technical memorandum 33-633 - nasa€¦ · technical memorandum 33-633 design and operation of a...

146
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C : J. Torola, Jr. 004 Q 0) U Ln JET PROPULSION LABORATORY Io CALIFORNIA INSTITUTE OF TECHNOLOGY -1 9 PASADENA, CALIFORNIA U M December 1, 1973 IP w https://ntrs.nasa.gov/search.jsp?R=19740006673 2020-05-01T14:40:48+00:00Z

Upload: others

Post on 30-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-633

Design and Operation of a 10000C

Lithium- Cesium Test System

L. G. Hays

G. M. Haskins

I D. E. O'Connor

to C : J. Torola, Jr.

004

Q

0) U

Ln JET PROPULSION LABORATORYIo CALIFORNIA INSTITUTE OF TECHNOLOGY

-1 9 PASADENA, CALIFORNIA

U M December 1, 1973

IP w

https://ntrs.nasa.gov/search.jsp?R=19740006673 2020-05-01T14:40:48+00:00Z

Page 2: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. 33-633 2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle 5. Report Date December 1, 1973

DESIGN AND OPERATICN OF A 10000 C LITHIUM-CESINM TEST SYSTEM 6. Performing Organization Code

7. Author(s) L. G, Hays, G. M. Haskins, 8. Performing Organization Report No.

D. E. O'Connor, J. Torola, Jr.

9. Performing Organization Name and Address 10. Work Unit No.

JET PROPULSION LABORATORYCalifornia Institute of Technology 11. Contract or Grant No.

4800 Oak Grove Drive NAS 7-100

Pasadena, California 91103 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 14. Sponsoring Agency CodeWashington, D.C. 20546

15. Supplementary Notes

16. Abstract

A 100 kWt cesium-lithium test loop was fabricated of niobium-l% zirconiumfor experiments on erosion and two-phase system operation at temperaturesof 9800 C and velocities of 150 m/s. Although operated at design temper-ature for 100 hours, flow instabilities in the two-phase separator interferedwith the achievement of the desired mass flow rates. A modified separatorwas fabricated and installed in the loop to alleviate this problem. Becauseof program cancellation, the test system has been placed in standby conditionfor storage. This report documents the test system.

17. Key Words (Selected by Author(i)) 18. Distribution Statement

Fluid Mechanics Unclassified -- UnlimitedMaterials, MetallicTest Facilities and EquipmentThermodynamics

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 137

7L

Page 3: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

HOW TO FILL OUT THE TECHNICAL REPORT STANDARD TITLE PAGE

Make items 1, 4, 5, 9, 12, and 13 agree with the corresponding information on the

report cover. Use all capital letters for title (item 4).; .Leave items 2, 6,. and 14blank. Complete the remaining items as follows:

3. Recipient's Catalog No. Reserved for use by report recipients.

7. Author(s). Include corresponding information from the report cover. Inaddition, list the affiliation of an author if it differs from that of theperforming organization.

8. Performing Organization Report No. Insert if performing organizationwishes to assign this number.

10. Work Unit No. Use the agency-wide code (for example, 923-50-10-06-72),which uniquely identifies the work unit under which the work was authorized.Non-NASA performing organizations will leave this blank.

11. Insert the number of the contract or grant under which the report wasprepared.

15. Supplementary Notes. Enter information not included elsewhere but useful,such as: Prepared in cooperation with... Translation of (or by)... Presentedat conference of... To be published in...

16. Abstract. Include a brief (not to exceed 200 words) factual summary of themost-significbnt information contdined in the report. If possible, the- - -.abstract of a classified report should be unclassified. If- the report containsa significant bibl iography orl iterature:survey,- mention it here.-..........

17. Key Words. Insert terms or short phrases selected by the author that identifythe principal subjects covered in the report, and that are- sufficientlyspecific and precise to be used for cataloging.

18. Distribution Statement. Enter one of the authorized statements used todenote releasability to the public or a limitation on dissemination forreasons other than security of defense information. Authorized statementsare "Unclassified-Unlimited, " "U. S. Government and Contractors only, ""U. S. Government Agencies only, " and "NASA and NASA Contractors only. "

19. Security Classification (of report). NOTE: Reports carrying a securityclassification will require additional markings giving security and down-grading information as specified by the Security Requirements Checklistand the DoD Industrial Security Manual (DoD 5220. 22-M).

20. Security Classification (of this page). NOTE: Because this page may beused in preparing announcements, bibliographies, and data banks, it shouldbe unclassified if possible. If a classification is required, indicate sepa-rately the classification of the title and the abstract by following these itemswith either "(U)" for unclassified, or "(C)" or "(S)" as applicable forclassified :items.

21. No. of Pages. Insert the number of pages.

22. Price. Insert the price set by the Clearinghouse for Federal Scientific andTechnical Information or the Government Printing Office, if known.

Page 4: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-633

Design and Operation of a 10000C

Lithium- Cesium Test System

L. G. Hays

G. M. Haskins

D. E. O'Connor

J. Torola, Jr.

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

December 1, 1973

Page 5: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Prepared Under Contract No. NAS 7-100National Aeronautics and Space Administration

Page 6: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

PREFACE

The work described in this report was performed by the Propulsion

Division of the Jet Propulsion Laboratory.

g0EDING PAGE BLANK NOT FILMED

JPL Technical Memorandum 33-633

Page 7: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

PRECEDING PAGE BLANK NOT FILMLEDCONTENTS

I. Introduction ...... ........... .. ................. 1

II. Description of Test System ........................... 2

A. Two-Phase Nozzle ................... ........... 3

B. Thrust Target and Separator ........................ 4

C. Lithium Pum p .................... .............. 5

D. Lithium Heater .................... ............ 5

E. Lithium Flowmeter ................... .......... 6

F. Cesium Pump .................... ............. 6

G. Cesium Flowmeter ................... .......... 6

H. Cesium Desuperheater ........................... 6

I. Cesium Condenser .. ....... . ....... .. . . ..... . . . 7

J. NaK Heat Rejection Loop .................. ......... 7

K. Vacuum Chamber................. ........... ... 7

L. Instrumentation and Controls ....................... 7

III. Operating Experience ............................... 8

IV. Sum m ary ............ ... . .... .... ............... 9

References . ........... .. . . . ..................... .... 10

Appendix A. Loop Operating Procedures. . .................. .. 37

Appendix B. Test System Schematic Diagrams ............ . . . . . . . 44

Appendix C. Fabrication Drawings of Test System . .............. 78

Appendix D. Cesium-Lithium Loop Operating Characteristics . ...... 132

FIGURES

1. Schematic diagram of cesium-lithium MHD powersystem . ....... .. ........ ....... ...... ..... . 1 I

2. Cesium-lithium erosion loop at 980*C ................. 11

JPL Technical Memorandum 33-633 v

Page 8: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

CONTENTS (contd)

FIGURES (contd)

3. 100-kW erosion loop liquid metal circuits schematic

diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12

4. Cesium-lithium test circuits before activation . .......... 13

5. Cesium-lithium nozzle geometry .................... 13

6. Cesium-lithium nozzle before welding ................. 14

7. Water-nitrogen test of nozzle for cesium-lithium loop ...... 14

8. Comparison of experimental and theoretical exitvelocities for cesium-lithium loop nozzleoperating with nitrogen and water .................... 15

9. Cesium-lithium nozzle flow for different nozzle inlettemperatures (saturated vapor) ..................... 15

10. Nozzle-separator assembly ........... .... ........ .. 16

11. Thrust target assembly ................... ....... 17

12. Erosion specimen mounted on thrust target . ............ 18

13. Thrust target mounted in separator body . .............. 19

14. Separator assem bly ............................. 20

15. Lithium baffles ................................ 21

16. Two-phase cyclone separator operating with H 2 0

and N 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

17. Cesium-lithium cyclone separator ................... 23

18. Pumping element for lithium pump. ......... . . . . . . . 24

19. Helical induction pump stators . .................. ... 25

20. Lithium pump characteristic at 980 0C ......... ......... 26

21. Lithium heater before welding ............. ... ..... 27

22. Lithium heater end before welding ................... 27

23. Cesium and lithium flowmeters ..................... 28

24. Lithium flowmeter calibration (776 gauss) ........... . . . 28

25. Cesium flowmeter calibration (2355 gauss). . .......... . . 29

vi JPL Technical Memorandum 33-633

Page 9: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

CONTENTS (contd)

FIGURES (contd)

26. Cesium desuperheater ........................... 30

27. Radiant cesium desuperheater before welding . . . ... . . ....... 31

28. Cesium condenser before welding ............ . . . . . . . . 31

29. Cesium condenser after welding ..................... 32

30. NaK heat rejection system before insulation .......... . .. 32

31. Vacuum chamber and ion pump for cesium-lithiumerosion loop ..... .............. ...... . ....... . 33

32. Pressure transducer installation .................... .... 34

33. Control console for cesium-lithium test system . ........ . 35

34. Modified version of cesium-lithium erosion loop . ......... 36

B-i. 100-kW erosion loop liquid metal circuits schematic

diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 49

B-2. 100-kW erosion loop electrical schematic diagram . ....... 50

B-3. 100-kW erosion loop argon, vacuum, and air circuits

schem atic diagram ............................. 51

B-4. 100-kW erosion loop cooling circuits schematicdiagram ................... . .................. 52

B-5. 100-kW erosion loop Cs injection and separationcircuit schematic diagram .................... 53

B-6. Building 148 panel CBA wiring diagram . ............... 55

B-7. Building 148 junction box JA interconnection diagram ....... . 57

B-8. Building 148 panel CBB wiring diagram . ............... 58

B-9. Building 148 panels CBE and CBF wiring diagram . ........ 59

B-10. Magnetohydrodynamic facility panel CBH wiringdiagram .... .. .. ... .......... ................ 60

B-11. Magnetohydrodynamic facility panel CBJ wiringdiagram .. . . . . . .............................. 61

B-12. Magnetohydrodynamic facility panel CBK wiringdiagram . .... .. .. . .. . . . . .. . ... ... .. . .. .. ..... 62

JPL Technical Memorandum 33-633 vii

Page 10: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

CONTENTS (contd)

FIGURES (contd)

B-13. Building 148 panel CBP wiring diagram ...... ........ ..... 63

B-14. Building 148 panel CBQ wiring diagram ................. 63

B-15. Building 148 100-kW test valves schematic diagram ........ 64

B-16. Magnetohydrodynamic facility type WSH welder 1000 A,unit 1, wiring and schematic ...................... . 65

B-17. Magnetohydrodynamic facility type WSH welder 1000 A,unit 2, wiring and schematic ............ . .......... 66

B-18. Magnetohydrodynamic facility type WSH welder 1000 A,unit 3, wiring and schematic ....................... 67

B-19. Magnetohydrodynamic facility type WSH welder 1000 A,unit 4, wiring and schematic .............. ......... 68

B-20. Building 148 NaK pump blower schematic diagram ......... 69

B-21. Building 148 heat exchanger blower schematic diagram . . . . . 70

B-22. Building 148 vacuum vessel heater schematic diagram .. ..... 71

B-23. Building 148 damper control schematic diagram . . . . . . . . . 71

B-24. Building 148 100-kW test, NaK heater schematicdiagram ....... ...... ....... ................. 72

