE) 4.07E-01 (PR) 3.31E-01 (PR)Dimethachlor-OA TP of dimetholachlor 4.60E+02 (PE) 2.44E+02 (PE) 5.26E-01 (PR)Dimethoate insecticide 1.30E-01 2.24E-03 1.01E+01Diuron biocide 2.06E-01 3.82E-01 6.94E-04Enalapril pharmaceutical 7.95E+01 (PE) 4.47E+01 (PE) 1.51E+00 (PR)Epoxiconazole fungicide 3.72E+00 (PE) 7.77E+00 (PR) 1.23E+00 (PR)Ethofumesate herbicide 5.65E+00 2.50E+00 2.90E+00Fenpropimorph fungicide 2.05E-01 4.20E+00 (PR) 5.99E-03Fenuron legacy herbicide 1.84E+02 (PR) 1.29E+00 (PR) 1.13E+00 (PR)Fipronil biocide 3.80E-02 2.53E-04 1.24E-01Fipronil desulfinyl TP of fipronil -Fipronil sulfide TP of fipronil 2.04E-02 (PE) 4.12E-01 (PR) 7.94E-01 (PR)Fipronil sulfone TP of fipronil 6.31E+01 2.72E+00 (PR) 8.18E-01 (PR)Flufenacet herbicide 5.65E-01 1.30E+00 3.01E-03

22

Compound Use class LC50 fish [mg L-1]

LC50 daphnia[mg L-1]

EC50 algae [mg L-1]

Flurtamone herbicide 2.80E-02 (PE) 2.18E+01 (PR) 4.44E-01 (PR)Flusilazole legacy fungicide 3.74E-01 (PE) 4.61E-01 (PE) 6.03E-01Gabapentin pharmaceutical 5.07E+02 (PE) 1.10E+03 3.12E+00 (PR)Imidacloprid insecticide 5.30E+01 5.43E-02 1.22E+01 (PR)Isoproturon biocide 1.20E+01 (PE) 9.81E-01 (PR) 6.47E-03Lenacil herbicide 1.66E+01 (PE) 2.27E+01 (PR) 1.69E-03Lidocaine pharmaceutical 8.03E+00 (PE) 5.81E+00 (PE) 3.95E+01Loperamide pharmaceutical 5.87E-01 (PE) 3.99E-01 (PE) 5.00E-01 (PE)Losartan pharmaceutical 1.38E-01 (PE) 2.06E-01 (PE) 2.46E+00 (PR)MCPA herbicide 1.50E+00 2.51E+00 4.48E+00Mecoprop herbicide 1.02E+01 1.44E+02 (PR) 1.00E+01 (PE)Melperon pharmaceutical 3.12E+00 (PE) 2.50E-01 (PE) 4.60E-01Metamitron herbicide 3.26E+00 (PE) 2.32E+02 (PR) 2.42E-02Metazachlor herbicide 8.14E-01 (PE) 2.29E+01 (PR) 5.00E-01Metazachlor-ESA TP of metazachlor 7.44E+00 (PE) 9.51E+01 (PE) 4.30E+00 (PR)Metformin pharmaceutical 2.14E+02 (PE) 1.35E+03 3.20E+02Metolachlor herbicide 4.10E-02 5.05E+00 2.60E-02Metoprolol pharmaceutical 1.00E+02 9.71E+00 7.30E+00Metoprolol acid pharmaceutical TP 1.46E+02 (PE) 6.97E+01 (PR) 2.93E+01 (PR)Myclobutanil fungicide 1.29E+00 2.40E-01 8.30E-01N-Acetyl-4-aminoantipyrine pharmaceutical TP 8.70E-01 (PE) 1.03E+01 (PE) 2.37E+00 (PR)N-cyclohexl-2-benzothiazole-sulfenamide industrial chemical - -N-Formyl-4-aminoantipyrine pharmaceutical TP 9.07E-01 (PE) 9.82E+00 (PE) 2.63E+00 (PR)Nitrendipine pharmaceutical 1.27E+01 (PE) 2.07E+00 (PE) 1.36E+00 (PE)Pethoxamid herbicide 1.11E+00 (PE) 3.55E+01 (PR) 9.13E-02 (PR)Phenazone pharmaceutical 1.78E-01 (PE) 6.52E+00 (PE) 2.97E+00 (PR)Phenylbenzimidazolesulfonic acid UV stabilizer 7.88E+01 (PE) 3.82E+02 (PE) 4.49E+00 (PR)Pipamperone pharmaceutical 5.57E+01 (PE) 3.05E+01 (PE) 9.03E-01 (PR)Pirimicarb insecticide 1.24E+01 2.68E-02 1.20E+02

