teamextruder_project_plan_document_final

16
Composites Extruder Head Development Colin Biery (720)2167625 [email protected] Ryan Dunn (303)2298358 [email protected] Michael Hansen (720)4271687 [email protected] Logan Rutt (303)4958382 [email protected] Tristan Vesely (925)8762343 [email protected] Colorado State University, Mechanical Engineering, Senior Practicum Projects Program October 6, 2015 ____________________________ ___________________________ ____________________________ ___________________________ ____________________________ ____________________________ Advisor: Dr. Don Radford

Upload: ryan-dunn

Post on 13-Apr-2017

113 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TeamExtruder_Project_Plan_Document_Final

     

Composites  Extruder  Head  Development  

   

  Colin  Biery   (720)216-­‐7625   [email protected]       Ryan  Dunn   (303)229-­‐8358   [email protected]       Michael  Hansen   (720)427-­‐1687   [email protected]     Logan  Rutt   (303)495-­‐8382   [email protected]     Tristan  Vesely   (925)876-­‐2343   [email protected]  

Colorado  State  University,  Mechanical  Engineering,  

Senior  Practicum  Projects  Program  

October  6,  2015  

 ____________________________   ___________________________  

 ____________________________   ___________________________  

 ____________________________  

 ____________________________   Advisor:  Dr.  Don  Radford  

   

 

 

 

Page 2: TeamExtruder_Project_Plan_Document_Final

   

Composites  Extruder  Head  Development    

 

Table  of  Contents  Introduction  ...................................................................................................................................................  2  Background  ....................................................................................................................................................  2  Composites  Properties  ..........................................................................................................................  2  Composites  Manufacturing  .................................................................................................................  3  Additive  Manufacturing  ........................................................................................................................  3  Current  Solutions  ....................................................................................................................................  4  

Problem  Statement  .....................................................................................................................................  5  Goals  .................................................................................................................................................................  6  Design  Constraints  .......................................................................................................................................  7  Work  Plan  and  Design  Evaluation  ..........................................................................................................  7  Design  Evaluation  .....................................................................................................................................  11  Management  Plan  ....................................................................................................................................  11  Meeting  times  .......................................................................................................................................  11  Timeline  and  Milestones  ...................................................................................................................  13  

Concluding  Statement  .............................................................................................................................  14  Budget  Breakdown  ...................................................................................................................................  14  References  ...................................................................................................................................................  15          

Page 3: TeamExtruder_Project_Plan_Document_Final

   

Composites  Extruder  Head  Development    

 

Introduction  Fiber  reinforced  thermoplastic  composites  are  incredibly  useful  materials  due  to  

their  impressive  specific  stiffness  as  well  as  their  specific  strength.  Specific  stiffness  is  measured  by  Modulus  of  Elasticity  divided  by  density,  and      specific  strength  is  measured  by  tensile  strength  divided  by  density.  Unfortunately,  composite  manufacturing  is  a  difficult  and  costly  process  that  makes  the  practicality  of  composite  parts  unsuitable  for  many  designs.  In  contrast  additive  manufacturing  is  a  relatively  simple  manufacturing  processes,  but  creates  weaker  parts.  Combining  the  ease  of  additive  manufacturing  techniques  with  the  strength  of  composites  would  enable  designers  to  rapidly  create  components  that  meet  structural  requirements.  This  will  eliminate  lag  time  for  prototypes  and  reduce  market-­‐level  manufacturing  times.  The  proposed  solution  to  this  challenge  is  a  hot  end  extruder  head  capable  of  manufacturing  consolidated  thermoplastic  composites  through  3D  printing.  Advancement  of  composite  materials  in  engineering  design  strongly  depends  on  the  availability  of  new  manufacturing  processes  [7].    

Background  

Composites  Properties  Composite   materials   offer   mechanical   properties   for   engineering   applications  

that  traditional  materials  cannot  compete  with.  Their  high  specific  strength  can  provide  the   same   capabilities   as   high-­‐grade  aluminum   at   five   to   ten   times   less  weight   [2].   Additionally   they   have  remarkable  durability  and  resistance  to  fatigue   [2].   Thermoplastic   fiber  composites   function   by   transmitting  external   energy   through   the  thermoplastic   matrix   material   to   the  hard,   brittle   fiber   reinforcements  within.  The  fibers  take  the  applied  load  

while   the   matrix   protects   them   from  damage.   Properties   of   composites  heavily  depend  on  the  properties  of  the  matrix,  reinforcement,  and  the  ratio  of  matrix  to  reinforcement,  which  is  traditionally  stated  as  the  percent  weight  of  fiber  [2,8].    