B-25. Building 148 NaK pump schematic diagram .... . . . . . . . . 73

B-26. Building 148 hot trap schematic diagram . . . . . . . . . . . . . . . 74

B-27. Magnetohydrodynamic facility 15-hp blower schematicdiagram .................... ... ............. 74

B-28. Magnetohydrodynamic facility 1-1/2-hp blowerschematic diagram .................... ......... 75

B-29. Magnetohydrodynamic facility lithium pump schematicdiagram . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 76

B-30. Magnetohydrodynamic facility cesium pump schematicdiagram ............... . ... ................ .. 77

C-1. Layout and installation - 100-kW MHD ac generatorerosion loop ................ ... ............... . . 80

C-2. Weldment injector assembly ......... ...... ......... 83

viii JPL Technical Memorandum 33-633

Page 11: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

CONTENTS (contd)

FIGURES (contd)

C-3. Plug, housing injector assembly ....................... 83

C-4. Needle assembly ................................. 84

C-5. Aperture plate .............. .................... 85

C-6. Tube, needle assembly ...................... . 85

C-7. Holder, tube ............................. .... 86

C-8. Separator - 100-kW erosion loop. . .. ................ . 87

C-9. Assembly, body, separator - 100 kW erosion loop . ........ 88

C-10. Collar separator - 100-kW erosion loop . ............... . 89

C-11. Baffle 1, separator - 100-kW erosion loop . ............. 90

C-12. Baffle 2, separator - 100-kW erosion loop . ....... . . .... 91

C-13. Cylinder screen, separator - 100-kW erosion loop . ....... 92

C-14. Body, separator - 100-kW erosion loop . ................ 93

C-15. Band, separator - 100-kW erosion loop ........... . . . . . 94

C-16. Plate, top, separator - 100-kW erosion loop . ........... 95

C-17. Nozzle assembly, separator - 100-kW erosion loop . ....... 96

C-18. Ring, nozzle, separator - 100-kW erosion loop. . . ........ 97

C-19. Plate, bottom, separator - 100-kW erosion loop . ......... 98

C-20. Ring, separator - 100-kW erosion loop . ................ 99

C-21. Assembly, cone and support, separator - 100-kWerosion loop . .... . . . . ........ ................. .100

C-22. Cone assembly, separator - 100-kW erosion loop ........ . 101

C-23. Support, tube, separator - 100-kW erosion loop . ......... 102

C-24. Plug, tube support - 100-kW erosion loop separator. ........ 103

C-25. Bellows, separator - 100-kW erosion loop ........... .. . 104

C-26. Coupling, separator - 100-kW erosion loop. . ........... . 105

C-27. Tubing, separator - 100-kW erosion loop . ......... . ... 106

JPL Technical Memorandum 33-633 ix

Page 12: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

CONTENTS (contd)

FIGURES (contd)

C-28. Pin ring, separator - 100-kW erosion loop............... 106

C-29. Nose cone, separator - 100-kW erosion loop . ........... 107

C-30. Heater assembly - 100-kW erosion loop . ............... 108

C-31. Shell, lithium heater - 100-kW erosion loop . ............ 109

C-32. Element assembly, lithium heater . .................. 110

C-33. Bulkhead, lithium heater ......................... 110

C-34. Condenser - 100-kW erosion loop, cesium ......... . . . . . 111

C-35. Joint, coextruded - erosion loop cesium condenser ........ 113

C-36. Bracket, bus support, inner (LH and RH) . ............. 114

C-37. Bar, bus, lead-in (RH) ........................... 115

C-38. Adapter, aft .................... ............... 115

C-39. Bar, bus, lead-in (LH) ........................... 116

C-40. Bracket, bus support, outer. ....................... 117

C-41. Housing, injector assembly ........................ 118

C-42. Bar, bus transition (LH) .......................... 119

C-43. Bar, bus transition (RH) .......................... 120

C-44. Door assembly - 100-kW erosion loop . ................ 121

C-45. Vacuum tank assembly - 100-kW erosion loop ............ 123

C-46. Frame, weldment, vacuum tank support . .............. 124

C-47. Frame, assembly .............................. 125

C-48. Transition pieces, columbium separator . .............. 126

C-49. Sump weldment - cesium, lithium and NaK (tabulated) ...... 127

C-50. Sketch, desuperheater, erosion loop ......... . . ........ 1. 128

C-51. Cooler, 100-kW erosion loop ......................... 129

C-52. Flowmeter FM-14 ..................... ........... 130

x JPL Technical Memorandum 33-633

Page 13: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

CONTENTS (contd)

FIGURES (contd)

C-53. Flowm eter FM -12 .............................. 131

D-1. Cs-Li loop characteristics ....................... 138

JPL Technical Memorandum 33-633 xi

Page 14: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

ABSTRACT

A 100 kWt cesium-lithium test loop was fabricated of niobium-1%

zirconium for experiments on erosion and two-phase system operation at

temperatures of 980'C and velocities of 150 m/s. Although operated at

design temperature for 100 hours, flow instabilities in the two-phase sepa-

rator interfered with the achievement of the desired mass flow rates. A

modified separator was fabricated and installed in the loop to alleviate this

problem. Because of program cancellation, the test system has been placed

in standby condition for storage. This report documents the test system.

xii JPL Technical Memorandum 33-633

Page 15: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

I. INTRODUCTION

Power generation for advanced space missions and central station

power by a liquid metal magnetohydrodynamic cycle has been studied exten-

sively (Refs. 1-4). A promising system for power levels above about 100 kWe

is based on the two-component separator cycle using lithium and cesium as

working fluids (Refs. 5 and 6). Cesium is mixed with lithium at high temper-

ature at the inlet of a nozzle as shown in Fig. 1. The cesium vaporizes and

the mixture is accelerated in the nozzle to high velocity. Impingement on an

inclined surface produces a low-void fraction stream that is predominantly

liquid lithium. This stream is decelerated in an MHD generator, producing

electric power, and is subsequently returned by its remaining kinetic energy

through the heat source to the nozzle inlet. The other flow leaving the sepa-

rator is a high-void fraction stream that consists of cesium vapor with carry-

over of liquid and vaporous lithium. This mixture is condensed and returned

by a pump to the nozzle inlet.

The characteristics of this system have been partially determined by

analysis (Ref. 6), by component experiments using ambient water-nitrogen,

NaK, and NaK-nitrogen mixtures (Refs. 7 and 8), in system experiments with

water-nitrogen and NaK-nitrogen mixtures (Ref. 8), and through high-tem-

perature, corrosion-erosion experiments with lithium (Refs. 9 and 10).

However, information on the following subjects requires testing with cesium

and lithium at the peak system temperatures:

(1) Erosion of surfaces by lithium impingement at the design velocity

of 150 m/s.

(2) Performance of a two-phase nozzle with a cesium-lithium mix-

ture.

(3) Condensation characteristics of cesium-lithium mixtures.

JPL Technical Memorandum 33-633

Page 16: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

(4) Nonequilibrium behavior of cesium-lithium flows where solution

or dissolution are occurring.

In order to investigate these subjects a flow system was fabricated from

niobium-1% zirconium alloy to operate with cesium-lithium at a peak temper-

ature of 980'C. Erosion can be determined by measuring the depth of attack

or deposit on a wedge with an optically flat surface which was located in the

flow stream at the nozzle exit. Nozzle performance can be derived from the

measured thrust produced by the flow on a target cone which was designed to

turn the flow by 90 deg. Cesium condensation coefficients can be determined

by measurements on the NaK-cooled compact condenser. Nonequilibrium

behavior would be inferred by deviations from the thermodynamic cycle

calculations.

The test system was operated with simultaneous cesium and lithium

flow at the design temperature of 980 0 C for about 100 hours. Figure 2 is a

photograph of operation at high temperature and low flow rates. Flow insta-

bility prevented attainment of the design mass flow rates and impingement

velocities. Modifications to the separator component to eliminate the insta-

bility were nearly completed when the NASA liquid metal MHD project was

cancelled. The test system has been placed in a standby condition pending

further investigations oriented toward commercial power generation.

Appendixes A, B, C, and D present, respectively, loop operating

procedures, test system schematics, fabrication drawings of the test sys-

tem, and loop operating characteristics.

II. DESCRIPTION OF TEST SYSTEM

The two-component liquid metal MHD system being studied and the

Cs-Li test system are most closely related to the Rankine cycle. The flow

paths and processes can be illustrated by reference to Fig. 3, which is a

schematic of the liquid metal circuits of the test system. Lithium is heated

to the maximum temperature in the heater component and flows to the nozzle,

where it is injected at point 1.

Cesium liquid is also injected in the nozzle at point 2. Part of the

cesium vaporizes and the remainder goes into solution with the lithium,

which remains mostly in the liquid state. The cesium vapor is accelerated

2 JPL Technical Memorandum 33-633

Page 17: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

to high velocity and low pressure in the nozzle. As the pressure decreases,

more cesium comes out of solution and vaporizes. Shear and pressure

forces resulting from the expanding cesium vapor cause breakup and acceler-

ation of the lithium droplets to high velocity. The mixture impinges on the

target and on a mesh separator within the receiver component. The lithium

pump increases the pressure to the maximum of the cycle and returns the

flow to the heater. The cesium vapor leaves the receiver vessel and flows

to the desuperheater. Subcooled liquid cesium is injected at that point to

reduce the cesium vapor (which is highly superheated) to the saturated state.

The vapor then enters the condenser, where the heat of vaporization is re-

moved by flowing NaK, is condensed, and returns to the cesium pump. The

pump pressurizes the cesium and returns it to the nozzle and through a

cooler to the desuperheater.

Figure 4 is a photograph of the cesium and lithium circuits prior to

testing. All components and piping were fabricated from Nb-l%Zr. All

weldments were performed in a high-purity argon atmosphere. This part of

the test system was mounted on the door of a getter-ion pumped vacuum

chamber which was operated in the 10 torr range to protect the refractory

metals from oxidation during high-temperature operation. Description of the

test system components and their performance is summarized below.

A. Two-Phase Nozzle

The two-phase nozzle for the test system was designed to provide

cesium and lithium flow over a range of conditions. The design pressure

gradient was established from the pressure variation measured on a larger

nozzle, using water-nitrogen and freon-water flows. This gradient was used

in the two-phase, two-component nozzle program to calculate the contour.

The resulting geometry is summarized in Fig. 5. Figure 6 is a photograph

of the nozzle prior to final welding.

The nozzle was calibrated with water and nitrogen to compare the exit

velocity with that calculated by the computer program. The test setup is

given in Fig. 7. As shown in Fig. 8, the agreement between the calculated

and measured- exit velocity was quite good. The computer program was

then used to calculate the nozzle flow rates as a function of inlet temperature

and mass ratio with the result shown in Fig. 9. At saturated Cs vapor con-

ditions at the inlet, there is a unique relation between the cesium and

JPL Technical Memorandum 33-633 3

Page 18: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

lithium flow rates. The information from Fig. 9 was used to determine the

flow rates and operating conditions of the test system for the desired values

of mass ratio and nozzle inlet temperature.