23

Compound Use class LC50 fish [mg L-1]

LC50 daphnia[mg L-1]

EC50 algae [mg L-1]

Prochloraz fungicide 1.74E+00 (PE) 4.07E+00 (PR) 3.92E-01 (PR)Propamocarb fungicide 9.22E+01 1.05E+02 2.61E+00 (PR)Propiconazole fungicide 1.00E+00 8.13E-01 5.84E-02Propranolol pharmaceutical 1.18E+01 9.19E-01 5.80E+00

Prothioconazole-desthioTP of prothioconazole(fungicide) 1.54E+01 (PE) 1.71E+01 (PR) 3.54E+00 (PR)

p-Toluenesulfonamide industrial chemical 1.76E+02 (PE) 1.92E+02 (PR) 6.25E+01 (PR)Pyraclostrobin fungicide 6.09E-03 2.19E-03 1.70E-03Quinmerac herbicide 2.99E+02 (PE) 1.91E+02 (PE) 1.75E+01 (PE)Saccharin food constituent 1.07E+00 (PE) 2.56E+01 (PR) 1.29E+00 (PR)Scopolamine-N-butyl pharmaceutical -Sertraline pharmaceutical 7.81E-01 (PE) 1.77E+00 (PR) 1.07E+00 (PR)Simazine legacy herbicide 2.50E+00 5.19E+01 (PR) 3.08E-02Spiroxamine fungicide 1.40E+00 4.59E+01 (PR) 3.79E-04Sulfamethoxazole pharmaceutical 5.79E+02 3.54E+01 5.79E-01Tebuconazole fungicide 4.63E+00 3.82E-01 3.90E-01Terbuthylazine herbicide 2.71E+00 1.09E-01 1.30E-03Terbuthylazine-2-hydroxy TP of terbuthylazine 1.14E+02 (PE) 5.03E+01 (PE) 4.16E+00 (PR)Terbutryn biocide 9.11E+00 (PE) 2.30E+01 (PR) 5.92E-03 (PR)Thiabendazole fungicide 5.60E-01 4.21E-01 9.00E+00 (PR)Thiacloprid insecticide 2.00E-02 2.23E-02 4.57E+01Tramadol pharmaceutical 2.25E+01 (PE) 1.38E+02 (PR) 1.76E+01 (PR)Trimethoprim pharmaceutical 2.90E+02 (PE) 6.83E+01 (PR) 7.50E-01 (PR)

24

SI 6 Sublethal effect concentrations of target compoundsLowest-observable-effect-concentrations (LOEC) were derived from the ECOTOX database (https://cfpub.epa.gov/ecotox/). The query focused on effects on growth/population, reproduction and behavior. The lowest LOEC was selected for each species and compound (Table S9). Compounds without reported effect data were not considered for the calculation of TUsub.

Table S 9: Sublethal effect concentrations of target compounds

Compound name Species Effect LOEC [µg L-1]

Author Title Source  Year

2,4-Dinitrophenol

Fathead Minnow Growth 183

Call,D.J., and D.L. Geiger

Subchronic Toxicities of Industrial and Agricultural Chemicals to Fathead Minnows (Pimephales promelas). Volume I

Center for Lake Superior Environmental Studies, University of Wisconsin, Superior, WI:318 p. 1992

Green Algae Population 16000Bringmann,G., and R. Kuhn

Limiting Values for the Noxious Effects of Water Pollutant Material to Blue Algae (Microcystis aeruginosa) and Green Algae (Scenedesmus quadricauda) in Cell Propagation Inhibition Tests (Grenzwerte der Schadwirkung Wasser)

TR-80-0201, Literature Research Company, Annandale, VA:39 p. 1978

Amitriptyline

Danio rerio Growth 0.1

Yang,M., W. Qiu, J. Chen, J. Zhan, C. Pan, X. Lei, and M. Wu

Growth Inhibition and Coordinated Physiological Regulation of Zebrafish (Danio rerio) Embryos Upon Sublethal Exposure to Antidepressant Amitriptyline Aquat. Toxicol.151:68-76 2014

