tails of copulas

27
Gary G Venter Tails of Copulas

Upload: lilian

Post on 10-Feb-2016

98 views

Category:

Documents


0 download

DESCRIPTION

Tails of Copulas. Gary G Venter. Correlation Issues. Correlation is stronger for large events Can model by copula methods Quantifying correlation Degree of correlation Part of spectrum correlated. Modeling via Copulas. Correlate on probabilities - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Tails of Copulas

Gary G Venter

Tails of Copulas

Page 2: Tails of Copulas

Guy Carpenter 2

Correlation Issues

Correlation is stronger for large events Can model by copula methods Quantifying correlation

– Degree of correlation– Part of spectrum correlated

Page 3: Tails of Copulas

Guy Carpenter 3

Modeling via Copulas

Correlate on probabilities Inverse map probabilities to correlate losses Can specify where correlation takes place in the probability

range Conditional distribution easily expressed Simulation readily available

Page 4: Tails of Copulas

Guy Carpenter 4

What is a copula?

A way of specifying joint distributions A way to specify what parts of the marginal distributions are

correlated Works by correlating the probabilities, then applying inverse

distributions to get the correlated marginal distributions Formally they are joint distributions of unit uniform variates,

as probabilities are uniform on [0,1]

Page 5: Tails of Copulas

Guy Carpenter 5

Formal Rules

F(x,y) = C(FX(x),FY(y))– Joint distribution is copula evaluated at the marginal

distributions– Expresses joint distribution as inter-dependency applied to the

individual distributions C(u,v) = F(FX

-1(u),FY-1(v))

– u and v are unit uniforms, F maps R2 to [0,1] FY|X(y) = C1(FX(x),FY(y))

– Derivative of the copula is the conditional distribution E.g., C(u,v) = uv, C1(u,v) = v = Pr(V<v|U=u)

– So independence copula

Page 6: Tails of Copulas

Guy Carpenter 6

Correlation

Kendall tau and rank correlation depend only on copula, not marginals

Not true for linear correlation rho Tau may be defined as: –1+4E[C(u,v)]

Page 7: Tails of Copulas

Guy Carpenter 7

Example C(u,v) Functions

Frank: -a-1ln[1 + gugv/g1], with gz = e-az – 1 (a) = 1 – 4/a + 4/a2 0

a t/(et-1) dt Gumbel: exp{- [(- ln u)a + (- ln v)a]1/a}, a 1

(a) = 1 – 1/a HRT: u + v – 1+[(1 – u)-1/a + (1 – v)-1/a – 1]-a

(a) = 1/(2a + 1) Normal: C(u,v) = B(p(u),p(v);a) i.e., bivariate normal applied to

normal percentiles of u and v, correlation a (a) = 2arcsin(a)/

Page 8: Tails of Copulas

Guy Carpenter 8

Copulas Differ in Tail EffectsLight Tailed Copulas Joint Lognormal

0.1 1.2 2.3 3.4 4.5 5.6 6.7 7.8 8.9 100.1

1.2

2.3

3.4

4.5

5.6

6.7

7.8

8.9

10Normal Joint Unit Lognormal Density Tau = .35

0.153-0.170.136-0.1530.119-0.1360.102-0.1190.085-0.1020.068-0.0850.051-0.0680.034-0.0510.017-0.0340-0.017

0.1 1.2 2.3 3.4 4.5 5.6 6.7 7.8 8.9 100.1

1.2

2.3

3.4

4.5

5.6

6.7

7.8

8.9

10Frank Joint Unit Lognormal Density Tau = .35

0.187-0.2040.17-0.1870.153-0.170.136-0.1530.119-0.1360.102-0.1190.085-0.1020.068-0.0850.051-0.0680.034-0.0510.017-0.0340-0.017

Page 9: Tails of Copulas

Guy Carpenter 9

Copulas Differ in Tail EffectsHeavy Tailed Copulas Joint Lognormal

0.1 1.2 2.3 3.4 4.5 5.6 6.7 7.8 8.9 100.1

1.2

2.3

3.4

4.5

5.6

6.7

7.8

8.9

10HRT Joint Unit Lognormal Density Tau = .35

0.187-0.2040.17-0.1870.153-0.170.136-0.1530.119-0.1360.102-0.1190.085-0.1020.068-0.0850.051-0.0680.034-0.0510.017-0.0340-0.017

0.1 1.2 2.3 3.4 4.5 5.6 6.7 7.8 8.9 100.1

1.2

2.3

3.4

4.5

5.6

6.7

7.8

8.9

10Gumbel Joint Unit Lognormal Density Tau = .35

0.187-0.2040.17-0.1870.153-0.170.136-0.1530.119-0.1360.102-0.1190.085-0.1020.068-0.0850.051-0.0680.034-0.0510.017-0.0340-0.017

Page 10: Tails of Copulas

Guy Carpenter 10

Partial Perfect Correlation Copulas of Kreps

Each simulated probability pair is either identical or independent depending on symmetric function h(u,v), often =h(u)h(v)

h(u,v) –> [0,1], e.g., h(u,v) = (uv)3/5

Draw u,v,w from [0,1] If h(u,v)>w, drop v and set v=u Simulate from u and v, which might be u