B. Thrust Target and Separator

The relation of the nozzle and thrust target is given by Fig. 10. The

two-phase lithium-cesium flow impinging on the thrust target is turned by

90 deg. The thrust produced is transmitted through a stainless-steel bellows

which is joined to the Nb-1%Zr alloy by a coextruded joint. The measured

thrust thus provides an indication of the nozzle exit velocity. The separated

lithium falls to the bottom of the separator and is returned to the lithium

pump. The cesium vapor is separated from the lithium by a mesh-type

separator and flows to the desuperheater.

The thrust target with the erosion specimen mounted in place is shown

in Figs. 11 and 12. The erosion specimen is an optically flat wedge which

extends beyond the nozzle exit diameter. Erosion depth was to have been

measured with a traversing microscope as was done on a previous test

(Ref. 10). The basic wedge is Nb-1%Zr alloy; the insert, which was electron-

beam-welded to the Nb-1%Zr, is T-11l alloy.

Figure 13 shows the thrust target mounted in the separator body. The

Nb-1%Zr mesh was wrapped on the outside of the perforated annulus as

shown in the assembly drawing of Fig. 14.

The entire unit was assembled and tested with water-nitrogen flows.

The thrust measured by the thrust target agreed to within ±5%' with the values

measured for the nozzle alone. The nozzle exit velocity was varied from

90 to 155 m/s for these measurements. Liquid carryover in the gas exit

ranged from 2-7% of the primary liquid flowrate, acceptable values for the

high-temperature flow system. Complete separation of gas from the liquid

outlet flow was made possible by adding baffles, as shown in Fig. 15. How-

ever, these same baffles resulted in excessive lithium holdup during the

lithium-cesium tests.

In order to eliminate this holdup problem a cyclone separator was

designed for the lithium-cesium test system. A model was tested (Fig. 16)

with water and nitrogen with a liquid carryover in the gas outlet of less than

4 JPL Technical Memorandum 33-633

Page 19: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

0. 1% and gas-free flow at the liquid outlet. Figure 17 shows the cyclone

separator fabricated of Nb-l%Zr ready for installation in the test system.

C. Lithium Pump

The lithium pump is a helical induction electromagnetic pump. The

pumping element shown in Fig. 18 is a Nb- %Zr structure that fits within a

stainless-steel, thermally-insulated sleeve. The electromagnetic body

forces are supplied through the stainless-steel sleeve by an air-cooled,

three-phase motor stator shown in Fig. 19. The pump was operated for

more than 1000 h at temperatures exceeding 10000C and for more than

4000 h above 650*C.

The calculated performance curve is given in Fig. 20. Previous tests

with lithium flow nozzles at 11000C gave measured performance data which

agreed quite closely with the calculated performance (Ref. 9). A serious

limitation of the pump which became apparent during the testing was the

tendency of vapor to accumulate within the pump body and cause flow oscil-

lations. Extensive shakedown testing was required to evolve a startup pro-

cedure that minimized this problem. Although vapor accumulation was a

problem, the pump was able to operate with a negative suction head. The

most successful two-phase startup procedure consisted of injecting cesium

while the pump operated with lithium flow at 980 0 C and zero pressure at the

inlet.

D. Lithium Heater

The heater to raise the lithium to the maximum temperature of 9800C

consisted of four "cal-rod" type elements welded in a Nb-1%Zr shell. Fig-

ures 21 and 22 are photographs of this unit before final welding. The heating

elements are tantalum center conductors with beryllia insulation and swaged

Nb-1%Zr sheaths. The beryllia was removed to a depth of 6 mm to enable

the Nb- %Zr sheaths to be TIG-welded to the Nb-l%Zr shell without degrad-

ing the ceramic insulation. As shown in Fig. 21, the body and elements are

curved to provide flexibility to accommodate thermal stresses. The unit

was operated for over 3000 h, heating lithium at temperatures ranging from

650-1000°C. After this time a small leak occurred at one of the sheath

weldments. The leak was repaired and the unit was to have been used on

succeeding tests. Electron-beam welding of the sheaths rather than TIG

JPL Technical Memorandum 33-633 5

Page 20: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

welding would have enabled a greater depth of penetration, which probably

would have eliminated this problem.

E. Lithium Flowmeter

The electromagnetic flowmeters used for the lithium and cesium are

shown in Fig. 23. The calculated characteristics of the lithium flowmeter

are given by Fig. 24. Calibration of this flowmeter with 1100 0 C lithium flow

nozzles showed the measured flow to agree to within ±5% of the calculated

values.

F. Cesium Pump

The cesium pump is of similar construction to the lithium pump. The

stator is seen in Fig. 19, adjacent to the stator for the lithium pump. The

flow was controllable with a throttling valve during the periods of operation

at lower flow rates. Attempts to run the pump at higher pressure rise with a

low inlet pressure and low flow rate resulted in excessive temperature rise

and vaporization of the cesium at the pump inlet. A small jet pump was fab-

ricated which should have eliminated this problem when installed.

G. Cesium Flowmeter

The cesium flowmeter of Fig. 23 was used only at very low flow rates.

The calculated output curve is given in Fig. 25.

H. Cesium Desuperheater

The cesium vapor leaving the separator is highly superheated and has a

very poor heat transfer coefficient. The desuperheater of Fig. 26 was

designed to lower the temperature to saturated vapor conditions by injection

of subcooled cesium liquid. The large surface area afforded by the small

liquid metal droplets more than compensates for the poor coefficients.

An alternative method to desuperheat the Cs vapor is a heat exchanger

with large internal surface area. A radiant heat exchanger with internal

Nb-1%Zr fins was fabricated (Fig. 27) to replace the original desuperheater.

This would enable the subcooled cesium bypass flow to be used for the

cesium jet pump discussed previously.

6 JPL Technical Memorandum 33-633

Page 21: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

I. Cesium Condenser

The condenser for the cesium was constructed of both Nb-1lZr and

stainless steel. The niobium alloy is required for the condensing cesium,

while stainless steel is the material of construction for the NaK cooling sys-

tem that rejects the latent heat of vaporization from the cesium.

The condenser assembly is shown in Fig. 28 before welding and in

Fig. 29 after final assembly. The transition between the stainless-steel tees

and center section and the niobium end pieces that weld to the Nb-l/oZr

cesium tubing was achieved by brazing with a cobalt-nickel alloy. The con-

denser performed satisfactorily at the low Cs vapor flow rates tested.

J. NaK Heat Rejection Loop

The NaK heat rejection loop was constructed of type 316 stainless steel.

NaK flow is produced by an electromagnetic AC conduction pump. The flow

piping enters the vacuum chamber through a thermal sleeve. The entering

NaK removes heat from the cesium subcooler and condenser and exits the

vacuum chamber through another thermal sleeve. It flows through an expan-

sion tank, heater, and air-blast heat exchanger (to reject the heat) back to

the pump. The function of the heater was to control the NaK temperature

during low-load operation and to heat the NaK during purification operations.

A titanium-zirconium hot trap was provided for initial purification. The heat

rejection system is shown in Fig. 30 before insulation.

K. Vacuum Chamber

The vacuum chamber and getter-ion pump are shown in Fig. 31. The

chamber is heated so that the temperatures of all liquid metal lines can be

maintained at at least 200 0 C to prevent solidification. All ports have bake-

able metal seals. The main door seal is Viton-A cooled to less than 100°C.

During testing the chamber operated in the 10 7torr range, with the liquid

metal system at 980'C and the chamber at 250 0 C.

L. Instrumentation and Controls

Liquid metal pressure was measured directly with bonded strain gage

transducers. The transducers and pressure lines were maintained at 230 0 C

to prevent solidification. Installation of the transducers in the heated en-

closure is shown in Fig. 32. Valving was provided to enable calibration

during operation of the test system.

JPL Technical Memorandum 33-633 7

Page 22: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Chromel-alumel thermocouples were used for temperature measure-

ment. Attachment to the Nb-1%Zr piping and components was made by weld-

ing the wires to a tantalum foil which, in turn, was welded to the niobium

alloy. Only two thermocouples of 53 failed during more than 3000 hours of

testing.

All instrumentation readout and control of the loop was accomplished

remotely. Figure 33 shows the control console and alarm system which was

used during the test. Schematic diagrams of the instrumentation and control

circuits are given in Appendix B.

III. Operating Experience

The test system was operated for over 3000 h with liquid metal flow to

determine the proper startup sequencing and flow characteristics with cesium

and lithium. Achievement of stable flow with both liquid metals was very

difficult and tedious. For proper functioning with cesium condensation in the

condenser, no cover gas (argon) could be tolerated. Yet it was found that

heating the evacuated system from -200 to -650 0 C while lithium was flowing

always caused argon to evolve from the lithium. Attempts to reduce the

pressure while circulating lithium produced instabilities and the loss of the

pumping action unless extremely gradual reductions in pressure were used

(- 0. 1 - 0. 2 atm/day). Another problem which occurred early in the test

sequence was lack of control of the cesium flow rate. Attempts to start the

cesium pump at a low flow rate and without a control valve inevitably re-

sulted in injection of a cesium flow which was too large for the conditions of

lithium temperature and flow. The result was entrainment of cesium in the

lithium circuit and the subsequent loss of the lithium pump due to cesium

vaporization in the pump. This latter problem was eliminated by installation

of a valve in the cesium line and an externally controlled cesium injection

system for startup.

With these modifications, relatively stable cesium and lithium flow

was obtained at lower flow rates (-0. 1 kg/s). Attempting to further increase

the lithium flow resulted in severe flow oscillations, cesium entrainment,

and loss of the lithium pump. The reason for the flow oscillations is the

holdup of lithium in the separator because of the baffles which were installed

after hydraulic testing. Use of the centrifugal separator of Fig. 17 should

8 JPL Technical Memorandum 33-633

Page 23: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

eliminate this problem and enable the attainment of higher flow rates. Fig-

ure 34 is a schematic of the test loop as it should appear after the above

modifications are made.

IV. SUMMARY

The cesium-lithium test system proved to be a reliable installation for

obtaining lithium and cesium flow at 980 0 C. However, stability problems

were encountered as the flow rates were increased above about 0. 1 kg/s.

Minor modifications to the separator should enable attainment of the 0. 4-

kg/s design flow rate with stable operation.

JPL Technical Memorandum 33-633 9

Page 24: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

REFERENCES

1. Jackson, W. D. , et al. , "MHD Electrical Power Generation," Joint

ENEA/IAEA International Liaison Group on MHD Electrical Power

Generation, ENEA, Apr. 1969.

2. Morse, F. , Review of Liquid Metal Magnetohydrodynamic EnergyConversion Cycles, X-716-69-365, Goddard Space Flight Center,Greenbelt, Md. , Aug. 1964.

3. Petrick, M., and Lee, K., Liquid MHD Power Cycle Studies, ANL-6954, Argonne National Laboratory, Argonne, Ill., June 1965.

4. Houben, J. , and Masser, P. , MHD Power Conversion Employing

Liquid Metals, TM Report 69-E-06, Eindhoven University of Technology,Netherlands, Feb. 1969.