Fiber  orientation  is  one  factor  that  determines  the  properties  of  a  composite.  As  seen  from  Figure  1,  there  are  several  techniques  for  fiber  and  reinforcement  placement.  The  most  widely  practiced  fiber  placement  for  composites  is  continuous  and  discontinuous  (chopped)  fiber  [8].  Fibers  are  categorized  by  their  aspect  ratio  (length  divided  by  the  diameter  of  the  fiber),  where  continuous  fibers  have  long  aspect  ratios  and  discontinuous  fibers  have  short  aspect  ratios  [1].  Composites  are  most  effective  when  fibers  are  continuous  and  parallel,  increasing  their  ultimate  tensile  strength  and  

Figure  1  -­‐  Continuous  vs.  Short  Fibers  [11]  

Page 4: TeamExtruder_Project_Plan_Document_Final

   

Composites  Extruder  Head  Development    

 

stiffness.  Continuous  fiber  composites  have  anisotropic  material  characteristics,  and  fail  at  lower  stress  values  when  transversely  loaded  [2,8].  In  contrast,  Discontinuous  short  fiber  composites  tend  to  possess  more  isotropic  material  properties  when  compared  to  continuous  fiber  [2],  but  have  lower  tensile  strength  and  Modulus  of  Elasticity.  

Consolidation  is  an  important  issue  when  dealing  with  composite  materials.  Consolidation  describes  how  effective  the  matrix/thermoplastic  is  at  reaching  and  spreading  between  all  of  the  fibers.  Proper  consolidation  uniformly  arranges  the  fiber  reinforcement  throughout  the  material  with  fiber  volumes  at  50%  or  above.  One  reason  composites  are  advantageous  over  other  materials  is  how  the  matrix  distributes  the  external  forces  experienced  by  the  composite  to  the  stronger  (and  more  brittle)  fibers  [5].  The  transfer  of  energy  between  the  matrix  and  fiber  is  accomplished  through  proper  wetting  of  the  composite.  Proper  wetting  provides  adequate  bonding  between  the  matrix  and  fibers,  and  transfers  loads  through  shear  to  the  fibers  [2].  With  inadequate  wetting  out  of  the  fiber  composite,  the  structural  strength  decreases  and  does  not  provide  proper  mechanical  properties  for  engineering  use.    Without  the  stiff,  brittle  fibers  the  thermoplastic  alone  is  far  weaker  and  has  a  lower  modulus  of  elasticity,  because  the  matrix  has  lower  tensile/compression  strength  and  modulus  of  elasticity  than  the  fibers.  Without  proper  consolidation  and  wetting  of  the  fibers,  these  material  advantages  can  be  lost.  If  the  fibers  are  not  distributed  evenly  through  the  thermoplastic  matrix  and  not  adequately  transferring  energy,  you  do  not  achieve  consistent  material  properties  throughout  the  composite.  

Composites  Manufacturing  Although  composites  provide  strong  and  stiff  engineering  materials,  the  

manufacturing  process  can  be  costly  and  time  consuming.  Manufacturability  is  a  limiting  factor  for  commercialization  of  these  materials,  where  the  process  involves  multiple  steps  and  require  bulky  molds  [7].    The  tooling  required  to  create  composite  components  are  expensive  to  design  and  manufacture  and  do  not  offer  adaptability  for  design  changes.  In  addition  to  expensive  tooling,  the  manufacturing  process  often  requires  human  intervention  [6].  With  high  labor  necessities  the  price  of  production  increases  due  to  lack  of  automation,  and  exposes  individuals  to  unhealthy  work  environments  containing  fumes  and  high  temperatures.    

Additive  Manufacturing     Additive  manufacturing  (AM)  refers  to  the  process  of  building  3-­‐D  objects  by  adding  layer  upon  layer  of  material  to  create  a  complete  part  [10].  There  are  many  different  types  of  additive  manufacturing,  the  most  common  and  commercially  available  being  Fused  Deposition  Modeling  (FDM).  FDM  generally  uses  thermoplastic  filament  as  the  stock  material.  The  filament  is  fed  into  a  heated  extrusion  nozzle  where  it  is  melted  and  then  extruded  onto  a  base  plate  through  a  hot  end  extruder  head.  The  rate  at  which  the  filament  is  extruded  is  dependent  on  the  specified  printing  speed  of  the  extruder  head.  The  faster  the  printing  speed,  the  faster  the  filament  is  extruded  [10].  The  extruder  head  and  base  plate  move  on  a  minimum  of  three  axes  to  outline  the  geometry  

Page 5: TeamExtruder_Project_Plan_Document_Final

   

Composites  Extruder  Head  Development    

 

of  the  part.  Currently,  most  of  these  printers  move  in  the  x-­‐y  plane  to  create  a  layer  and  then  move  in  the  z-­‐direction  to  begin  printing  the  next  layer.    