Atrazine

Fathead Minnow Reproduction 0.5

Richter,C.A., D.M. Papoulias, J.J. Whyte, and D.E. Tillitt

Evaluation of Potential Mechanisms of Atrazine-Induced Reproductive Impairment in Fathead Minnow (Pimephales promelas) and Japanese Medaka (Oryzias latipes)

Environ. Toxicol. Chem.35(9): 2230-2238 2016

Daphnia magna Reproduction 500

Palma,P., V.L. Palma, C. Matos, R.M. Fernandes, A. Bohn, A.M.V.M. Soares, and I.R. Barbosa

Assessment of the Pesticides Atrazine, Endosulfan Sulphate and Chlorpyrifos for Juvenoid-Related Endocrine Activity Using Daphnia magna Chemosphere76(3): 335-340 2009

Green Algae Growth 1University of Mississippi

Effects of Atrazine on Selenastrum capricornutum, Lemna minor, and Elodea canadensis

Report to CIBA-GEIGY Corporation, Greensboro, NC:122 p. 1991

25

159160161162

163

Compound name Species Effect LOEC [µg L-1]

Author Title Source  Year

Azoxystrobin

Fathead Minnow Growth 193

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Daphnia magna Reproduction 84

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Green Algae Population 0.98

Van Wijngaarden,R.P.A., D.J.M. Belgers, M.I. Zafar, A.M. Matser, M.C. Boerwinkel, and G.H.P. Arts

Chronic Aquatic Effect Assessment for the Fungicide Azoxystrobin

Environ. Toxicol. Chem.33(12): 2775-2785 2014

Bicalutamide

Fathead Minnow Reproduction 92.111

Panter,G.H., Y.C. Glennon, J. Robinson, A. Hargreaves, and R. Murray-Smith

Effects of the Anti-Androgen, Bicalutamide, in a Reduced Life-Cycle Study with the Fathead Minnow (Pimephales promelas) Aquat. Toxicol.114/115:31-38 2012

Boscalid

Rainbow Trout Growth 241

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Daphnia magna Reproduction 2630

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Carbamazepine

Fathead Minnow Behavior 100

Thomas,M.A., P.P. Joshi, and R.D. Klaper

Gene-Class Analysis of Expression Patterns Induced by Psychoactive Pharmaceutical Exposure in Fathead Minnow (Pimephales promelas) Indicates Induction of Neuronal Systems

Comp. Biochem. Physiol. C Toxicol. Pharmacol.155(1): 109-120 2012

Daphnia magna Reproduction 0.5

Dietrich,S., F. Ploessl, F. Bracher, and C. Laforsch

Single and Combined Toxicity of Pharmaceuticals at Environmentally Relevant Concentrations in Daphnia magna - A Multigenerational Study Chemosphere79(1): 60-66 2010

Green Algae Population 100

Haase,S.M., P. Panas, T. Rath, and B. Huchzermeyer

Effects of Carbamazepine on Two Microalgae Species Differing in Stress Resistance

Water Air Soil Pollut.226(338): 12 p. 2015

Carbendazim

Daphnia magna Reproduction 6.6

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Green Algae Population 330 Van den Brink,P.J., J. Hattink, F. Bransen, E.

Impact of the Fungicide Carbendazim in Freshwater

Aquat. Toxicol.48(2-3): 251-264 2000

26

Compound name Species Effect LOEC [µg L-1]

Author Title Source  Year

Van Donk, and T.C.M. Brock

Microcosms. II. Zooplankton, Primary Producers and Final Conclusions

Citalopram

Endler's Guppy Behavior 0.2

Olsen,K.H., K. Ask, H. Olsen, I. Porsch-Hallstrom, and S. Hallgren

Effects of the SSRI Citalopram on Behaviours Connected to Stress and Reproduction in Endler Guppy, Poecilia wingei Aquat. Toxicol.148:113-121 2014

C.dubia Reproduction 4000

Henry,T.B., J.W. Kwon, K.L. Armbrust, and M.C. Black

Acute and Chronic Toxicity of Five Selective Serotonin Reuptake Inhibitors in Ceriodaphnia dubia