Page 11: Tails of Copulas

Guy Carpenter 11

Simulated Pareto (1,4) h(u)=u0.3 (Partial Power Copula)

Pareto(1,4) with h=(uv)̂ .3

00.5

11.5

22.5

33.5

44.5

5

0 1 2 3 4 5

Pareto(1,4) with h=(uv)̂ .3

0.00001

0.0001

0.001

0.01

0.1

1

10

0.00001 0.0001 0.001 0.01 0.1 1 10

Page 12: Tails of Copulas

Guy Carpenter 12

Partial Cutoff Copula h(u)=(u>k)

PP Max Data Pairs t = .5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Page 13: Tails of Copulas

Guy Carpenter 13

Partial Perfect Copula Formulas

For case h(u,v)=h(u)h(v) H’(u)=h(u) C(u,v) = uv – H(u)H(v) + H(1)H(min(u,v)) C1(u,v) = v – h(u)H(v) + H(1)h(u)(v>u)

Page 14: Tails of Copulas

Guy Carpenter 14

Tau’s

h(u)=ua, (a)= (a+1)-4/3 +8/[(a+1)(a+2)2(a+3)] h(u)=(u>k), (k) = (1 – k)4

h(u)=h0.5, (h) = (h2+2h)/3 h(u)= h0.5ua(u>k), (h,a,k) = h2(1-ka+1)4(a+1)-4/3+8h[(a+2)2(1-ka+3)(1-ka+1)–(a+1)(a+3)(1-ka+2)2]/dwhere d = (a+1)(a+2)2(a+3)

Page 15: Tails of Copulas

Guy Carpenter 15

Quantifying Tail Concentration

L(z) = Pr(U<z|V<z) R(z) = Pr(U>z|V>z) L(z) = C(z,z)/z R(z) = [1 – 2z +C(z,z)]/(1 – z) L(1) = 1 = R(0) Action is in R(z) near 1 and L(z) near 0 lim R(z), z->1 is R, and lim L(z), z->0 is L

Page 16: Tails of Copulas

Guy Carpenter 16

LR Functions for Tau = .35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

GumHRTFrankMaxPowerClayNorm

LR Function(L below ½, R above)

Page 17: Tails of Copulas

Guy Carpenter 17

R as a Function of Tau

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1Tau

R

Gumbel

HRT

Power

Max

R usually above tauR usually above tau

Page 18: Tails of Copulas

Guy Carpenter 18

Example: ISO Loss and LAE

Freez and Valdez find Gumbel fits best, but only assume Paretos

Klugman and Parsa assume Frank, but find better fitting distributions than Pareto

Loss Median Loss Tail Expense Median Expense Tail Frees & Valdez 12,000 1.12 5500 2.12 Klugman & Parsa 12,275 1.05 5875 1.58

All moments less than tail parameter convergeAll moments less than tail parameter converge

Page 19: Tails of Copulas

Guy Carpenter 19

Can Try Joint Burr, from HRT

F(x,y) = 1–(1+(x/b)p)-a –(1+(y/d)q)-a +[1+(x/b)p +(y/d)q]-a E.g. F(x,y)=1–[1+x/14150]-1.11–[1+(y/6450)1.5]-1.11 +[1+x/14150

+(y/6450)1.5]-1.11

Given loss x, conditional distribution is Burr: FY|X(y|x) = 1–[1+(y/dx)1.5]–2.11 with dx = 6450 +11x 2/3

Page 20: Tails of Copulas

Guy Carpenter 20

Example: 2 States’ Hurricanes

MD & DE Joint Empirical Probabilities DE vs. MD copula

- 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

- 0.200 0.400 0.600 0.800 1.000

Page 21: Tails of Copulas

Guy Carpenter 21

L and R Functions, Tau = .45

R looks about .25, which is >0, <tau, so none of our copulas match DE and MD L(z) & R(z)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Page 22: Tails of Copulas

Guy Carpenter 22

Fits

LR Function for DE/MD and Fits

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Data

Frank

Normal

PP Power

HRT Gumbel Frank Normal Flipped Gumbel

Parameter 0.968 1.67 4.92 0.624 1.68

Ln Likelihood 124 157 183 176 161

Tau 0.34 0.40 0.45 0.43 0.40

Page 23: Tails of Copulas

Guy Carpenter 23

Auto and Fire Claims in French Windstorms

Page 24: Tails of Copulas

Guy Carpenter 24

MLE Estimates of Copulas

Gumbel Normale HRT Frank Clayton

Paramètre 1,323 0,378 1,445 2,318 3,378

Log Vraisemblance 77,223 55,428 84,070 50,330 16,447 de Kendall 0,244 0,247 0,257 0,245 0,129

Page 25: Tails of Copulas

Guy Carpenter 25

Modified Tail Concentration Functions Both MLE and R function show that HRT fits

best

Page 26: Tails of Copulas

Guy Carpenter 26

Conclusions

Copulas allow correlation of different parts of distributions Tail functions help describe and fit

Page 27: Tails of Copulas

Guy Carpenter 27

finis