  FDM  manufacturing  requires  no  tooling  or  user  interaction  to  create  finished  parts.  Parts  are  built  up  directly  on  the  base  plate  from  the  ground  up.  This  is  advantageous  as  it  requires  no  tooling  but  disadvantageous  because  it  is  limited  in  what  geometries  at  can  build  vertically.  They  are  built  up  using  G-­‐code  generated  from  3D  specific  software.  This  software  reads  stereolithography  (STL)  files  and  generates  the  code  directly  from  them.  This  form  of  AM  is  extremely  useful  for  developing  geometries,  however  it  is  disadvantaged  when  developing  structural  properties  for  application  purposes.    

Current  Solutions       There  are  a  few  current  ways  that  composites  are  being  implemented  into  AM.  These  include  using  hot  end  extruder  heads  to  pull  and  consolidate  fibers,  use  plastic  filament  pre-­‐impregnated  with  chopped  fibers,  and  using  printing  plastics  and  fibers  in  series  using  multiple  extruder  heads.  

  A  laboratory  scale  extruder  head,  developed  by  engineers  in  Zurich  Switzerland,  is  capable  of  of  processing  continuous  composite   lattice  structures   [7].  The  method  of  manufacturing   is  inspired   by  conventional   3D-­‐printing,   and   uses   a  novel   two-­‐stage  extrusion   head   to  manufacture   the  composite   as   seen  in   Figure   2.   This  novel  manufacturing  method   is   currently  patented   for   a  continuous   fiber  lattice   fabrication  (CFLF).

CSU  currently  has  two  graduate  students  working  with  composite  additive  manufacturing.  They  are  printing  commingled  tow,  a  form  of  composite  stock  material,  onto  a  rotating  mandrel  using  3D  extruder  heads.  This  method  requires  tension  on  the  stock  material  in  order  to  achieve  good  consolidation.  

  There  are  multiple  companies  that  are  selling  thermoplastic  filament  with  short  chopped   fibers   pre-­‐impregnated   into   the   filament.   This   composite   filament   can   be  

Figure  2  –  Commingled  tow  extruder  head  developed  by  ETHZ  Structures  [7]  

Page 6: TeamExtruder_Project_Plan_Document_Final

   

Composites  Extruder  Head  Development    

 

Figure  3  -­‐  Mark  Forged  MarkOne  Printer  [3]  

printed  in  many  commercially  available  printers  but  does  not  add  the  desired  benefit  to  properties  that  can  be  achieved  from  traditional  composite  manufacturing  methods.    

The   only   commercially   available   FDM   printer   that   prints   continuous   fiber  composites  is  the  Mark  One©  by  MarkForged  [3].  It  uses  a  dual  head  extruder  system  to  print  nylon  out  of  one  head  and  pre-­‐preg   fibers  out  of   the  other.  This   is   called   follow  behind   consolidation  because  the  matrix  is  extruded   on   top   of  the   fiber   after  extrusion.   This  method   gives   much  higher   strength  values   than   a   purely  nylon   part   would  achieving   a   tensile  strength  of  590  MPa  for   nylon-­‐fiberglass  composite  [3].  

Problem  Statement    

Composite  material  production  is  a  time-­‐intensive  and  expensive  process  when  creating  highly  complicated  parts.  Tooling  is  difficult  and  must  have  a  high  level  of  precision  to  create  quality  parts.  Molds  created  for  a  part  are  specific  to  that  part,  they  cannot  be  used  to  manufacture  anything  else.      

Fused  deposition  modeling  is  incredibly  easy  to  use  and  can  create  unique  shapes  for  virtually  no  overhead  cost.  It  is  versatile  and  capable,  but  the  parts  created  are  weaker  than  thermoplastic  parts  created  with  traditional  methods.    Being  able  to  produce  composite  materials  in  unique  shapes  via  additive  manufacturing  is  an  enabling  technology  opening  up  countless  opportunities  to  save  money  by  avoiding  costly  production  techniques.  Additive  manufacturing  is  a  rapidly  growing  field  that  keeps  making  breakthroughs  in  the  potential  it  has.  Composites  are  one  of  the  few  types  of  material,  if  not  the  only  one  left,  that  is  not  yet  being  printed.  Research  labs  are  already  starting  to  experiment  with  this  technology  [7].  Before  additive  manufacturing  of  composites  can  become  commercial  there  has  to  be  a  reliable  foundation  built  in  research  labs.  Researchers  who  make  the  most  strides  in  composites  extrusion  stand  to  gain  a  great  amount  as  many  commercial  companies  will  undoubtedly  begin  producing  as  many  composites  as  possible  this  way.  Ultimately  those  manufacturing  composites  stand  to  benefit  from  composites  extrusion  because  they  are  paying  the  outstanding  bill  for  current  production  methods.  Currently  Boeing®  requires  the  use  of  carbon  fiber  thrust  reversing  cascade  baskets  for  their  jet  engines.  There  is  only  one  company  in  the  

Page 7: TeamExtruder_Project_Plan_Document_Final

   

Composites  Extruder  Head  Development    

 

world  which  produces  the  baskets  and  they  use  an  expensive  hand-­‐laying  process.  The  proposed  fused  deposition  modeling  method  of  composite  manufacturing  has  the  potential  of  being  a  viable  alternative  to  the  current  cascade  manufacturing  process.  