5. Elliott, D. G. , A Two-Fluid Magnetohydrodynamic Cycle for Nuclear-

Electric Power Conversion, Technical Report 32-116, Jet Propulsion

Laboratory, Pasadena, Calif. , June 30, 1961.

6. Weinberg, E. , and Hays, L. G. , Comparison of Liquid Metal Magneto-

hydrodynamic Power Conversion Cycles, Technical Report 32-946,Jet Propulsion Laboratory, Pasadena, Calif. , Aug. 15, 1966.

7. Elliott, D. G. , and Weinberg, E. W. , Acceleration of Liquids in Two-

Phase Nozzles, Technical Report 32-987, Jet Propulsion Laboratory,Pasadena, Calif. , July 1968.

8. Cerini, D. J. , Circulation of Liquids for MHD Power Generation,SM-107/40, Symposium on the Production of Electrical Energy byMeans of MHD Generators, IAEA, Vienna, Austria, July 1968.

9. Hays, L. G. , and O'Connor, D. E. , A 2000°F Lithium Erosion andComponent Performance Experiment, Technical Report 32-1150,Jet Propulsion Laboratory, Pasadena, Calif. , Oct. 1967.

10. Hays, L. G. , "Surface Damage from High Velocity Flow of Lithium, "Journal of Materials, Vol. 5, No. 3, 1970.

10 JPL Technical Memorandum 33-633

Page 25: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Fig. 1. Schematic diagram of cesium-lithiumMHD power system

SEPARATOR IFFUSER

Fig. 2. Cesium-lithium erosion loop at 9800 C

JPL Technical Memorandum 33-633

Page 26: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

------------------------------------- ----- ----_1T__ ~ ------- -------r--- - - - - -----

r--- --------------'I1I

r-T -I--I-- T T I i i r

HEAT EXCIANGER

IaK EXPANS/ON7ANK

O ZZLE I DE-sEPHEA E V6

V8VI7 HP

SEATE

L. PUMP I AI PAP FLOW ECK /MP

, V13 Xv,50N V,5

OI PU IP W9 R V17

IN TEMPEYATUE P YESSUIE FLOW8 VELOCITY V4

-va-2

I 1975'F 23PSlA 1.0 o O5s Ft/S L VI4 LiSUMP V16 CsUMP

2 /650' 235 .16 20 L

3 1915- 30 /,16 515 L, V

4 1915- 30 100 20 L

5 1940* 245 1.00 20 L LE6END:

6 1915' 28 .16 175 V PRIMARY C CICUIT7 1400 27 .22 200 V PRIMARY Li CIRCU/IT

8 250 26 22 20 L PRIMARY NaK CIRCUIT

AN/LLAY LIQUD METAL LINES

9 /1250- 200 .06 20 L VALVE - HAND OPEPATEP

0 00 0 [X VALVE - EEMOTE ACTUATIONS 1/00 25 .50 2o L -- COEXT£UED JOINT

O 12 00' * 25 .50 20 L

1 1 13 700' 20 .50 20 L

Fig. 3. 100-kW erosion loop liquid metal circuits schematic diagram

I

Page 27: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Fig. 4. Cesium-lithium test circuits before activation

0.422 16, 066 0 DIAoDIA4

DETAIL Y "

DIMENSIONS ARE IN INCHES

Fig. 5. Cesium-lithium nozzlegeometry

JPL Technical Memorandum 33-633 13

Page 28: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Fig. 6. Cesium-lithium nozzle before welding

FLEXIBLESEAL

GASINLET LINE(Cs LINE) -

IQUIDINLET LINE(L LINEINE

EXHAUST JET

RE T CELL

Fig. 7. Water-nitrogen test of nozzle forcesium-lithium loop

14 JPL Technical Memorandum 33-633

Page 29: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

300

INLET PRESSURE, atm

A 10.2O 13.6

250 0O 14.3

0 200 -0

THEORETICAL FOR 13.6 atm

N 150

THEORETICAL FOR 14.3 atm

100 -

THEORETICAL FOR 10.2 atm

I I I I I I

0 10 20 30 40 50 60 70

LIQUID-TO-GAS MASS RATIO

Fig. 8. Comparison of experimental andtheoretical exit velocities for

cesium-lithium loop nozzle operatingwith nitrogen and water

1.0 I I

1038 10930 C

6 - 871 927 -

816

4 - 760

2 649

0.15380.001 2 4 6 0.01 2 4 6 0.10

CESIUM MASS FLOW, kg/s

Fig. 9. Cesium-lithium nozzle flow fordifferent nozzle inlet temperatures

(saturated vapor)

JPL Technical Memorandum 33-633 15

Page 30: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

LITHIUM

LITHIUM CSIUM

CUCESIUM

SUPERSONICNOZZLE

VAPOR-LIQUIDSEPARATOR

NOZZLE THRUST-MEASURINGLINKAGE

LITHIUM

Fig. 10. Nozzle-separator assembly

1'6 JPL Technical Memorandum 33-633

Page 31: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

EROSIONSPECIMEN -

-- THRUST TARGET

SUPPORT TUBE

,-, LEVEL INDICATOR

COEXTRUDEDJOINT SCARF---

STAINLESS STEEL BELLOWS

Fig. 11. Thrust target assembly

JPL Technical Memorandum 33-633 17

Page 32: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

EROSIONSPECIMEN INSERT

T-11 INSERT

THRUSTTARGET

Fig. 12. Erosion specimen mountedon thrust target

18 JPL Technical Memorandum 33-633

Page 33: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

LEVEL INDICATOR

KNIFE EDGE AND1 GAP FOR LITHIUM

FILM

CESIUM VAPOREXIT

Fig. 13. Thrust target mounted in separator body

JPL Technical Memorandum 33-633 19

Page 34: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

o

I0

Id

0

CIA

(J3

Page 35: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Fig. 15. Lithium baffles

JPL Technical Memorandum 33-633 21

Page 36: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

(\J

4-)

/9

a

F

F?{d

a k

!

NO

-d [4

I/c-i

r

Page 37: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

VAPOR TOSDESUPERHEATER

VAPORS'OUTLET

TUBE

TWO-PHASE

(FROMORIG INALSEPARATOR)

OUTLET (TO Li PUMP)

Fig. 17. Cesium-lithium cyclone separator

JPL Technical Memorandum 33-633 23

Page 38: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Fig. 18. Pumping element forlithium pump

24 JPL Technical Memorandum 33-633

Page 39: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Fig. 19. Helical induction pump stators

JPL Technical Memorandum 33-633 25

Page 40: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

30

400

25

35020

15 - 300

10 - 250

2005-

5 75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

MASS FLOW, kg/s

Fig. 20. Lithium pump characteristic at 9800 C

26 JPL Technical Memorandum 33-633

Page 41: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Fig. 21. Lithium heater before welding

Fig. 22. Lithium heater end before welding

JPL Technical Memorandum 33-633 27

Page 42: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Fig. 23. Cesium and lithium flowmeters

0.7

0.6

2600C538816

0.5- 982

0.4-

0.3-

0.2-

0.1 -

0 I I I I0 1 2 3 4 5 6

METER INDICATION, mV

Fig. 24. Lithium flowmeter calibration(776 gauss)

28 JPL Technical Memorandum 33-633

Page 43: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

0.09

0.08 -

816*C0.07 -

538

260

0.06 -

0.05-

o0.04

0.03

0.02

0.01 -

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

FLOWMETER INDICATION, mV

Fig. 25. Cesium flowmeter calibration(2355 gauss)

JPL Technical Memorandum 33-633 29

Page 44: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

SATURATED. CESIUM VAPOR

SUPERHEATEDCESIUM VAPOR

SUBCOOLEDCESIUM LIQUID

Fig. 26. Cesium desuperheater

30 JPL Technical Memorandum 33-633

Page 45: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

VAPOR HEADER

RE INFORCINGRIBS

INTERNAL FINS

Fig. 27. Radiant cesium desuperheater before welding

SNaK INLET - Nb-l% Zr INNER TUBE

- Nb-I% Zr TO -- -- - - .. ... .. . ... NaK OUTLETSTAINLESS-STEEL JOINT

Fig. 28. Cesium condenser before welding

JPL Technical Memorandum 33-633 31

Page 46: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

NaK INLET

Cs VAPORINLET

CSLIQUID

NaK OUTLET OUTLET

Fig. 29. Cesium condenser after welding

NaK-AIR iHEAT EXCHANGER

SNK PUMP

BLOWERS

Fig. 30. NaK heat rejection systembefore insulation

32 JPL Technical Memorandum 33-633

Page 47: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

ION PUMP

PUMP FOROUTGASS ING

Fig. 31. Vacuum chamber and ion pump for cesium-lithium erosion loop

JPL Technical Memorandum 33-633

Page 48: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Fig. 32. Pressure transducer installation

34 JPL Technical Memorandum 33-633

Page 49: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

"2r~

S.

* t --- ---

Fig. 33. Control console for cesium-lithium test system

JPL Technical Memorandum 33-633 35

Page 50: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

r -

I If -----------------------------------------------------

r- -.- -----rii 2 t JI F I

SI ( 1;1

TRUCERS

NoK -AIRSHEAT EXCHANGER

NoK EXPANSION

' ' , ,NOZZLE V5 V6C DESUPERHEATER

K RAP

3 EXPANSION 7 7Cs FLOW CYCLONE

SEPARATORLI FLO RECEIVER N NK V4

C PUMP V17

Li HEATER _ _ _ _P

VMNoKPUMP NoKFLOW No SUMP

V13 ZVIS

LEGEND: V4 Li SUMP VI6 Cs SUMP

" _ PRIMARY Cs CIRCUIT0 PRIMARY Li CIRCUIT

, PRIMARY NoK CIRCUIT-- .. ANCILLARY LIQUID METAL LINES

REFERENCE STATE POINT4 VALVE - HAND OPERATED

SVALVE - REMOTE ACTUATION-- COEXTRUDED JOINT

I

Fig. 34. Modified version of cesium-lithium erosion oop

0'

(D

LEED 1 iSUPV6 CSM

PRM R , IC I

Page 51: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

APPENDIX A

LOOP OPERATING PROCEDURES

The startup and shutdown procedures used for the test loop are sum-

marized below. The main modification required was installation of a cesium

injection system and its actuation prior to starting the cesium pump (step 17).

Full flow (steps 18-22) was not realized because of the problems discussed

in the text. Values of temperatures, pressures, and flows are given in

English units since the instrumentation and gauges are all in these units.

JPL Technical Memorandum 33-633 37

Page 52: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

STARTUP PROCEDURES FOR Cs-Li LOOP

Startup Step Values of Key Parameters

1. Evacuate loop to less than 10 microns by Pressure of chamber - 10- 2 torr on multi-torr

opening manual valves HT-1 and HV-1. gauge.Evacuate chamber to less than 10 microns

by opening vacuum valve MV-1 to roughingmanifold. Turn on load cell and O-ringcooling air flange, and bus cooling water.Turn on makeup air in NaK room.

2. Turn on the chamber heaters to 5 A in each Final chamber temperature n 500*F. Loop tem-leg. Increase by 5-A steps over 10-12 h perature Z450*F.

time until current is 20 A. Continue pump-ing until pressure is below 10 micronsagain. Close all transducer valves to loop.Backfill with argon to 75 mm.