Environ. Toxicol. Chem.23(9): 2229-2233 2004

Clomazone

Daphnia magna Growth 4380

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

DEET

Fathead Minnow MPH 0.6

Zenobio,J.E., B.C. Sanchez, L.C. Archuleta, and M.S. Sepulveda

Effects of Triclocarban, N,N-Diethyl-meta-Toluamide, and a Mixture of Pharmaceuticals and Personal Care Products on Fathead Minnows (Pimephales promelas)

Environ. Toxicol. Chem.33(4): 910-919 2014

Daphnia magna Growth 7500

Minderhout,T., T.Z. Kendall, and H.O. Krueger

DEET: A Semi-Static Life-Cycle Toxicity Test with the Cladoceran (Daphnia magna)

Project 319A-128. Wildlife International:82 p. 2008

Desisopropylatrazine

Danio rerio Behavior 30

Liu,Z.Z., Y.Y. Wang, Z.H. Zhu, E.L. Yang, X.Y. Feng, Z.W. Fu, and Y.X. Jin

Atrazine and Its Main Metabolites Alter the Locomotor Activity of Larval Zebrafish (Danio rerio) Chemosphere148:163-170 2016

Diazinon

Fathead Minnow Reproduction 1.82

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Daphnia magna Growth 0.00005

Sanchez,M., M.D. Ferrando, E. Sancho, and E. Andreu

Assessment of the Toxicity of a Pesticide with a Two-Generation Reproduction Test Using Daphnia magna

Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol.124(3): 247-252 1999

Algae Population 6.7 Hua,J., and R. Relyea

Chemical Cocktails in Aquatic Systems: Pesticide Effects on the Response and Recovery of > 20 Animal Taxa Environ. Pollut.189:18-26 2014

DiclofenacDanio rerio Reproduction 100 Lister,A.L. Prostaglandins in the Zebrafish

Ovary: Role, Regulation, and Modulation by Environmental

Ph.D.Thesis, University of Guelph, Ontario, Canada:245 p.

2009

27

Compound name Species Effect LOEC [µg L-1]

Author Title Source  Year

Pharmaceuticals

Daphnia magna Growth 0.36

Dietrich,S., F. Ploessl, F. Bracher, and C. Laforsch

Single and Combined Toxicity of Pharmaceuticals at Environmentally Relevant Concentrations in Daphnia magna - A Multigenerational Study Chemosphere79(1): 60-66 2010

Algae Population 5

Lawrence,J.R., B. Zhu, G.D.W. Swerhone, J. Roy, V. Tumber, M.J. Waiser, E. Topp, and D.R. Korber

Molecular and Microscopic Assessment of the Effects of Caffeine, Acetaminophen, Diclofenac, and Their Mixtures on River Biofilm Communities

Environ. Toxicol. Chem.31(3): 508-517 2012

Difenoconazole

Fathead Minnow Growth 3.7

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Daphnia magna Reproduction 13

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Dimethoate

Danio rerio Reproduction 24.68Ansari,S., and B.A. Ansari

Embryo and Fingerling Toxicity of Dimethoate and Effect on Fecundity, Viability, Hatchability and Survival of Zebrafish, Danio rerio (Cyprinidae)

World J. Fish Mar. Sci.3(2): 167-173 2011

Daphnia magna Reproduction 100

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Blue-Green Algae Population 11463

Mohapatra,P.K., and U. Schiewer

Dimethoate and Quinalphos Toxicity: Pattern of Photosynthetic Pigment Degradation and Recovery in Synechocystis sp. PCC 6803 Algol. Stud.99:79-94 2000

Diuron

Fathead Minnow Reproduction 61.8

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Daphnia magna Growth 130

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Green Algae Population 0.5Podola,B., and M. Melkonian

Selective Real-Time Herbicide Monitoring by an Array Chip Biosensor Employing Diverse Microalgae J. Appl. Phycol.17(3): 261-271 2005

Ethofumesate

Fathead Minnow Growth 4170

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Daphnia Growth 2500 U.S. Environmental Pesticide Ecotoxicity Database Environmental Fate and Effects 1992

28

Compound name Species Effect LOEC [µg L-1]

Author Title Source  Year

magna Protection Agency(Formerly: Environmental Effects Database (EEDB))

Division, U.S.EPA, Washington, D.C.:

Fenpropimorph

Rainbow Trout Growth 0.16

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Fipronil

Sheephead minnow Reproduction 0.24

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Daphnia magna Behavior 1.4

Chevalier,J., E. Harscoet, M. Keller, P. Pandard, J. Cachot, and M. Grote

Exploration of Daphnia Behavioral Effect Profiles Induced by a Broad Range of Toxicants with Different Modes of Action