 Goals    

The  designated  task  is  to  design  and  build  a  progression  of  laboratory  scale  composite  extruder  heads  capable  of  being  mounted  on  a  conventional  or  non-­‐conventional  3D  printer.  The  heads  developed  must  successfully  print  fiber  reinforced  composite  material.  Each  extruder  head  will  be  capable  of  printing  composites  with  different  stock  material  options:  

● One  head  capable  of  using  commingled  tow  and  of  wetting  out  dry  continuous  fiber.  

● One  head  that  is  able  to  use  lower  cost  forms  of  plastic  feedstock  than  the  commercial  fused  deposition  plastic  filament.  

● One  head  capable  of  extruding  continuous  patterns  of  plastic  and  reinforcing  dry  fiber  with  plastic  pellets  as  the  feedstock.  

● Print  composites  made  up  of  a  polypropylene  thermoplastic  matrix  and  glass  reinforcing  fibers  in  order  to  demonstrate  capability  of  printing  composites  made  up  of  a  Peek  thermoplastic  matrix  and  carbon  reinforcing  fibers    

Objectives  Table  1  -­‐  Design  Objectives  

Objective  Name   Priority*   Method  of  Measurement  

Objective  Direction  

Target  

Consolidation   5   Photo  Microscopy   Maximize   Evenly  distributed  fibers  

Fiber  Volume  Fraction  

4   Volume  of  fibers  (cc)  

Maximize   60%  

Hot  End  Temperature  Capability  

3   Head  temperature  (degrees  C)  

Maximize   500°C  

Operating  Temperature  

3   Head  temperature  (degrees  C)  

Optimize   TBD  via  experimentation  

Composites  Stiffness   2   Specific  Modulus  (GPa)  

Maximize   26.5  GPa  [9]**  

*      Priority  is  weighed  on  1-­‐5  scale  with  5  most  important  **  Value  provided  for  60%  by  volume  glass  fiber  reinforced  PP  composite.  Value      will  change  based  on  material  produced    

Page 8: TeamExtruder_Project_Plan_Document_Final

   

Composites  Extruder  Head  Development    

 

 Design  Constraints  

Table  2  -­‐  Design  Constraints  Constraint   Method  of  Measurement   Limits  

Material  Stock  Form   Thermoplastics  and  Reinforcing  Fibers  Stock  

Commingled  tow,  thermoplastic  filament,  dry  fiber,  thermoplastic  pellets  

Size   Dimensions  (mm  x  mm  x  mm)   54  x  65  x  65  

Commercial  Software   Compatible  slicing  and  controls  software  

Cura,  Slic3r,  etc.  

Manufacturing  Methods  

Compatible  types  of  additive  manufacturing  

Fused  Deposition  Modeling  

Budget   Dollars  Spent   $2000  

Safety   Possibility  of  Serious  Injury   0  

     Work  Plan  and  Design  Evaluation    

The  work  plan  for  our  project  is  crucial  to  developing  a  successful  product  and  will  be  executed  in  three  iterative  design  and  manufacturing  processes,  each  of  which  are  determined  by  the  type  of  material  stock  to  be  extruded.  These  processes  are  broken  down  in  detail  in  tables  3-­‐5.  

Page 9: TeamExtruder_Project_Plan_Document_Final

   

Composites  Extruder  Head  Development    

 

Table  3  -­‐  1st  Extruder  Head  Iteration  -­‐  Commingled  Tow  Design  Process  Process  step   Task  Breakdown  (with  number  of  hours  allocated  to  

each  task)  1. Acquire  3D  FDM  printer,  

extruder  head,  and  commingled  tow  Polypropylene  (PP)  Twintex  stock  material  

• Develop  printer  criteria  to  be  approved  by  Dr.  Radford  (3  hrs.)  

• research  and  buy  printer  approved  by  Dr.  Radford  (8-­‐10  hrs.)  

• Communicate  with  Kent  Warlick  to  receive  PP  Twintex  material  (1-­‐2  hrs.)  