3. Start diffusion pump; open to chamber; Chamber pressure of 10 - 5 torr.close vacuum valve MV-1 to roughing mani-fold. Close manual values HT-1 and HV-1.

4. Adjust pressure on lithium sump to 15 psig. Current setting of 5 A on trace heater to obtain

Heat to 500*F. 500'F.

5. Actuate Li pump. Adjust voltage until T-9 T-9 = 450*F.reads 450'F. Shut off pump. Li pump voltage ; 45 V.

6. Open lithium fill valve, VI3, slowly. Moni- T-3 should raise from 450 to 500*F in 2-3 s when

tor TC-3 to determine when receiver is lithium is at the proper level.

filled to proper level. When TC-3 actuates,close V13.

7. Adjust pressure on cesium sump to 15 psig. Current setting of 3 A on trace heater to obtain

Heat to 200*F. 200°F.

8. Actuate Cs pump. Adjust voltage until T-21 T-21 = 300'F.reads 300*F. Shut off pump. Cs pump voltage ; 35 V.

9. Open cesium fill valve, V15, slowly. Moni- T-16 should lower from 450 to 200*F in 2-3 s

tor TC16 to determine when cesium leg is when Cs is at the proper level.

filled to proper level. Close V15 and VI.

10. Evacuate NaK loop through HV5. Open V8, Manifold vacuum should be < 10 m at 4 h.

V9, and V17; continue evacuation whilevacuum manifold is <10 microns. CloseHV5.

11. Increase the argon on the supply tank to Level indicator light on Nak reservoir will change

8 psig; open the auxiliary drain valves (V11 from red to yellow at proper level.

and V12), then the main drain valve (V7),slowly and only enough to insure flow. It isbest to fill the system slowly. When theliquid level has reached the desired levelin the expansion tank, close the drain valves(V7, V11, and V12), then the heat exchangerbypass valve (V5), the exit valve on theheat exchanger (V6), the hot trap bypassvalve (V4), and the Cs-Li loop bypass valve(V10). Open the two loop valves V8 and V9.Listen for NaK flow in the loop lines. As afinal step, adjust the level by adding ordraining NaK to the predetermined level asdiscussed in a previous section. Set thepressure at 10 psig on the reservoir andsupply tank.

12. Turn the NaK pump powerstat up slowly CAUTION: This is a high-capacity pump anduntil the liquid metal is flowing in the loop. cannot be operated without flow or liquid metal in

Keep a constant watch on the flowmeter. If the pumping section. In the event that there is no

there is no immediate indication of flow, stop indication of flow, double-check the electrical

the pump immediately and determine the connection on the flowmeter and pump, all valve

trouble. settings, and the liquid level. If everything

38 JPL Technical Memorandum 33-633

Page 53: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

STARTUP PROCEDURES FOR Cs-Li LOOP (contd)

Startup Step Values of Key Parameters

12. (contd) appears in order, try the pump again. Watch fora flow indication and also use an ammeter tocheck that the current is flowing to the pump. Ahumming or buzzing sound will be heard if poweris reaching the pump.

The above instructions may seem rather pessi-mistic, but the most important point to rememberis that power must not be left on this pump formore than a few seconds without liquid metalflowing.

13. Turn the NaK immersion heater on and setthe temperature for 650*F. Close the valve(V4), isolating the hot trap from the system.Do not circulate cold liquid metal through thehot trap. By adjusting the flow through theheat exchanger, the desired temperature canbe reached.

Once the loop temperature has reached 650*F,operate at this point for an hour to ensurethat the flowmeter is wet. Set the pump cur-rent at 19. 5 A for a flow of 0. 33 lb/s. Thenext step is to raise the loop temperature to1000*F. Actuate the cooling blower for thepump when the loop temperature exceeds850'F. Circulate at this temperature for aperiod of 24 h to ensure that oxides and im-purities are absorbed in the liquid metal.Maintain as high flow in the heat exchangeras practical in order to ensure that the in-sides of these tubes are also cleaned.

14. Operate the hot trap, starting the flow slowly,1/4 - 1/2 gpm, through the hot trap by open-ing the valve (V4). The flow in the main loopshould be 1 lb/s through the heat exchanger.All portions of the loop must be at a minimumof 1000'F while hot trapping to ensure thatany oxide present is in solution. Maintain thetemperature at a minimum of 1000*F and theflowrate through the loop at some reasonablerate (1/2 - 1 lb/s). The time required to re-duce the oxide content to an acceptable levelis dependent on the quantity present and theoperating temperature of the hot trap. Theoxide removal rate is greater at 1200 than1000'F. Experience indicates for a systemof this size that a minimum of 12 h would benecessary to initially clean the system. Re-duce the heater voltage until the loop temper-ature is 800'F.

15. Start Li pump at 25 V. Gradually increase 1. 16 mV on Fl = 0. 3 lb/s at 500*F. Pump volt-until flow rate FI is 0. 3 lb/s. Start freeze age z 50 V.stem flow at maximum flow rate. Removeinsulation from Li pump duct port and Cspump port.

16. Actuate Li heater at 200 A. Increase current E3 2. 25 V at 200 A.until Li inlet temperature TC-I is 1200'F E3 4. 7 V for 12Z00*F.(100'F/h).

17. (a) Set Li pump at 90 V. Cs flow, F2 = 0. 0076 lb/s(b) Start Li pump blower. (0. 06 mV) at EZ = 80 V(c) Start Cs pump at 80 V. Li flow Fl = 0. 3 at 90 V(d) Actuate Cs pump blower.(e) Set heater at 9. 1 V.

JPL Technical Memorandum 33-633 39

Page 54: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

STARTUP PROCEDURES FOR Cs-Li LOOP (contd)

Startup Step Values of Key Parameters

17. (contd)Open valves to transducers. Reduce freezevalve flow until T-26 = 450*F. Actuate loadcell motor until the gap is reduced to 0. 010in.

18. Increase Li inlet temperature in 100*F steps TI El E2 E3 n

by first increasing the heater voltage, thenthe lithium flow, then the cesium flow. Keep 1300 110 100 11. 2 0chamber pressure in the 10-5 range. Actu- 1400 136 125 13. 1 0ate the ion pump when 1800*F is reached and 1500 165 153 15. 0 0 C =0. 05pressure is declining. Valve off diffusion 1600 198 186 17. 0 0pump. When the Cs pump temperature TCZI 1700 231 236 18. 2 .818reaches 1100*F, evacuate Cs expansion tank 1800 279 293 21.2 .891

through manual valve HV2, close manualvalve HTZ, open the manual valve V18 to the 1700 233 226 13. 8 .449 C1 = 0. 02expansion tank until the first level thermo- 1800 283 277 16. 4 . 509couple TC-5Z is actuated, close the manualvalve V18. When Cs temperature TC-21 The values under key parameters are for areaches 1300*F, drain loop through the Cs lithium carryover fraction of 0. 05. Differentdrain line V18 until the second level thermo- values will result in different heater settings tocouple TC-53 is actuated. attain the required temperatures.

19. Adjust the separator gap until the NaK outlettemperature TC-33 is minimized. Change VIuntil saturated vapor is obtained (compareTC14 and P11).

20. Adjust the Li pump and Cs pump, heater andNaK temperature until Pl = 137 psia at avalue of Fl/F2 = 10.

21. Measure nozzle thrust. Vary stem positionby +0. 010 in. in 0. 002-in. increments todetermine spring constant.

22. Freeze stem by increasing the Dowtherm flowto the full flow rate.

40 JPL Technical Memorandum 33-633

Page 55: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Id

VALVE POSITIONS FOR EROSION LOOP STARTUP

StartupStep Valve No. V Valve No. SA Valve No. SV HT NV MV

1 4 5.6 . 8 9 0 12

34

56 7

18 19 12 456789 0 123 5 7 2 1 3 5

1 x x xx x x x xxxIx0 x x o xxx x x xx x x x xx x 0 0 011 x0 x 0

2 0OxX X X X K lx xxxx x 01 XXIXXX X XX XX X XX 0 0 011 x011 0

30

6 x xX X x x xx I 10/I x I x x I x XIIX X xO/XII 11 11 1 IX XX II I

9 0/X x x x x x x xx xx X x x x xx x xx xx II IX X XI XX II I

10 XIX I O I x I I 0 I 0 1 I X x xX X X X x xxxxx IX XI I IX XXO/IX I

11 X O/IO/XO/XO/XOO0O/X O/X O/XX 111x 0 XX X X xO/XO/XIXX IX XI I XX XX II I

13 x 10 0 11x01 x 11111 x0 IX II I II X XI II X XX XX II I

14 x O/xoo0x I xxx x11 11 01 IX I II I IX XI I XX XX II I

18 01111xx 0X X X X III x 00O/l XI X XX I II XI I IX 11 11 x I

21 0 x111 x0 01 I I I I I x 0 x I IX X XI X XI IX X XX XX II I

22 01111xx0 01 I I I x I x 0 I I IX X X XI XX XX X XX XX II I

X Closed

0 Open

Page 56: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

NORMAL SHUTDOWN FOR EROSION LOOP

1. Decrease the Li pump and Cs pump voltages concurrently by 25-V steps

until a Li pump flow rate of 0. 3 lb/s is reached. Reduce flow to freeze

valve and increase gap to 0. 045 in.

2. Decrease the Cs pump voltage further until a setting -of 25 V is reached.

3. Decrease the Li heater power until a lithium inlet temperature of

1000°F is reached (100°F/hr).

4. Turn off cesium pump.

5. Turn off Li heater.

6. Decrease Li pump voltage by 25-V increments until it is off.

7. Turn off NaK flow.

8. Set Li sump pressure to 5 psig and loop pressure to 15 psig. Open

SA3 manual valve HTI and V13 to drain lithium. Drain until sump

pressure rises. Repeat for Cs sump using SA3 manual valve HT1 and

V15. Close SA3 and drain valves V13 and V15. Evacuate loop through

SV6 and manual valve HVl. Close SV6 and manual valves HV1 and

HT1.

9. Evacuate both sumps through HV3 and HV4. Close HV3 and HV4.

10. Heat both sumps to 400°F. Heat chamber and pumps to 800°F. OpenV13 and V15. Monitor fill and dump line temperature TC-43. When

TC-43 drops to 40 0 °F the loop is drained. Close V13 and V15. Turn

off all heaters.

4Z JPL Technical Memorandum 33-633

Page 57: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

EMERGENCY PROCEDURES FOR EROSION LOOP

LocationEmergency Function of

Function

1. Liquid metal a. Turn off Li, Cs, NaK pumps, Li heater, CRleak in ion pump.chamber b. Close manual dp valve (if open). HB

c. If O-ring temperature rises to 300 0 F, open HBargon flood for chamber, SA-8.

d. Increase cooling flow on chamber to limit HBtemperature rise.

e. If NaK level drops, pressurize NaK reser- CRvoir to 10 psig, and drain through V7 toNaK sump. Watch chamber pressure.

f. Keep system under observation as temper- CR/HBature cools.