Environ. Toxicol. Chem.34(8): 1760-1769 2015

Green Algae Population 500

Overmyer,J.P., D.R. Rouse, J.K. Avants, A.W. Garrison, M.E. DeLorenzo, K.W. Chung, P.B. Key, W.A. Wilson, and M.C. Black

Toxicity of Fipronil and Its Enantiomers to Marine and Freshwater Non-Targets

J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes42(5): 471-480 2007

Flufenacet

Rainbow Trout Growth 334

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Daphnia magna Reproduction 12800

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Flusilazole

Daphnia magna Growth 570

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Imidacloprid

Rainbow Trout Growth 1200

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Daphnia magna Population 178

Agatz,A., and C.D. Brown

Evidence for Links Between Feeding Inhibition, Population Characteristics, and Sensitivity to Acute Toxicity for Daphnia magna

Environ. Sci. Technol.47(16): 9461-9469 2013

Green Algae Population 127800 Malev,O., R.S. Klobucar, E. Fabbretti, and P. Trebse

Comparative Toxicity of Imidacloprid and Its Transformation Product 6-Chloronicotinic Acid to Non-Target Aquatic Organisms: Microalgae Desmodesmus subspicatus and

Pestic. Biochem. Physiol.104(3): 178-186

2012

29

Compound name Species Effect LOEC [µg L-1]

Author Title Source  Year

Amphipod Gammarus fossarum

Isoproturon

Green Algae Population 14Knauer,K., and U. Hommen

Sensitivity, Variability, and Recovery of Functional and Structural Endpoints of an Aquatic Community Exposed to Herbicides

Ecotoxicol. Environ. Saf.78:178-183 2012

MCPA

Daphnia magna Behavior 5625

Martins,J., M.L. Soares, M.L. Saker, L. OlivaTeles, and V.M. Vasconcelos

Phototactic Behavior in Daphnia magna Straus as an Indicator of Toxicants in the Aquatic Environment

Ecotoxicol. Environ. Saf.67(3): 417-422 2007

Green Algae Population 6Caux,P.Y., L. Menard, and R.A. Kent

Comparative Study of the Effects of MCPA, Butylate, Atrazine, and Cyanazine on Selenastrum capricornutum Environ. Pollut.92(2): 219-225 1996

Mecoprop

Daphnia magna Reproduction 50800

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Metolachlor

Fathead Minnow Growth 56

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Daphnia magna Growth 707

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Green Algae Population 75

Fairchild,J., S. Ruessler, M. Nelson, and P. Haverland

Bioavailability and Toxicity of Agricultural Chemicals in Runoff from MSEA Sites: Potential Impacts on Non-Target Aquatic Organisms: An Aquatic Hazard Assessment of Four Herbicides Using Six Species of Algae and Five Sp

Final report for IAG DW14935600-01-2. Environmental Research Laboratory, U.S. Environmental Protection Agency, Duluth, MN:123 p. 1994

Metoprolol

Daphnia magna Growth 1.2

Dietrich,S., F. Ploessl, F. Bracher, and C. Laforsch

Single and Combined Toxicity of Pharmaceuticals at Environmentally Relevant Concentrations in Daphnia magna - A Multigenerational Study Chemosphere79(1): 60-66 2010

Phenazone

Green Algae Population 1700

Bisewska,J., E.I. Sarnowska, and Z.H. Tukaj

Phytotoxicity and Antioxidative Enzymes of Green Microalga (Desmodesmus subspicatus) and Duckweed (Lemna minor) Exposed to Herbicides MCPA, Chloridazon and Their Mixtures

J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes47(8): 814-822 2012

30

Compound name Species Effect LOEC [µg L-1]

Author Title Source  Year

Pirimicarb

Fathead Minnow Growth 10000

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Prochloraz

Japanese Medaka Reproduction 30

Zhang,X., M. Hecker, P.D. Jones, J. Newsted, D. Au, R. Kong, R.S.S. Wu, and J.P. Giesy

Responses of the Medaka HPG Axis PCR Array and Reproduction to Prochloraz and Ketoconazole