2.)  Attempt  extruding  commingled  tow  through  original  standard  extruder  head  

• use  small  amount  of  PP  Twintex  in  test  extrusion  of  commingled  tow  using  the  original  extruder  head  that  was  purchased  with  the  printer  (3  hrs.)  

3.)  Determine  Procedure  for  effective  pultrusion,  consolidation,  and  extrusion  of  commingled  tow  with  extruder  head  

• Meet  with  Kevin  Hedin  and  Kent  Warlick  to  determine  current  methods  of  tensioning,  consolidating  extruding,  commingled  tow  on  spinning  mandrel  printer  (1-­‐2  hrs.)  

• identify  and  isolate  most  important  components  of  extruder  head  for  effective  tensioning,  consolidation,  and  extrusion  (3-­‐5  hrs.)  

4.)  Develop  extrusion  angle  and  flat  plate  printing  techniques  

• Use  information  acquired  from  initial  testing  and  mandrel  methods  to  generate  concepts  for  tensioning  consolidation  and  extrusion  (10-­‐15  hrs.)  

5.)  Design  angled  extruder  head  to  consolidate  and  print  Commingled  tow  

• Design  mechanical  components  necessary  to  achieve  goals  determined  in  concept  generation,  using  as  much  technology  from  prior  commingled  extrusion  process  as  necessary  (  10-­‐15  hrs.)  

6.)  Manufacture   • Using  the  I2P  lab  and  the  team  printer,  print  any  parts  necessary  that  are  not  temperature  sensitive  (printing  time:  10-­‐20  hrs.)  

• Machine  any  temperature  dependent  components,  either  in  house  or  professionally,  depending  on  complexity  of  geometry  (5-­‐15  hrs.)    (up  to  three  weeks  of  lead  time  for  professional  manufacturing)  

7.)  Assemble  and  test  extruder  head   • Test  extruder  head  and  parts  printed  based  on  current  testing  methods  used  by  Kevin  Hedin  and  Kent  Warlick  and  previously  found  in  research  (15-­‐20  hrs.)  

8.)  Revise  design  and  modify  extruder  as  necessary  based  on  testing  

• Based  on  testing,  modify  or  redesign  components  of  extruder  head  to  increase  composite  print  quality  and  use  on  2nd  and  3rd  iteration  of  extruder  head  (5-­‐20  hrs.)  

Page 10: TeamExtruder_Project_Plan_Document_Final

   

Composites  Extruder  Head  Development    

 

Table  4  -­‐  2nd  Iteration  -­‐  E-­‐glass  fiber  tow  and  thermoplastic  filament  

Process  step   Task  Breakdown  (with  number  of  hours  allocated  to  each  task)  

1. Acquire  E-­‐glass  Fiber  feedstock  and  PP  filament  feedstock  

• Purchase  E-­‐glass  fiber  tow  feedstock  (2-­‐3  hrs)    • Purchase  PP  thermoplastic  filament  feedstock  (<1  

hr)  

2.)  Modify  1st  iteration  of  extruder  head  design  to  accommodate  for  thermoplastic  filament  feedstock.  

• Generate  concepts  to  accommodate  for  new  feedstock  material  types  (5-­‐10  hrs)  

• Modify  designs  of  first  iteration  of  head  to  be  capable  of  tensioning  consolidating,  and  extruding,  composite  as  separate  feedstocks;  dry  fiber  and  PP  filament  (14-­‐18  hrs.)  

3.)  Manufacture  new  components  of  extruder  head  

• Print  any  parts  necessary  that  are  not  temperature  sensitive    and  were  not  previously  manufactured  from  1st  iteration  (printing  time:  5-­‐10hrs)  

• Machine  hot  end  extruder  head,  either  in  house  or  professionally,  depending  on  complexity  of  geometry  (5-­‐15  hrs)    (up  to  three  weeks  of  lead  time  for  professional  manufacturing)  

4.)  Assemble  and  test   • Test  extruder  head  and  parts  printed  based  on  current  testing  methods  used  by  Kevin  Hedin  and  Kent  Warlick  and  previously  found  in  research  (15-­‐20  hrs)  

5.)  Revise  design  and  modify  extruder  as  necessary  based  on  testing  

• Based  on  testing,  modify  or  redesign  components  of  extruder  head  to  increase  composite  print  quality  used  on  1st  and  to  be  used  on  3rd  iteration  of  extruder  head  (5-­‐20  hrs)  

Page 11: TeamExtruder_Project_Plan_Document_Final

   

Composites  Extruder  Head  Development    

 

Table  5  -­‐  3rd  Iteration  -­‐  E-­‐glass  fiber  tow  and  pellet  stock  Polypropylene  feedstock Process  step   Task  Breakdown  (with  number  of  hours  allocated  to  each  

task)  

1.)  Acquire  matrix  pellet  feedstock  

• purchase  PP  pellet  stock,  preferably  premixed  and  ready  to  be  used  as  is  (1-­‐3  hrs.)  

