team 4 final presentation

Upload: lux0008

Post on 14-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Team 4 Final Presentation

    1/25

    Yousef Ghotok Joseph Havelin

    Wednesday, 23rdApril 2008

    Chemical Reaction Engineering

    Dr. Robert P. Hesketh

    Dr. Concetta LaMarca

  • 7/30/2019 Team 4 Final Presentation

    2/25

    Outline

    Background, Process Reactions, and Rate Expressions

    Initial Calculations

    Case I Reactor Volume Using Simple Reaction Rate Expression

    Case II Pressure Drop and Reactor Configuration

    Case III Multiple Reactions

    Case IV Energy Balance for Multiple Reactions

    Case V Optimization of Reactor Design

  • 7/30/2019 Team 4 Final Presentation

    3/25

    Background, Process Reactions, and

    Rate Expressions

    Maleic anhydride is a cyclic organic chemical with formula C4H2O3.

    Primary Use: Synthesis of Unsaturated Polyester Resins N-butane is the most common feedstock used in production of

    maleic anhydride.

    Bergman and Frisch discovered synthesizing maleic anhydride from

    n-butane by catalyzing the oxidation reaction.

    By 1985, all commercial producers of maleic anhydride in the US

    used n-butane as their feed.

    Worldwide Production: 1,359,000 tons per year

    US Production: 273,800 tons per year

  • 7/30/2019 Team 4 Final Presentation

    4/25

    Background, Process Reactions, and

    Rate Expressions

    The partial oxidation of n-butane at the surface of the catalyst

    produces maleic anhydride and water, and side reactions produce

    carbon monoxide, carbon dioxide and water.

    Catalyst used is vanadium-phosphorus oxide ((VO)2P2O7).

    Reactor Type Fixed-Bed Reactor

    Advantages: easy use and low maintenance demand

    Disadvantages: hot spots and pockets of diluted butane

  • 7/30/2019 Team 4 Final Presentation

    5/25

    Background, Process Reactions, and

    Rate Expressions

    Balanced Stoichiometric Equation: Cases I and II

    C4H10 + 3.5O2 C4H2O3 + 4H2O

    Rate Equation: Cases I and II

    rM

    = k1

    CB

    Pseudo-First Order Rate Constant: Cases I and II

    k1= 8.1048 106 exp(-15649/T) [m3/kgcat-sec]

    Reactions From the Oxidation of N-Butane: Cases III, IV, and V

  • 7/30/2019 Team 4 Final Presentation

    6/25

    Background, Process Reactions, and

    Rate Expressions

    Reaction Pathway Diagram: Cases III, IV and V

    Reaction Rate Expressions: Cases III, IV and V

    Rate Constants and Parameters

  • 7/30/2019 Team 4 Final Presentation

    7/25

    Initial Calculations

    Assumptions:

    Open system at steady state

    Negligible changes in kinetic and potential energy

    Negligible work

    14 days worth of downtime per year Inlet gas 1.7 mol% n-butane

    80% conversion rate; side reactions not considered in this

    preliminary stage

    25,000 tons/year production rate

    Reference temperature = 25 C = 298 K

  • 7/30/2019 Team 4 Final Presentation

    8/25

    Initial Calculations

    Stoichiometric Tables:

    Molar Stoichiometric Table

    Mass Stoichiometric Table

    Species Initial (kmol/s) Change (kmol/s) Final (kmol/s)

    H2O 0 0.03362 .03362

    C4H10 0.01051 -0.00841 .00210

    O2 0.12758 -0.02942 .09816N2 0.47993 0 .47993

    C4H2O3 0 .00841 .00841

    Total 0.61802 .00042 .62222

    Species Initial (kg/s) Change (kg/s) Final (kg/s)H2O 0 0.60568 .60568

    C4H10 0.61065 -0.48852 .12213

    O2 4.08231 -0.94133 3.14099

    N2 13.44455 0 13.44455

    C4H2O3 0 0.82417 .82417

    Total 18.13751 0 18.13751

  • 7/30/2019 Team 4 Final Presentation

    9/25

    CaseI

    Additional Assumptions: Isothermal Reactor Model to Estimate

    the Reactor Volume

    Isothermal Temperature = 673 K

    Bulk Density = 900 kgcat/m3

    Void Fraction = 0.44

    Particle Diameter = 5 mm

    Inlet Pressure = 1.5 bar

  • 7/30/2019 Team 4 Final Presentation

    10/25

    CaseI

    Polymath: Isothermal Packed

    Bed Reactor Model

    Results

    Stream Flows

    Species

    Initial

    (kmol/s)

    Final

    (kmol/s)