2. Liquid metal a. Turn off Li, Cs, NaK pumps, Li heater, CRleak in NaK bus cooling water.room b. Turn off heat exchanger blower and makeup CR

air blower.

c. Close heat exchanger damper by setting CRcontroller on 1400 F.

d. Pressurize NaK reservoir to 10 psig, CRdrain through V7 to NaK sump.

e. When leak stops, extinguish fire if safe. HB

3. Liquid metal a. Turn off Li, Cs, NaK pump, Li heater, CRleak in door bus cooling water.area b. Turn off heat exchanger blower and makeup CR

air blower.

c. Close heat exchanger damper by setting CRcontroller on 1400'F.

d. If safe, turn off flange water and trans- HBducer oven.

e. If NaK level drops, pressurize NaK reser- CRvoir to 10 psig and drain through V7 toNaK sump.

f. If leak is from transducer box, valve off HBall transducers, if safe.

g. When safe, extinguish fire. HB

CR = control roomHB = high bay

JPL Technical Memorandum 33-633 43

Page 58: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

APPENDIX B

TEST SYSTEM SCHEMATIC DIAGRAMS

All instrumentation, control, flow, argon and vacuum, and electrical

schematics for the test system are contained in this appendix (see Figs. B-I

through B-30).

The following manufacturers' manuals are available at the Jet Propul-

sion Laboratory, care of Section 383 files, Mr. L. H. Huebner.

1. Technical Manual, Helical Induction Electromagnetic Pump, Model

5KY414PK1 (Lithium), General Electric Company.

2. Technical Manual, Helical Induction Electromagnetic Pump, Model

5KY414PJI (Cesium), General Electric Company.

3. Instruction Manual, TrioVac, 500 liter/s Triode Ion Pump, Model

22TP300, General Electric Company.

4. Instruction Book, Type WSH-Arc Welder, 1000A, Westinghouse

Electric Company.

5. Miscellaneous instrumentation and auxiliary component calibration

sheets and instruction manuals.

44 JPL Technical Memorandum 33-633

Page 59: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

4

INSTRUMENTATION FUNCTIONS

o Transducer Connections

Inside Chamber TC Panel 1 Outside Chamber TC Panel 2

o TC- I Nozzle inlet - lithium 1 & 2 TC-33 NaK exit piping 65 & 66

2 Nozzle inlet - cesium 3 4 34 Expansion tank 67 68

3 Receiver lithium fill 5 6 35 Heater 69 70

4 Receiver cesium exit 7 8 36 Hot trap 71. 72

5 Receiver lithium exit 9 10 37 Hot trap flowmeter 73 74

6 Lithium pump return line 11 12 38 Heat exchanger out 75 76

7 Lithium pump exit 13 14 39 Main flowmeter 77 78

o 8 Lithium pump duct A 15 16 40 Pump outlet 79 80

9 Lithium pump duct B 17 18 41 NaK pump windings 81 82

10 Heater bus A 19 20 42 Pressure tap lines 83 84

II Heater bus B 21 22 43 Fill and dump lines 119 120

12 Heater body 23 24 44 Lithium pump windings 121 122

13 Lithium flowmeter magnet 25 26 45 Cesium pump windings 123 124

14 Condenser, cesium inlet 27 28 46 Transducer oven 125 126

15 Condenser, cesium exit 29 30 47 Heater feedthru A 1.27 128

16 Condenser, cesium fill 31 32 48 Heater feedthru B 129 130

17 Cesium line, cooler to de-sup. 33 34 49 Chamber body 131 132

18 Cesium pump return line 35 36 50 Ambient 133 134

19 Cesium pump exit 37 38 51 Thermocouple ambient 135 136

20 Cesium pump duct A 39 40 52 137 138

21 Cesium pump duct B 41 42

22 Cesium flowmeter magnet 43 44

23 Receiver level indicator 45 46

24 Co-extruded joint, pressure taps 47 48

25 Co-extruded joint, loop vacuum 49 50

26 Co-extruded joint, load cell stem 51 52

27 Receiver 53 54

28 Nozzle inlet lithium 55 56

29 Nozzle inlet cesium 57 58

30 Nozzle body 59 60

31 Sight glass, 3-1/4 in. high 61 62

y 32 Sight glass, 4-1/2 in. high 63 ' 64

(31

Page 60: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Instrumentation FunctionsTransducer Connections (contd)

Pressure Functions Pressure Panel Amp. Out Connections

P- 1 Nozzle, lithium inlet 1 to amplifier 105 & 1062 Nozzle, cesium inlet 2 to amplifier 107 & 1083 Receiver pressure 8 to amplifier 109 & 1104 Nozzle tap A 35 Nozzle tap B 46 Nozzle tap C 57 Nozzle tap D 68 Nozzle tap E 79 Nozzle tap F 12

10 Nozzle tap G 1311 Condenser cesium inlet 9 to amplifier 111 & 11212 Cesium pump inlet 1013 NaK bypass 11 to amplifier 139 & 140

H Flowmeter Functions Flowmeter and Feedthru

F-1 Lithium flow 85 & 86 95 & 96S la Lithium flow (standby) 87 88 97 98

2 Cesium flow 89 90 99 100

2a Cesium flow (standby) 91 92 101 10293 94 103 104

F-3 Main NaK flow 113 114 (outside)o F-4 Hot trap flow 115 116 (outside)

F-5 NaK bypass flow 117 118 (outside)

ONU.)

W0

Page 61: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Instrumentation Functions

Meter - Relays

0

Cable No. 71 to Main Control Panel (CBA) Meter No. Cable No. 71 to Controllers Controller No,.

Subcable 1 AK 27 & 28 1 Subcable 22 Cl 69 & 70 22

I 2 AM 1 2 2 Subcable 23 C2 75 & 76 23

> 3 AP 3 4 3 Subcable 24 C3 125 & 126 24

w 4 DDX 115 116 4

o' 5 FDX 113 114 5W 6 CHX 112 6

7 BKX 109 ' 110 78 EJX 89 GOX 85 & 86 9

10 BMX 105I 106 10

11 ENX 45 i 46 11

12 BPX 107 108 12

Y 13 EPX 89 90 13

Cable No. 71 to Secondary Panel (CBD) Meter No. Cable No, 72 to Strip Chart

Subcable 14 AC 81 & 82 14 Subcable 1 No. 1 5 & 6

15 AF 121 122 15 2 No. 2 31 & 32

16 AM 123 124 16 3

17 BD 127 128 17 4 pair 7 - bus shunt

18 BN 131 132 18 5 53 & 54

19 BK 15 16 19 6 61 & 62

20 AK 39 40 20 7 63 & 64

21 AP 143 144 21

-J

Page 62: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Instrumentation FunctionsMeter - Relays (contd)

Cable No. 45 Cable No. 46Multi-Point Recorder 1 Multi-Point Recorder 2

Channel 1-26 P4 3 (pressure) Channel 1 23 & 242-27 P5 4 2 1 23-28 P6 5 pressure 3 9 104-29 P7 6 cable 4 11 125-30 P8 7 number 5 17 136-35 P9 12 6 17 187-36 P 10 13 7 13 148-33 P12 10 8 37 389-34 139 & 140 - 34 amp 6 9 3 4

10 19 20 10 7 3ii 21 22 11 27 2812 25 26 12 29 3013 43 44 13 35 3614 77 78 14 41 4215 73 74 15 33 3416 129 130 16 75 7617 load cell enc. temp. 17 79 8018 18 65 6519 125 & 126 19 67 6820 47 48 20 69 7021 49 50 21 71 72

0 22 51 52 22 83 84S23 vacuum 23 119 120

24 135 & 136 24

alL!

Page 63: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

-I --------------- I I

I I I I I I I ---- -------, -" --- , ---

........ i iri

0UER

T28AIR

iHEAT EXCHANGER

N OLEE T30 C, DESUPERHEATER V5 V6

U READ PRESSURE ON METER RELAY 2 V1 I NAK V4 3ON CONTROL CONSOLE T5 OO6 E

C PM 9 COOLER V187ON

T7TT5 Li HEATER1

T8 i PUMP ;V7

T NK PUMP NK FLOW NaK SUMP

14 LI SUMP 16 Cs SUMP V21

V20

PSTATE TEMPERATURE PRESSURE FLOW VELOCITY VAPOR LENPOINT LIQUID LEGEND:

I 1975°F 235 PSIA 1.0 Ib/ 20 Pt/s L PRIMARY C CIRCUIT

2 1650 235 0.16 20 L - PRIMARY Li CIRCUIT3 1915 30 1.16 515 LV PRIMARY NoK CIRCUIT

4 1915 30 100 20 L ANCILLARY LIQUID METAL LINESREFERENCE STATE POINT

5 1 19400 245 1.00 20 L VALVE - HAND OPERATED6 19)15 28 0.16 175 V I VALVE - REMOTE ACTUATION

7 14000 27 0.22 200 V -- - COEXTRUDED JOINT

8 1250. 26 0.22 20 L T- THERMOCOUPLE9 1250 200 0.06 20 L

10 700- 30 0.50 20 L TC READOUT ON METER RELAY

11 1100

25 0.50 20 L

12 11000 25 0.50 20 L

13 7000 20 0.50 20 L

Fig. B-I. 100-kW erosion loop liquid metal circuits schematic diagram

Page 64: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

MVIAU SI 5 5 V3 SV SS JV6 SV4

MANIFOLO I / iWA X0 A,22I9

3PI 5P2 53 S SP5 S5P

OVENPP

S MR2

9 5AI

4 F-- HEAT EXCHANGEP

535 - -BLOWER

C5

PuMp Cs PUMP

BLOWER STATOR LINUMIEAE

1 / E lWC BE HEATE S * 0 -EATER

R20

Li R PE E AE VOLT MP E

BLOWER 1A PUesoE"

Co4 63

EULAE6END:(D VACUUM CUAAMBER PEA TERS

/10 '6

DF51TRE HEATERSI A.P / 1 IONIZATION 6AUAGE 440 I-/

5. TCP To(IIEOCOLE 64sUE VA 0 5(0(0I VOLTGE

CONTPL U004INS 3-1OE

(PUP SOLENOID VALVEON FFSTC

Fig. B-2. 100-kW erosion loop electrical schematic diagram

Page 65: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

(D Mcl VAL UM MANIFOLD . PI

0

SM2 d v CLIADE R

t -Te -Iij '

l i pP- .....

S+ LEGEN :

--] oPs MOTOR o E ATED RESULATP VALVE-iAND OPEATE D

SHAND PEATED EULAT

6AlVAcU C(MBE iP R GA FLOW LWITWH

pLEA)aT EEPANcITTG E/E

Li U ST D APH A M

Pr, LGEND

TAN/C SE I CVPO TA

AR61NMAVA S//MR

Fig. B-3. 100-kW erosion ioop argon, vacuum, and air circuits schematic diagram

u-I

Page 66: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

DIF. PUMP CHAMBER BODY

FLANGE O -B/G

/ON PUMP LOAD CELL

Hy9 EAT-X DOW rTZWMPUP MOTOR

PLANT A/R

PLANT WATR FLOW

SWITCHTO HEA TEEPOwER

RESERVO/

Ho IN - DWTHERMHEAT-X

hH -ourId HO2 OUT

LEGEND:

SVALVE- REMOTE ACTUATIONP FUPREEZE

DOW T7RA PUMP E VALVE - AAND OPERATEDTM M VALVE

• L'Z SOLENO/D VALVE

DOW THE A COOLING- CHECK VALVE

-SYSTEM

u ME IIM RISIM M .STRU MTLh I IEN U ,,

A 4SAlWU PER ODGENG c A

Fig. B-4. 100-kW erosion loop cooling circuitsschematic diagram

()

0wcJ

Page 67: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

-..q

VAC. MAFOLD

O T s0

TO C. TOCONbDENSER VAC. MAW FOLD

S19

vas V

V24 VM3

VI4 VI6 VA RVI RI RV2 VA2 1L.