2.)  Develop  compact  process  for  melting  and  extruding  pellet  feedstock  

• Working  off  of  existing  technology,  develop  a  method  to  use  thermoplastic  feedstock  that  can  be  integrated  into  3D  printing  process  (8-­‐12  hrs.)  

3.)  Modify  2nd  iteration  of  extruder  head  design  to  incorporate  pellet  feedstock  system  

• Design  components  to  use  method  developed  to  use  pellet  feedstock  (10-­‐15  hrs.)  

• Modify  designs  to  be  capable  of  dealing  with  the  addition  of  components  for  pellet  feedstock  (10-­‐15  hrs.)  

4.)  Manufacture  new  components  of  extruder  head  

• Print  any  parts  necessary  that  are  not  temperature  sensitive    and  were  not  previously  manufactured  from  1st  iteration  (printing  time:  5-­‐10hrs)  

• Machine  any  components  that  are  temperature  dependent,  either  in-­‐house  or  professionally,  depending  on  complexity  of  geometry  (5-­‐20  hrs.)  (  up  to  three  weeks  of  lead  time  for  professional  manufacturing)  

5.)  Assemble  and  test   • Test  extruder  head  and  parts  printed  based  on  current  testing  methods  used  by  Kevin  Hedin  and  Kent  Warlick  and  previously  found  in  research  (15-­‐20  hrs.)  

6.)  Revise  design  and  modify  extruder  as  necessary  based  on  testing  

• Based  on  testing,  modify  or  redesign  components  of  extruder  head  to  increase  composite  print  quality  used  in  1st  and  2nd  iteration  of  extruder  head  (5-­‐20  hrs.)  

   

Page 12: TeamExtruder_Project_Plan_Document_Final

   

Composites  Extruder  Head  Development    

 

Design  Evaluation  Our  main  design  objective  is  to  produce  a  high  quality  composite  so  there  must  

be  a  way  to  test  for  quality.  Extrusion  temperature,  feed  rate,  and  nozzle  diameter  are  crucial  test  variables  that  need  structured  experiments  to  determine  optimum  printing  conditions.  Consolidation  will  be  measured  with  density  measurements  and  fiber  volume  fraction  will  be  measured  with  a  resin  burnout  method.  Resin  burnout  involves  weighing  the  produced  part  and  then  baking  it  and  letting  the  resin  evaporate  so  only  fibers  are  left.  Those  fibers  can  then  be  weighed  with  respect  to  the  original  weight  to  find  the  percentage  of  fiber  in  the  material.    

Other  engineering  analysis  tools  that  will  be  required  for  a  successful  product  involve  mathematical  consideration  and  control  systems.  Mathematical  heat  transfer  calculations  will  be  required  to  determine  the  optimal  temperature  to  extrude  the  matrix  at  to  ensure  proper  wetting  out  of  fibers  and  solidification  upon  contact  with  the  print  plate  or  previous  layers.  Die  swell  will  be  an  important  variable  to  take  into  consideration  when  designing  and  testing.  Die  swell  is  determined  from  the  diameter  of  the  extrudate  and  the  diameter  of  the  extrusion  nozzle.    

Material  selection  software  such  as  Cambridge  Engineering  Selector  will  be  a  valuable  asset  for  any  engineering  decisions  needing  to  be  made  regarding  material  selection,  this  is  most  likely  to  occur  in  nozzle  design.  Control  systems  will  be  implemented  in  regards  to  extruder  head  temperature.  Controls  should  be  user  defined  and  consistent  in  nature  and  therefore  a  system  of  heat  detection  is  necessary.  

 Management  Plan  

Meeting  times    

Team  Extruder  meets  Tuesday  and  Thursday  afternoons  starting  around  1:30pm  (depending  on  when  senior  design  lecture  get  out).  On  Tuesday  afternoons  Team  3D  Contour  and  Team  Extruder  Head  meet  in  order  to  coordinate  between  the  two  projects.  Team  Cascade  joins  this  collaborative  meeting  the  first  Tuesday  of  every  month  to  update  everyone  on  current  progress  and  to  prepare  the  interfacing  of  the  three  projects.  Cascade’s  involvement  in  the  collaborative  meetings  will  increase  as  the  design  process  progresses,  and  the  time  comes  to  start  interfacing  the  projects.    After  the  multi-­‐team  meetings  are  finished  Team  Extruder  continues  working  on  the  composite  extruder  head  specifically.  On  Thursday  the  team  initially  meets  with  Dr.  Radford,  along  with  the  other  Boeing  composite  teams  for  a  short  period.  Afterwards  Team  Extruder  has  its  own  meeting  to  prepare  questions  and  concerns,  while  the  3D  contour  team  meets  with  Dr.  Radford.  After  meeting  with  the  team’s  advisor  there  is  another  short  team  meeting  to  discuss  what  was  just  covered  and  what  needs  to  be  done  for  the  next  week,  including  goals  and  specific  tasks  for  each  team  member.    