    H2O 0 0.0336C4H10 0.0105 0.0021

    O2 0.1276 0.0982

    N2 0.4799 0.4799

    C4H2O3 0 0.0084

    Variable Value

    Conversion 0.8000043

    Catalyst Wt. 57675 kg

    Bulk Density 900 kgcat/m3VRXTR 64.08333 m

    3

    Aspen Plus: RPLUG Reactor

    Stream Flows

    Substream: MIXED FEED PRODUCT

    Mole Flow (kmol/sec) VAPOR VAPOR

    BUTANE 0.0105 2.08E-03

    OXYGEN 0.1276 0.0981338MALEI-01 0 8.42E-03

    WATER 0 0.0336756

    NITROGEN 0.4799 0.4799

  • 7/30/2019 Team 4 Final Presentation

    11/25

    CaseI

    Polymath: Isothermal Packed Bed Reactor Model

    Effect of Catalyst Weight and Temperature on Conversion

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 10000 20000 30000 40000 50000 60000

    Conversionofn-butane

    Catalyst Weight (kg)

    Effect of Catalyst Weight and Temperature on Conversion

    350C

    375C

    400C

    425C

    450C

  • 7/30/2019 Team 4 Final Presentation

    12/25

    CaseII

    Additional Assumptions: Pressure Drop in the Fixed-Bed Reactor

    Must not Exceed 1/10 the Initial Pressure

    Pressure drop along the length of the reactor

  • 7/30/2019 Team 4 Final Presentation

    13/25

    CaseII

    Polymath: Isothermal Packed

    Bed Reactor Model

    Results

    Stream Flows

    Variable Value

    Conversion 0.8008841

    Catalyst Wt. 60500 kg

    Bulk Density 900 kgcat/m3

    VRXTR 67.2222 m3

    Species

    Initial

    (kmol/s)

    Final

    (kmol/s)

    H2O 0 0.0336371

    C4H10 0.0105 0.0020907

    O2 0.1276 0.0981675

    N2 0.4799 0.4799

    C4H

    2O

    30 0.0084093

    Aspen Plus: RPLUG Reactor

    Stream Flows for Single Tube Reactor

    Stream Flows for Multi-Tube Reactor

    Substream: MIXED FEED PRODUCT

    Mole Flow (kmol/sec) VAPOR VAPOR

    BUTANE 0.0105 2.02E-03

    OXYGEN 0.1276 0.097918

    MALEI-01 0 8.48E-03

    WATER 0 0.0339223

    NITROGEN 0.4799 0.4799

    Substream: MIXED FEED PRODUCT

    Mole Flow (kmol/sec) VAPOR VAPOR

    BUTANE 0.0105 2.07E-03

    OXYGEN 0.1276 0.0981009

    MALEI-01 0 8.43E-03

    WATER 0 0.0337133

    NITROGEN 0.4799 0.4799

  • 7/30/2019 Team 4 Final Presentation

    14/25

    CaseII

    Polymath: Isothermal Packed Bed Reactor Model

    Effect of Catalyst Weight and Temperature on Conversion

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 10000 20000 30000 40000 50000 60000

    Conversionofn-butane

    Catalyst Weight (kg)

    Effect of Catalyst Weight and Temperature on Conversion

    623K

    648K

    673K

    698K

    723K

    623K Old

    648K Old

    673K Old

    698K Old

    723K Old

  • 7/30/2019 Team 4 Final Presentation

    15/25

    CaseII

    Polymath: Isothermal Packed Bed Reactor Model

    Effect of Length on Pressure Drop

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0 1 2 3 4 5 6 7

    PressureDrop%

    Length of Reactor (m)

    Effect of Length on Pressure Drop

    Dp=7mm

    Dp=14mm

  • 7/30/2019 Team 4 Final Presentation

    16/25

    CaseII

    Comparison of Three Models

    # of

    Tubes Po (Pa) Pf(Pa) T (K)

    Pressure Drop

    %

    Polymath 1 150000 135500 673 8.961

    Aspen Single Tube 1 150000 136543.8 673 8.97

    Aspen Multi-Tube 37220 150000 136546.8 673 8.97

  • 7/30/2019 Team 4 Final Presentation

    17/25

    CaseIII

    Additional Assumptions:

    Side reactions and byproducts are taken into consideration

    Polymath: Isothermal Packed

    Bed Reactor Model

    Results

    Stream Flows

    Variable ValueConversion 0.80742

    Catalyst Weight 212000 kg

    Bulk Density 900 kgcat/m3

    VRXTR 235.5556 m3

    SpeciesInitial

    (kmol/s)Final

    (kmol/s)

    C4H10 0.023 0.0044292

    O2 0.2793 0.194784

    N2 1.05065 1.05065

    C4H2O3 0 0.0084034

    H2O 0 0.0884504

    CO 0 0.0219674

    CO2 0 0.0187201

    Aspen Plus: RPLUG Reactor

    Stream Flows for Multi-Tube Reactor

    Stream Flows for Single Tube Reactor

    Species

    Initial

    (kmol/s)

    Final

    (kmol/s)

    C4H10 0.023 0.00440319

    O2 0.2793 0.1946679

    N2 1.05065 1.05065

    C4H2O3 0 0.00841679

    H2O 0 0.0845672

    CO 0 0.0219936

    CO2 0 0.0187264

    Species

    Initial

    (kmol/s)