TTO S_____ AR. AR OTTLE

- 1- C-. N cT oo FsLOW METER

V201 " K

uI

Fig. B-5. 100-kW erosion loop Cs injection and separation circuit schematic diagram

Page 68: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

FO -UT FRAMEL iMR V07 e r 0.4 Alva

2C K, CBA-33

.,3 PWR*ON LIMITIR

Y 0T') O 7R4 LIGHT LIGHT

/qV-C- -API AC / /J "f -. ,f/l AK IAC17 AM FU2 AP -Fu .aNN/- 3 -AM F

ANN--OC- -BIl A16 2 004N 4-0 8 -lO£a

2V0 -Ca 9 E 1 1 I

AWnw-o o -hlmrio 0 FUI 0 o so y oa so0

/aNVN-OC II -88 fA

RINN6 - - -i - "Tr/O6-07 -C/ -XII,/NI -O /2 p0N/-( / -

Y117-0- /4 M /-

49NS-0 16 PNAR-6 /oz02 8/AInB-oC /7 PNATB8 103 CA//V CU- P-9NH9-0- A PNA h-Z 104 P ""2AN9-O- /9 -PNA-I /4 o P04 T-3ANN/IO-0 20 -CBD-NIO " 30 429 KP 4 PANIkOde- 21 :C8DOAM lo Mi 5

/IfN/Oi- - 2 -CD0-AcIO M ~- 7 D-AI1 -- 24 -C-0-AXIO a 1 -N - A

#/12-0c- 2S -CBD-SII CC S -YI--A /-0- 24 - -PNAK-o i/l v 7 £P2- o

A/V3IJdC 27 PIA-ILaS //3 U /l-tM.....4-0 28 CBD-APiO Ae-' -12 DM3

4N/5-0 CD-810 7 4 DM7 8-100244

127. //a I aR/elt- L6 -,4(E 35 1/9 AAtt a q -I0M434 / 20 4-24 , r0 -" /8 Mi-I

N 02 B12 rrse- To MS-/

F".Fc- -4R02

Al rn9L) s I C VALVE D DC EN COC 23 MI-i

It.0 ui ' 'OT! ' 6 tI- 24 M4-iSWE £FJe- L5 - -1_ /o- 2rt2VsoL CAN-? 2/ 2 JiCt/

ws14- 27 VISOL P F 1 oJAC/4

£Pj1 - 29 V101.

_03 0 $ iIs-$

co- lo Ssor s vAsoNEWO- TI V7S JA

TS-1 I 3JAC223 5 J-T0 7 /45/9

LL-2 33 JACZ4 C3-J-705 8 -s0iTS-4 134 J48 Cd-PA i 1aa7

3 JA C2 1 C-16 024+55A

N J- AD1tC 2 1JA

SRECar SW.{ , JNAK SLOWERC

FY37 40 80 _

14 ca

CBP

N% --

V7 viPSi / -4

It8 K' aa3/

oE *a I IS 8 / ' I/ 58 c,

Fig. B-6. Building 148 panel CBA wiring diagram

JPL Technical Memorandum 33-633 55

Page 69: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

PRECEDING PAGE BLANK NOT FILMED

CI-/ / CR2 C/II / ./SI CBJ- I / MSI

CBFZ 2 CR1 CBHtZ t M37 DWG CaBZ 2 -57 7DW4

CoF3 3 FAt CH3 3 /rIZ 2-97413/ CJ 3 ,A1Z 2-9374137

CaP MI caki 4 Mil cZJ4 4. MtCrr 5 MI Cans 5 TR2XI eJs 5 TR4X1

... CFD- 6 PTr2 CS 6 MI V CBJ ~ A I S WG

eO- 7 CTI Ca 7 M7 2-9174/4z CB - 7 M7 Z-93 741)3

aa 8 crz cS ,8 , Caa 8 TRX4-s/- 9 NP/ CBH9-- 9 -'/- CJ9 9 p/-2

CFO-i /0 -NPZL !/- /4 P C Iw6 Ca/rO /0 PT-C DW;ca--" /1 CR2 CBI/-- PTS -a-9374139 cBdI -- // PT- 2-9574131

ca2z-- /2 CRS CS//Z /2-- -PT-A CIIZ- /2 - DW

csar CTI CCs5 7Y FR(DWS 93794252) CB3 /3 FZ- -/0027524CSE4 14 CTz ;a fCiz/.4 CsC6 .4CarS 1 Hr-Hr esci / CBC5 /SCgE -- /c /72 cC- / I-C CBC4 /6 1SP-Cr

CUEIO 17 AR3 OBCL /7 -irr-. IDW6 rACs /7 CT-A

caE// /8 A- Cs* /8 C-r-C M - 374T 7cz- /8 - cTOM

csEIZ -9 CT9 i CAr / Cr- coa- 19 CT-CCb13 20 CTZ CBih/7- 20 MSA cl M6

CB-/# 2_ Cr3 1 CaN/ - /VI M 2- 93-7+/Z C4s18-- 2/ -Mb _2-9374fi3

E/0-- 22 erCT cs8d c .CA3- 2 2

es I- 2 Ces CT ss 3 CRZ cSA32-23 YALVE DC MaoroR

Cs/7 4 C CS 7 CR3 cs3 4 MR LIM.SW.(DWl0214(3)

D £CBK/- / UZE CBK/- i U4

CBaZ2 2 UZ F CBkt- 2 - U4F

cBz23-- UZA 8 .K3 -3 - 4

C5Xt41 4 Uo D W6 CBK4+ - + e40 0W6

CBK2'-- 5 - UZB 5-3 74255 CKS -- 5 - s o -93s4r55

CBK2Z-S 6 - LZCS CaK6 C - -- ufCa

7 C8A34- 7 -VALVE DC MOTOR

COKa- 8 U2 CC CBKSC- B 4 u*CC DWG 5"- 37425

CBKZ-- 9 CEAK9 - 9

CBK30- /o- C0I- --- /0

CSK3i - (ECBIl - // USr

COK32 -- /2 U/F CBKIZ- /2 U3F

CAN53 /3- oIA 0e/6-9 13 us4CAK34 /4 -/1D CKtf- /4 413D

CaK3- /5 - u i DW c cKIS-- Ig £ 3 D 0CU56-i6 - ICB 5-9174252 cs08K /f.- U5SC 4-9374254

/7 CeARS- 7 - VALVE DCJ1OTOR

CUS-. /, ICC CKs- /8 U 3CCCB -9 9 --UZC CKIS- . 4-C -9374-2-CEK40-- 20 IC SKlz-- 20 J3 e C

Cb 37 2/ CKOl- 2/1 -.120V-HoTC838--- 2 -M NAK ROOM CBKO - 22 -H2 0

SOL..N

C8479 23 ) BLOW IT 0803 23 P93CB40--o 24 -MR LI1SW(DW61s IZ+44 AKO- 2 IMR LI M. SW (DW O1 e443)

C 10-70 CHAN6E0D B13,C23,C2, D22-23-24 J7,17-24 La L4 .NIc

S/-/,-48 CHANdE W/IES RT4 8 /~/,/7,0TS/B,,C//'A.a // l H I AI P. - _L- J1J3UELDOR.LrONITUCT74N DG/0 47-8 AI' "L A/

un lg pn GnA Ul Imy CNs

Fig. B-7. Building 148 junction box JA interconnection diagram

JPL Technical Memorandum 33-633 57

Page 70: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

/"RA'TR4 WiR//10y OFSWtC/IES TYP AL MV VALVES /fi'MAffR.N6 WRiF/aI OxsWfrC~f,.Rjis i0oR 'LAMPS ?VroL,4t $A~ 21/'ALvzs

Bf'Y/Afws XV& r-Y 70 828

iII 670

40Ro' 0 '-zy0 00 0 0

Mi/4 MY'S L544_ZU_

fz FY3 f Z Invl f /9T- 10 0

00a0/ / 0 0a

00 ~ ~ ~ L a 0-. 0O 0 0-S A0 0o ~ 0 0 0 0 0 0

-B3000 0as . 0 0a0

MYO MI' VCv

- ' "[

- V I9 00V 00 00 0

C0 00 q 0 00 00000 0 0 C-8, 0 00 0 0 .08 ~ oo 0 00 0 0 0 0 0 00 000 00

00f'q 0 05$ 10 0 00- 40

00 R0 0 440 0 00 0 6 0.000A

0 Oa 0500 00 00 0 00 a -0 aFP

M X134MI'0 343 PS

0 0 0 0-E 000 Fo F RB0 0 0 0 -Or#0 C 0 00- ri0 0 0 0 . 0~7 00io' 0j'4,.yy

0 00 0 00-060 _000 597 J, J040 0'1 ei d.S~i4MATI 5-102354 I EMAC 8-/Oo4~ZV'z

IMP/Z My"f

61-faS I Csy'si/ ejiW2 ft0 3 Ai 2750. MV3R4S 31i MOOY-1 MV490SI I MR/-2 Alv9RAS -l st - R05-HN3'-.L JAA/Z V-f12 11-Y6JIS JAS-10-25 -JA80004 I. "j - 2 MIRI-z MY/SOC42T -MR- MY/SP.RAS -7 M.1 0-/

1-r 3 -9.,43 CA1A n3 -jV750L LA9-/S 23 -4150/. MV3RA9 33 -MRY-3 MV?R41 43 MR-I MY/IOLS - S3 - /0l-ZV//RY ± -J,023 :)T5 4 -SVSSO/. J.4/0-/ 24 - .4/020. MI'4Or4Z W4 -M04-1 CY7ZO5 44 -AR-2 MV/oI49l j4 MR"/0-1V//LI £ 0.424 $A.5 / ~2j M/A 5 Mi/ MVI03 Ts M-SWf' MY7RAI- ;V MR1-I My//RTAS SC MR/li-iSO1141 -1402 cAji /0 7 SAZSOL MV/LO 0 tMR/-2 MvYORAC T1. -MRI-3 IWu/SAM 0 M6 ARS-i 14v//14 03 516 M R/i-

CM-S1i 8 -(17 SAOo MVSRA3 MS-i- .MVSRORS I8 Mfff-Z MVM 8L0 MAR8-2 MI/A3 58 MV/f-553-/Sa 00 .SIS5/ e ~I 9 SASSOL MI'ZlasE 21 MRZ-S VAfl? 39 MROS-3 ISRN4 R- MV/ZLOY 69 MR02-9