 

Page 13: TeamExtruder_Project_Plan_Document_Final

   

Composites  Extruder  Head  Development    

 

Every  Wednesday  night  before  our  team  meeting  with  Dr.  Radford  everyone  in  the  team  completes  an  individual  progress  report  which  details  what  they  accomplished  in  the  last  week  and  what  they  hope  to  accomplish  in  the  upcoming  week.  The  project  manager  also  completes  a  progress  report  for  the  entire  team  that  is  sent  to  Dr.  Radford.  The  team  progress  report  also  includes  questions  and  concerns  that  the  entire  team  would  like  to  discuss  and  any  additional  documentation  that  is  separate  from  the  report.  These  progress  reports  are  sent  to  Dr.  Radford  no  later  than  8:00  AM  the  day  of  the  meeting  and  are  stored  in  a  folder  on  the  team’s  drive  for  reference.  Every  other  week  the  team  also  gives  a  PowerPoint  presentation  to  Dr.  Radford  covering  much  of  the  same  information.  Other  meetings  times  are  scheduled  as  needed  to  complete  certain  tasks.  

 Table  6  -­‐  Team  Meeting  Times  

Tuesday   Wednesday   Thursday   Other  Days  

1:30pm  -­‐  Combined  meeting  with  3D  Contour  Team  and  Boeing  Cascade  Basket  team(Cascade-­‐First  Tuesday  of  the  month)  -­‐  Separate  team  meeting  afterwards  

Individual  and  team  progress  reports  finished  and  sent  by  the  end  of  the  day  Bi-­‐weekly  progress  report  finished  and  sent  every  other  week  

2:00pm  -­‐  Combined  advisor  meeting  2:15pm    -­‐  Team  meeting  time  3:15pm    -­‐  Meeting  with  Dr.  Radford  3:45pm    -­‐  Quick  team  recap  

Meetings  as  necessary  to  complete  tasks  

       

Page 14: TeamExtruder_Project_Plan_Document_Final

   

Composites  Extruder  Head  Development    

 

Timeline  and  Milestones    

The  main  team  schedule  is  set  in  a  Gantt  chart  built  in  Microsoft  Project.  Important  milestones  which  are  closer  to  the  present  have  more  exact  dates  assigned  to  them.  In  order  to  complete  three  prototypes  within  the  allowed  time  for  this  project  milestones  are  set  very  close  together  and  sometimes  overlap.  Some  important  milestones  are:    

● Oct.  6th:  Turn  in  project  plan  document    

● Week  of  Nov.  9th:  Complete  concept  generation  and  evaluation  for  fiber-­‐filament  and  fiber-­‐pellet  extruder  heads  

 ● Week  of  Nov.  16th:  Complete  testing  and  evaluation  of  commingled  tow  

extruder  head    

● Dec.  3rd:  Critical  decision  meeting  to  determine  focus  on  commingled  tow  or  fiber-­‐filament  extruder  head  development  

 ● Week  of  Dec.  14th:  Complete  full  3D  CAD  and  2D  drawings  for  fiber-­‐filament  and  

fiber-­‐pellet  extruder  heads,  begin  fiber-­‐filament  extruder  head  manufacturing    

● Week  of  Jan.  18th:  Finish  fiber-­‐filament  extruder  head  manufacturing    

● Week  of  Jan.  25th:  Finish  fiber-­‐filament  extruder  head  assembly  and  begin  testing,  begin  fiber-­‐pellet  extruder  head  manufacturing  

 ● Late  Feb.:  Critical  decision  meeting  to  determine  focus  on  fiber-­‐filament  or  fiber-­‐

pellet  extruder  head  development,  finish  fiber-­‐pellet  extruder  head  assembly    

● Mid  Apr.:  E-­‐Days,  finish  extruder  head  project  and  present,  begin  integration  with  other  Boeing  Composite  teams  to  print  composite  cascade  basket  

 ● Early  May:  Finish  integration  with  other  Boeing  Composite  teams  and  attempt  

full  composite  cascade  basket  print        

Page 15: TeamExtruder_Project_Plan_Document_Final

   

Composites  Extruder  Head  Development    

 

Concluding  Statement    

This  project  plan  was  intended  to  communicate  what  the  Composites  Extruder  Head  Development  Team  will  be  working  on  for  the  academic  year.  Three  iterative  design  processes  will  be  used  to  develop  the  capability  to  print  with  three  different  forms  of  feedstock  material.  Difficulties  of  the  development  lie  in  achieving  wetting  between  fibers  and  matrix  as  well  as  between  layers  and  the  previously  produced  layer.  Evaluation  of  the  successes  put  forth  by  the  team  most  notably  involve  producing  a  composite  material  of  high  quality.  