    Final

    (kmol/s)

    C4H10 0.023 0.00440171

    O2 0.2793 0.1946573

    N2 1.05065 1.05065

    C4H2O3 0 0.00841548

    H2O 0 0.0845759

    CO 0 0.0219996

    CO2 0 0.0187316

  • 7/30/2019 Team 4 Final Presentation

    18/25

    CaseIII

    Polymath: Isothermal Packed Bed Reactor Model

    Effect of Reaction Temperature on Selectivity of Maleic

    Anhydride

    0.203

    0.204

    0.205

    0.206

    0.207

    0.208

    0.209

    0.21

    0.211

    0.212

    623 633 643 653 663 673 683 693 703 713 723

    Selectivity

    Temperature (K)

    Effect of Reaction Temperature on Selectivity of Maleic Anhydride

  • 7/30/2019 Team 4 Final Presentation

    19/25

    CaseIII

    Aspen Plus: RPLUG Reactor

    Effect of Reactor Length on Molar Flows

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    MolarFlows(kmol/s)

    Reactor Length (m)

    Effect of Reactor Length on Molar Flows

    n-butane

    Maleic Anhydride

    Water

    Carbon Monoxide

    Carbon Dioxide

    Oxygen

  • 7/30/2019 Team 4 Final Presentation

    20/25

    CaseIII

    Comparison of Three Models

    # of

    Tubes Po (Pa) Pf(Pa) T (K)

    Pressure Drop

    %

    Polymath 1 150000 137400 673 8.4

    Aspen Single

    Tube 1 150000 137336 673 8.442666667

    Aspen Multi-Tube 99200 150000 137336 673 8.442666667

  • 7/30/2019 Team 4 Final Presentation

    21/25

    CaseIV

    Additional Assumptions:

    Non-isothermal

    Energy Balance taken into consideration

    Heat exchanger with constant coolant temperature, Ta = 673 K

    Overall Heat Transfer Coefficient = 105 J/(m2*K*s)

  • 7/30/2019 Team 4 Final Presentation

    22/25

    CaseIV

    Polymath: Non-Isothermal

    Packed Bed Reactor Model

    Results

    Stream Flows

    Variable Value

    Conversion 0.8091979

    Catalyst Weight 173500 kg

    Bulk Density 900 kgcat/m3

    VRXTR 192.7778 m3

    Species Initial (kmol/s)

    Final

    (kmol/s)

    C4H10 0.023 0.0043884

    O2 0.2793 0.1945189

    N2 1.05065 1.05065

    C4H2O3 0 0.0084033

    H2O 0 0.0846545

    CO 0 0.0219682

    CO2 0 0.0188649

    Aspen Plus: RPLUG Reactor

    Stream Flows for Multi-Tube Reactor

    Species

    Initial

    (kmol/s)

    Final

    (kmol/s)

    C4H10 0.023 0.00438659

    O2 0.2793 0.1945099

    N2 1.05065 1.05065

    C4H2O3 0 0.00840391

    H2O 0 0.0846631

    CO 0 0.0219706

    CO2 0 0.0188673

  • 7/30/2019 Team 4 Final Presentation

    23/25

    CaseIV

    Aspen Plus: RPLUG Reactor

    Effect of Varying Ta On Hot Spot

    650

    660

    670

    680

    690

    700

    710

    720

    730

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Temperature(K)

    Reactor Length (m)

    Effect of Varying Ta on Hot Spot

    Ta=673 K

    Ta=663 K

    Ta=683 K

    Ta=653 K

  • 7/30/2019 Team 4 Final Presentation

    24/25

    CaseIV

    Comparison of Isothermal and Real Reactor Models:

    Polymath

    Aspen

    To (K) Ta (K)

    FMAN

    (kmol/s) Selectivity Conversion

    Real 673 673 0.0084033 0.2057963 0.8091979

    Isothermal 673 NA 0.0077919 0.206338 0.7492456

    To (K) Ta (K)

    FMAN

    (kmol/s) FCO (kmol/s)

    FCO2

    (kmol/s) Selectivity

    Real 673 673 0.00840391 0.02197067 0.01886732 0.2057866

    Isothermal 673 NA 0.00780377 0.02042879 0.01739411 0.2063239

  • 7/30/2019 Team 4 Final Presentation

    25/25

    CaseV

    Optimal Reactor Conditions:

    To (K) 673

    Ta (K) 673

    Po (Pa) 1.70E+05

    DOverall (m) 6.95

    dIndividual Tube

    (m) 0.0254

    Length (m) 4.158975

    Number of Tubes 74870

    VRXTR(m3) 157.778

    Catalyst Wt (kg) 142000

    Selectivity 0.204517

    Criteria Met:

    Minimal reactor size

    Minimized cost

    Constant selectivity throughout

    runs

    Gain < 2

    Pressure Drop < 10%