Environ. Sci. Technol.42(17): 6762-6769 2008

Propamocarb

Daphnia magna Growth 12300

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Propiconazole

Fathead Minnow Growth 210

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Daphnia magna Growth 1000

Soetaert,A., L.N. Moens, K. Van der Ven, K. Van Leemput, B. Naudts, R. Blust, and W.M. De Coen

Molecular Impact of Propiconazole on Daphnia magna Using a Reproduction-Related cDNA Array

Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol.142(1-2): 66-76 2006

Green Algae Population 100Ma,J., J. Chen, P. Wang, and S. Tong

Comparative Sensitivity of Eight Freshwater Phytoplankton Species to Isoprocarb, Propargite, Flumetralin and Propiconazol

Pol. J. Environ. Stud.17(4): 525-529 2008

Propranolol

Danio rerio Reproduction 31.8

Madureira,T.V., M.J. Rocha, C. Cruzeiro, M.H. Galante, R.A.F. Monteiro, and E. Rocha

The Toxicity Potential of Pharmaceuticals Found in the Douro River Estuary (Portugal): Assessing Impacts on Gonadal Maturation with a Histopathological and Stereological Study of Zebrafish Ovary and Testis After Sub-Acu Aquat. Toxicol.105(3/4): 292-299 2011

Daphnia magna Reproduction 110

Dzialowski,E.M., P.K. Turner, and B.W. Brooks

Physiological and Reproductive Effects of beta Adrenergic Receptor Antagonists in Daphnia magna

Arch. Environ. Contam. Toxicol.50(4): 503-510 2006

Green Algae Population 156

Liu,Q.T., T.D. Williams, R.I. Cumming, G. Holm, M.J. Hetheridge, and R. Murray-Smith

Comparative Aquatic Toxicity of Propranolol and Its Photodegradaded Mixtures: Algae and Rotifer Screening

Environ. Toxicol. Chem.28(12): 2622-2631 2009

Pyraclostrobin

31

Compound name Species Effect LOEC [µg L-1]

Author Title Source  Year

Fathead Minnow Growth 8.37

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Daphnia magna Reproduction 8

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Sertraline

Fathead Minnow Behavior 3

Valenti,T.W.,Jr., G.G. Gould, J.P. Berninger, K.A. Connors, N.B. Keele, K.N. Prosser, and B.W. Brooks

Human Therapeutic Plasma Levels of the Selective Serotonin Reuptake Inhibitor (SSRI) Sertraline Decrease Serotonin Reuptake Transporter Binding and Shelter-Seeking Behavior in Adult Male Fathead Minnows

Environ. Sci. Technol.46(4): 2427-2435 2012

C.dubia Growth 4.8

Lamichhane,K., S.N. Garcia, D.B. Huggett, D.L. DeAngelis, and T.W. La Point

Exposures to a Selective Serotonin Reuptake Inhibitor (SSRI), Sertraline Hydrochloride, over Multiple Generations: Changes in Life History Traits in Ceriodaphnia dubia

Ecotoxicol. Environ. Saf.101:124-130 2014

Green Algae Population 75

Minagh,E., R. Hernan, K. O'Rourke, F.M. Lyng, and M. Davoren

Aquatic Ecotoxicity of the Selective Serotonin Reuptake Inhibitor Sertraline Hydrochloride in a Battery of Freshwater Test Species

Ecotoxicol. Environ. Saf.72(2): 434-440 2009

Simazine

Danio rerio Behavior 100

Liu,Z.Z., Y.Y. Wang, Z.H. Zhu, E.L. Yang, X.Y. Feng, Z.W. Fu, and Y.X. Jin

Atrazine and Its Main Metabolites Alter the Locomotor Activity of Larval Zebrafish (Danio rerio) Chemosphere148:163-170 2016

Daphnia pulex Reproduction 100 Carter,J.G.

Effects of the Herbicide Simazine upon Production in a Two Member Aquatic Food Chain

Ph.D.Thesis, Utah State University, Logan, UT:213 p. 1981

Green Algae Population 2Podola,B., and M. Melkonian

Selective Real-Time Herbicide Monitoring by an Array Chip Biosensor Employing Diverse Microalgae J. Appl. Phycol.17(3): 261-271 2005

Spiroxamine

 Danio rerio Growth 6.1U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

 Green Algae Population

2.57(EC50)

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.:

SulfamethoxazoleDanio rerio Morphology 533 Madureira,T.V., M.J.

