te ds unit5 - tu wien · repetition: sputtering solid source, i. e. arbitrary source geometry low...

19
Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be reached Good coating adhesion Coating composition = source composition Interesting film properties Source (water cooled) + + + + + Substrate -600V Ground + Deposition material Working gas, neutral or reactive Elementary Processes: Characteristics:

Upload: hanhu

Post on 15-Aug-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Repetition: Sputtering

Solid source, i. e. arbitrary source geometry

Low deposition temperature

Wide parameter field

High deposition rates can be reached

Good coating adhesion

Coating composition =source composition

Interesting film propertiesSource (water cooled)

+

+

+

+ +

Substrate

-600V

Ground

+Deposition materialWorking gas, neutral or reactive

Elementary Processes: Characteristics:

Page 2: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Repetition: Gas DischargeExperiment:

Criteria for a self sustained discharge:It is possible to sustain a gas discharge if.:

-

-

+

+

U≈1kV

p Pa≈10

the mean free path of electrons is long enough to ionize neutral gas particles

diluted gas necessary

if there are enough gas molecules to trigger a ionization cascade

no high vacuum possible or necessary

Page 3: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Repetition: Global Charakteristics

Y = 0,5 - 4

+

Ejection-Volume:approx. 1 nm3

Page 4: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Repetition: Energy Distribution

E-2

E

n(E)dE

U /20 EmaxE

( ) dEUEEdEEn 3

0

)(+

∝ Emax = Maximum energy,E Emax ∝ +

E = Average emission energy

Page 5: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Repetition: Angular Distribution

n<1n=1

n>1α

n n( ) cosα α∝n ≤ 1 E < 1 keVn > 1 E > 1 keV

Page 6: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Repetition: Sputtering of Alloys

In the case of the homogenous distribution of the constituents the vapor composition is (after a transient regime) identical to the target composition.

Page 7: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Practical Aspects of Sputtering

Reduction of the Cathode Dark Space!

VE

x- +

Cathode (Target/Source)

Geometric limit of the extension of a sputterplant. Lowest distancebetween target and substrate

Cathode Fall: Ions will no more be neutralized by electrons. Theyare subjected to a high electricfield and are accelerated towardsthe target.

Anode

x0

d

Page 8: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Modifications of the Diode Discharge

a) Reduction of the cathode dark spaceb) Increase of the ion current to increase erosion ratec) Reduction of working gas pressure (purity)d) Extension of the material palette

(Semiconductors/Insulators)

Aims:

Methods:

RF-sputtering: c/dTriode sputtering: a-cMagnetron sputtering a-cRF-Magnetron: a-dIon beam sputtering: c; free choice of ion energy

Page 9: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Triode Discharge (Thermionic Emitter)

Electrons are injected by thermal emission* Higher electron density* Reduction of working gas pressure* But: filament can be unstable (coating/alloying)

Page 10: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

RF-Sputtering I

f = 13,56 MHz (free industry frequency)* Higher electron density* Sputtering of insulators possible* Lower working gas pressure* Different plasma characteristics (EEDF, plasma potential)

Page 11: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

RF-Sputtering II

An excess current is created by the higher electron mobility. It causes a negative net-voltage at the target, independent from its conductivity.

Page 12: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Magnetron-Sputtering, Fundamentals I

Permanent magnets below the target concentrate the plasma in the vicinity of the target.* Smaller dark space* Higher ion density* Reduction of working gas pressure

Page 13: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Magnetron-Sputtering, Fundamentals II

The magnetic field keeps the light electrons close to the target and forces them to helical trajectories (Lorentz-force). A single electron can therefore cause many more ionization events in the vicinity of the target.

Page 14: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Magnetron-Sputtering: Magnetic Systems

Page 15: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Magnetron- Sputtering : Target Erosion

Page 16: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Magnetron- Sputtering : Characteristics

)ln( UkIR ⋅∝

Empirical relation:

R = Erosion rateI = Discharge currentU = Discharge voltage

Magnetron discharges are working at significantly lower gas pressures!

Page 17: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Magnetron- Sputtering : Thickness Distribution

n<1n=1

n>1αAngular distribution

in one target point

Integrated film thickness distribution:

Page 18: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Ion Gun

1. Ion source2. Target3. Sputtered species4. Substrate

Advantages of the ion gun:

* Control of ion energy* Control of ion

impingement angle* No working gas,

i. e. UHV-capable

Page 19: te ds unit5 - TU Wien · Repetition: Sputtering Solid source, i. e. arbitrary source geometry Low deposition temperature Wide parameter field High deposition rates can be

Sputter-Cleaning

Sputtering can also be used to clean surfaces, if the substrate, which then acts as "target", is biased with negative high voltage.

+

+

++

Substrat

+ Working gas, ionized or neutral

HV

+ -

Magnetic field assistance (optional)