 Budget  Breakdown    

Table  7  -­‐  Team  Budget  Allotment  Item     Description   Estimated  Cost  3D  printer   A  commercially  available  3D  printer  which  can  

fit  our  extruder  head.  Will  be  used  to  print  test  articles  for  all  three  prototypes.  Split  with  Contour  Team  

$600  ($1200  split  evenly  with  contour  team,  printer  may  be  donated/discounted)  

Pico  B3  hot  end  

Commercially  available  hot  end  for  extruder  which  will  allow  printing  of  commingled  tow  

$150  (includes  shipping,  base  plate  cost)  

Glass  fiber  and  PP  commingled  tow  

Commingled  glass  fiber  inside  PP  matrix  to  be  used  for  first  prototype  

$0  (provided  by  advisor)  

Glass  fiber   E-­‐glass  fibers  used  as  reinforcing  material  in  second  and  third  prototypes  

$40  (6  kg  of  fiber)  

PP  filament   PP  matrix  in  filament  stock  form,  for  use  in  prototype  two  

$80  (2  kg  of  filament)  

PP  pellet  stock  

PP  matrix  in  pellet  stock  form  for  use  in  prototype  three  

$45  (10  lbs  of  pellets)  

Production  of  custom  hot  ends  

Professional  machining  for  prototype  two  and  three  hot  ends  

$600  ($60  per  hour)  

I2P  printer  lab  printing  

Printing  of  dual  extruder  head  and  prototype  parts  for  all  three  prototypes  

 

 

In  total  the  Team  was  allocated  2,000  dollars  to  complete  all  three  prototypes.  This  money  was  granted  through  our  advisor,  Dr.  Radford,  for  use  on  this  project.  

   

Page 16: TeamExtruder_Project_Plan_Document_Final

   

Composites  Extruder  Head  Development    

 

References  [1]  al.,  F.  N.  (2015).  Additive  Manufacturing  Of  Carbon  Fiber  Reinforced  thermoplastic  

Composites  using  Fused  Deposition  Modeling.  Composites:  Part  B,  Engineering,  80,  369-­‐378.  

[2]  Campbell,  F.  (2010).  Structural  Composite  Materials.  ASM  International.  

[3]  MarkForged  Develops  3D  Printer  For  Carbon  Fibre.  (2015).  Reinforced  Plastics,  1(59).  

[4]  Michaeli,  W.  (2004).  Processing  Polyethelylene  Terephthalate  on  a  Single  Screw  Extruder  Without  Predrying  Usin  Hopper  and  Melt  Degassing.  ANTEC,  296-­‐298.  

[5]  Premix  Inc.,  'Why  Composites?',  (2015).  Available:  http://www.premix.com/why-­‐composites/adv-­‐composites.php.  [Accessed:  03-­‐  Oct-­‐  2015].  

[6]  TWI,  'FAQ:  How  are  composites  manufactured?',  (2015).  Available:  http://www.twi-­‐global.com/technical-­‐knowledge/faqs/process-­‐faqs/faq-­‐how-­‐are-­‐composites-­‐manufactured/.  [Accessed:  02-­‐  Oct-­‐  2015].  

[7]  Eichenhofer,  Maldonado,  Florian,  Ermanni,  M.  (2015).  ANALYSIS  OF  PROCESSING  CONDITIONS  FOR  A  NOVEL  3D-­‐COMPOSITE  PRODUCTION  TECHNIQUE.  20th  International  Conference  on  Composite  Materials,  20th.  

[8]  Budinski,  K.  (1979).  Engineering  Materials:  Properties  and  Selection  (9th  ed.,  Vol.  1,  p.  773).    Upper  Saddle  River,  New  Jersey:  Reston  Pub.    

[9]"TWINTEX®  PP  Mechanical  Properties  (non  Standard)."  Fiberglass  Industries,  Inc.    Fiber  Glass  Industries,  Inc,  2013.  Web.  5  Oct.  2015.  <http://fiberglassindustries.com/twintextechdata.htm>.    

 [10]  Gibson,  I.,  Rosen,  D.,  &  Stucker,  B.  (2010).  Additive  manufacturing  technologies  rapid     prototyping  to  direct  digital  manufacturing  (2nd  ed.,  Vol.  1,  p.  487).  New  York:  Springer     New  York.    [11]  Composite  Materials  Development.  (n.d.).  Retrieved  October  6,  2015.