Rocha, C. Cruzeiro, I. The Toxicity Potential of Pharmaceuticals Found in the

Environ. Toxicol. Pharmacol.34(1): 34-45

2012

32

Compound name Species Effect LOEC [µg L-1]

Author Title Source  Year

Rodrigues, R.A.F. Monteiro, and E. Rocha

Douro River Estuary (Portugal): Evaluation of Impacts on Fish Liver, by Histopathology, Stereology, Vitellogenin and CYP1A Immunohistochemistry, After Sub-Acute Expo

Daphnia magna Reproduction 120 Lu,G., Z. Li, and J. Liu

Effects of Selected Pharmaceuticals on Growth, Reproduction and Feeding of Daphnia magna

Fresenius Environ. Bull.22(9): 2583-2589 2013

Green Algae Population 800

Yang,L.H., G.G. Ying, H.C. Su, J.L. Stauber, M.S. Adams, and M.T. Binet

Growth-Inhibiting Effects of 12 Antibacterial Agents and Their Mixtures on the Freshwater Microalga Pseudokirchneriella subcapitata

Environ. Toxicol. Chem.27(5): 1201-1208 2008

Tebuconazole

Rainbow Trout Growth 25

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Daphnia magna Reproduction 230

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Terbuthylazine

Danio rerio Behavior 13000

Perez,J., I. Domingues, M. Monteiro, A.M.V.M. Soares, and S. Loureiro

Synergistic Effects Caused by Atrazine and Terbuthylazine on Chlorpyrifos Toxicity to Early-Life Stages of the Zebrafish Danio rerio

Environ. Sci. Pollut. Res. Int.20(7): 4671-4680 2013

Green Algae Population 77

Perez,J., I. Domingues, A.M.V.M. Soares, and S. Loureiro

Growth Rate of Pseudokirchneriella subcapitata Exposed to Herbicides Found in Surface Waters in the Alqueva Reservoir (Portugal): A Bottom-up Approach Using Binary Mixtures Ecotoxicology20(6): 1167-1175 2011

Terbutryn

Green Algae Population6.03

(LOEL)

Gonzalez-Barreiro,O., C. Rioboo, C. Herrero, and A. Cid

Removal of Triazine Herbicides from Freshwater Systems Using Photosynthetic Microorganisms Environ. Pollut.144(1): 266-271 2006

Thiabendazole

Fathead Minnow Growth 230

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Thiacloprid

Rainbow Trout Growth 1900

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

33

Compound name Species Effect LOEC [µg L-1]

Author Title Source  Year

Daphnia magna Reproduction 1050

U.S. Environmental Protection Agency

Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB))

Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.: 1992

Tramadol

Daphnia magna Reproduction 8500

Le,T.H., E.S. Lim, S.K. Lee, J.S. Park, Y.H. Kim, and J. Min

Toxicity Evaluation of Verapamil and Tramadol Based on Toxicity Assay and Expression Patterns of Dhb, Vtg, Arnt, CYP4, and CYP314 in Daphnia magna Environ. Toxicol.26(5): 515-523 2011

Trimethoprim

Danio rerio Reproduction 157

Madureira,T.V., M.J. Rocha, C. Cruzeiro, M.H. Galante, R.A.F. Monteiro, and E. Rocha

The Toxicity Potential of Pharmaceuticals Found in the Douro River Estuary (Portugal): Assessing Impacts on Gonadal Maturation with a Histopathological and Stereological Study of Zebrafish Ovary and Testis After Sub-Acu Aquat. Toxicol.105(3/4): 292-299 2011

Daphnia magna Reproduction 6250

De Liguoro,M., V. Di Leva, M. Dalla Bona, R. Merlanti, G. Caporale, and G. Radaelli

Sublethal Effects of Trimethoprim on Four Freshwater Organisms

Ecotoxicol. Environ. Saf.82:114-121 2012

Green Algae Population 40000

Yang,L.H., G.G. Ying, H.C. Su, J.L. Stauber, M.S. Adams, and M.T. Binet

Growth-Inhibiting Effects of 12 Antibacterial Agents and Their Mixtures on the Freshwater Microalga Pseudokirchneriella subcapitata

Environ. Toxicol. Chem.27(5): 1201-1208 2008

34

164

165

SI 9 Results of factor analysis of mixed data and k-means clustering with reduced data set from rain sewer samplesIn order to identify the influence of weather conditions and seasons on the pollutant concentrations in the rain sewer effluent, a factor analysis of mixed data (FAMD) was performed using the R package FactoMineR (function ‘FAMD’) (Le et al., 2008). The analysis was based on 21 compounds, which were detected in all samples. FAMD and k-means clustering confirmed the weather-related pattern dominating the seasonal influence. Rain samples were separated from dry samples (Fig. S1). Again, the October sample was distinct from all other samples. The chemicals clustered into two groups resembling rain discharge (group 1) and dry discharge (group 2) (Fig. S2).

Fig. S 1: Output of factor analysis for mixed data. Rain-weather samples (“R”) colored in blue were separated from dry-weather samples (“D”) colored in red.

35

166

167168169170171172173174175

176

177178

Fig. S 2: Emission groups of reduced chemical data set in rain sewer effluent based on loads [mg d -1] detected in each sample. Data was standardized prior to PCA and clustering; zeros treated by glog transformation. Ellipses represent 95% confidence interval. Full compound names and details are given in Table S11.

36

179

180181182183

SI 10 Seasonal TUacute and TUsub and contributions of risk drivers for fish, daphina and algae in WWTP effluent

TUacute

Fig. S 3: Seasonal variation of TUacute and contribution of individual compounds to sum TUacute in WWTP effluent based on seasonal MEC95 concentrations of all detected target compounds.

37

184

185

186

187188

TUsub

Fig. S 4: Seasonal variation of TUsub and contribution of individual compounds to sum TUsub in WWTP effluent based on seasonal MEC95 concentrations of all detected target compounds.

38

189

190191

192

SI 11 TUs and contributions of risk drivers for fish and daphnia in the rain sewer in the absence of dimethoate spill eventThe dimethoate spill in the November dry-weather sample from the rain sewer affected the TUacute of fish and daphnia (Fig. 6). In the absence of the dimethoate spill, the TUacute decreased by 50% for fish and by two orders of magnitude for daphnia, for which fipronil became the main diver in dry samples (Fig. S5a,c). For fish, carbendazim and losartan contributed now to the TUacute in dry weather. Dimethoate slightly affected the TUsub of fish (Fig. 6). Hence, in the absence of the spill, citalopram and amitriptyline increased in their contribution (Fig. S5d). The TUsub pattern for daphnia did not change.

39

193

194195196197198199200201

Fig. S 5: a) Comparison of TUacute and TUsub in presence and absence of dimethoate spill in November dry weather sample as well as contributions of risk drivers to these TUs for fish (b,d) and daphnia (c,e) without dimethoate spill.

40

202

203204205

SI 12 Concentration [ng L-1] of risk driving compounds in LVSPE samplesTable S 10: Concentrations [ng L-1] of 14 main risk driving compounds in LVSPE samples taken during the sampling period April-November 2015

April May June July August October/NovemberAmitriptyline 6.3 7.3 6.1 17.0 31.7 26.5Carbendazim 4.1 2.2 4.5 10.2 18.8 10.9Citalopram 17.3 20.5 84.8 94.7 91.8 89.9Diazinon 0 0 0 0 0 0Diclofenac 248.5 252.6 427.9 623.3 1240.4 931.1Dimethoate 0 0 1.0 1.2 1.1 18.5Diuron 0 0 0 2.7 1.6 0Fipronil 0.6 0.7 1.7 3.0 6.0 2.5MCPA 8.4 8.5 223.2 51.7 19.6 5.4Metolachlor 0 2.0 49.0 22.2 1.9 0.7N-Formyl-4-aminoantipyrine

315.2 259.6 513.8 745.8 1110.0 711.5

Spiroxamine 1.0 4.3 1.6 2.2 0 0Terbuthylazine 2.4 1.0 6.6 24.4 5.3 0Terbutryn 1.1 1.3 3.9 5.5 6.8 8.0

41

206207

ReferencesBusch, W., Schmidt, S., Kühne, R., Schulze, T., Krauss, M. and Altenburger, R. (2016)

Micropollutants in European rivers: A mode of action survey to support the development of effect-based tools for water monitoring. Environmental Toxicology and Chemistry 35(8), 1887-1899. 10.1002/etc.3460

Le, S., Josse, J. and Husson, F. (2008) FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software 25(1), 1-18.

42

208209210211212213214

215