-O- 0 *I4/ 20 ZO 5/0L MVZRAl SO MRS-S5 MVORAY 1IR/-i MYVi/IVS E MAO9-, MY/IZRIN 0 MR/SA-3

X J/O'EAr1Cs rOR ALL VA9LVES-OVW6 D-/OOZ446SI II

Fig. B-8. Building 148 panel CBB wiring diagram

58 JPL Technical Memorandum 33-633

Page 71: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

0A

0

LA EAF E4C EAv eAr 9zv / v I 1 72 2 / A

0£6 £l Z3 /o E/l E/IZ L1 l.4 LCIS £16 LE/7

REAR VIEW PAVEL COL

W

T I Tc Is Tre I 7f Ir? F/ R FS Fi F R P4> I 7 o i, 0o of 'go ot 'a a l& 9 Wt

1

i, * "A' ?, ",F**o o o s o 4 coo ogoosooo soIb o o oKa o o 6O o I inDr r.s .. 6 o o60'o

FA ~ AN ff d

F9 F/I PB F r7

REAR VIEWYV PNEL Caf

F F E E

FAl- I i-1 /d I -MF/ / ACZ IZ- JAAIA

fiqi//- A FA 12 M- -I 2 LADI 12-JAAI9

A3 - Ag 15 -M-3 £ 3Z 3 JAAI AD2-13 -JAAZO

A4Kl:_4 T 14 52 -AI 4-JAAI4 fAl 4 445- A92,- 5 ALAAS ,-4 Al7FI EA-I - JA4/ £4t-- I1S -,.AZ2

A. 7A. / A - £-7 AA2- 6 -JAA16 EAFI - 16-JAA23

7A-- 7 "AA7 F4B9 17 Af* 7 AF- I1 JA424

FAF/8 JAAB / A, 7-2 8FA/l -9 .A9 1I 9 19FA2-l 0 JAqID 20 EACI -10 -JAAI7 20

Fig. B-9. Building 148 panels CBE and CBF wiring diagram

Ln

Page 72: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

/3

DV +C D3r5

I, ,6 EoI; ok x 3

C e o 6 7

S 2 D F / T L

0 //- 4pDELIGk T8 D 4 4 4

Fig. B-l0. Magnetohydrodynamic facility panel CBH wiring diagramLp1

J.B1.Mgethdoyai aclt ae BHwrn iga

Page 73: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

c~ :v-M C WM o

H

CY2 Cl'S?4

0

dpi CW/i

.r-CWA14 0 a/ Ae * 2 / f e

CI!- 0 0 0

Cr, ctr C cc

'FAIS

'I o

qk G

-9 74

2S U 41771. f - *9

SEE DWF /O 24

5O C J/v P,VfL CAJ ? /-' /,i '/TJ~ O~/ A I

Fig. B -11. Magnetohydrodynamic facility panel CBJ wiring diagram

Page 74: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

AC

AA A - 4

ML " 4MN,IN' oW,

/o 29 AP 3 0MN

<wee e-K ccaA- -1 1- -

:All -- 2 ? - M92 cot-ort TW IFes,' /7/?cA'MOOs- -o dA 03 -1 - -- c-a-- , JAE -ll/ . - 2 J42 O Sf

, ~2 2, r '2 4

"A3 4- - 3

"1 -5 4..o

a-t o /0 UNT 1 / UNCT 3 A 'D 2S1", -r I -A'

I.I 1 Man' OF N F #m a i f 0a' C of F n d2r

8rI /I CC/ CLF C4l 2 /

Cg n/oh od MNiC fa23j mpel BK Mwi riANd 34iagram14 -'al MF/ AqpN 1': .3/ PM?

IA09 9 21 2/1

n ~ AAI 4~~~C1 sMP d3-~ -e-NMR 9U b ~14

0 ig B12 Mgntoyroynmi fciit pnl BKwiin daga

Page 75: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

-4

(P

0

. A± 4 C A + A7

WvZ 2 O8.-vMZV Sc4 OJ-VMI0", _ o _

oN 0 P2 I-V 0 P+- LY2- 4 - eSN-V MZ

PS

JEAR V/IW 0 0. PSA P_8

NOTE.EE DW D/OO2

4 5 FORLOATIONOFP4 N CaP

REAR VIEW

& I-11-4 (HA/V6-f# C9LLOUT AT P- ITE

Af-5-461 AS 06j NOTEA I_-_ S BUILT __SEE DWV D/OO2445FORLOCTION/OFPANEL CBq

E DATE AE DWNC EH PP

48 CWA*aeYMfGFDD&/P OFPS8 *H oFig. B-13. Building 148 panel CBP wiring diagram A 8-54si8 r l 6e /Z/

Fig. B-14. Building 148 panel CB wiring diagram

Fig. B-14. Building 148 panel CBQ wiring diagram

ON

Page 76: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

MM-S v Wi ROE NI a aOe It 5 So,. a-o , ri S Ls $A $A I iz- co 2i5 YO11 All

LA I eas i t s sG I a N S R

'" "' -I. war-<a o ,in a ; e ;4 ( * & o. L L I_

.444,

lO Si,. I

ILo aeO A sci s.

S MR LIMTSW TCHES LIGHTS

S0 1t 5 0 i CI SL6 S W T C H

Ga'Sr c at o re e v rt s ( W arI Icin vo t C S I JA F -

Fig. B-15. Building 148 100-kW test valves schematic dagram

0 hUM - __ ri

(D Y'3 l AIR £0 1552

,1 * -. 5

SFig. B-15. Building 148 lQO-kW test valves schematic diagram

(a13 s rv l 1 ILe m t-

Page 77: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

FOLDOUTDOU FE RA

-j , ep/Jo re ' -TO K37 Aaw I T % .S. B /2-;2-/,6 9PD 1/pv-O . 'PV rt' Q Ir

__' 4 I - I . --_ ----I-

3 C AD 9 -C 1 -i'" ADDE IT

L' re X.3 3-3

;i: . O s'. _ • Jl., .,,

WC R" - - --II-o

, ,M M 3 ,, . . _

ASrR RCBK,_ - TwrT Z . ..3 - , -- , A

S AS C) o

AIcI ____ - _ . _

e r rI 2' *e' a /-

-03 .sr.. C'BAC"/-I3"c -o. cVB .- ,

Jln TechnicalY-r a S..s av ___ re . as e econscan

j CBAC-13LC. A L9g

C

. e evae a.rm 1 n

13H~aA--% 7,

PRCDIGPA EBAN OTFL EDFg.B1. aneoyroyamcfciiy yeWS ele 00 , nt1,wriga

JPL echicalMemrandm 3-63

Page 78: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

7 r4- N,- ro c-&Kz7 40 0 q W os9DED, ' . I . V ID I C. ATI01V -AT, 4 57-R R el p~b~m'; DI

SAt

ca zsB - or--PP un aMco'TER a1 £ L 1OW70 ADDED FLOW IT ,CRUIT EL6 IC

C= t o JB LE

_' 54__

-03 K3 A -

VA. 0Fh a Stt AR

I (It- B cC AR

AMS7-CA RAIS-C LOW25fR SCMATIC. 4 TM AZ\S

AB __F~ Q

g r U2-_ D-..I ZD C\

,ev t10

VS G

AffOW dW FF WCMA/, 3IMAMT%

LiQ

o Zo4e- U_

ONT V: MZM 7/ Ia 3

A.

Q - " " , 4LO Q Ct

I. 4,,rC .92 b B a-

JAS C 13 R D

CAP7 40 HF. . ei;~

It C ,AT \C AQt-

ter

2C 14

-;r ' J 3r

ro~ 0w o- Toa US a

cb \ Tr f- TO~B~

a s cog com ,C . c

(0 SolJ JJDe1.4J<90-r TU~ I (-4glTo1 CO rocoo<5# 0i T@As

co a AMTO~ L.L See c ne ac1 %1 C, aC -\SD.'L L CA

"T -) S-g7. -kH \ ~ va.BS-Is 4 %S 33

Suc CO+rTEM ro sc o auera

NOES REf WESNOSE ELECTRC CORPWO 8509

7/rd "WY/I WELDER-'-' /000 AMP- WIRINVG &e

SC/EMAT TIC"

2 WESIN/6IIOUSE ENCR. REF1SWG /Vo.848&Q5

iFig. B-17. Magnetohydrodynamic facility type WSHI welder 1000 A, unit Z, wiring and sch matic

66 JPL Technical Memorandum 33-633

;e AC

I cvr . VAVT_ LNM NWK40 ES

o~7-17-41 "WSH WELDER- 1OOU AA1P- WRINC e

~S~Q~h TOZC 3 4C \ S C I rA4A TIC "Z~

2 3 I6 ux N9 fP6 %088P7

66 JPL Technical Memorandumw~~cu~c

Page 79: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

1OLgDOUTl F RA111 Z

I2Z ToC.BKlA C 1 - 1 SIEDPO/OO VEST -T jD0 J-- BKI _- i C O-S-74 ADDED FLOacSW T HW C /ItCi I T LNN to)'-- AOMOS INOA/ T\id.._. . -. ... .

I- a I I. t I cR- *C AoA1 C

L > J. Ls

Q.. ,, r , A& --

IZO"0+ NuJ -? I- ' iCI A m To vwl5 " f I 1a/ '

e . ...

A.trq oo l 0 sue. 3 A GC CICopp

3 VA I 0..- -

A41 .1 -r\

I-o

E -L &.

Lam T ITT A .

4. 4 C ~L4<+>

-- O. 1 -- -

50WsucHOm 0 -EF F C'W-

JPL Technical Memorandum 33-633 6.7

(M 0J,

sv _ CTV\,T .faft" M

Wi-S-IIVIOVSC -I6R'?47FOW6- Na 4 8P 73

Fi.B1.Mgeoyrdnmcfclt yeWHwle 00A nt3 iiga

JPLTehnca Mmoanum3363

Page 80: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

-UT,1~ M~LOT h~m

-1 A F3 4E 7. 7c8 ITO CBK7 -. B ek ,,-j2-s AoDDF /A/CA/ONAT AF o0// IAWLH

, 4 I 1/ 4I PLV C 10O--AD E D FLOWSWITHC RCL/ LG0.A *Aac ovq

'ro CC9A/9 IU. /-,sr4PreiR 9 roVA-oe

41 240 ~ g

1srVib em" W 1.sonN~haM SwartH MF rwrrrs g AAA NIs-- L/44 04-4-F 1/ 9 4 , CA

_ _ CSN 4RAIJZ

9'P' 'U-D /f e a s --. \-CIto v AA 3 A c usV rw

V zV F xt

T ice - TWL~pi

C4V

AG rt 7 -j I I erJ

anal~a CB 93 Er ,la-

A.. I 1[z

e -' f o%

css

afJ 0-

bT - se CKPA 40 M D. 4 q-H~ 9 47 C 1bL. 92 J

0 0 b . 2- -I

f F r,

CA L .Cr '.' . It4l = 2TC.-<. C.A L .

To~~ Cow T s aO 9.~s~ it.ar 0

All $1s Ut "V

s4 0 0 13-0 40"" CAP. v )*,

TO 4 4 T 'Cto <->r C+>' 42r we .~ a c or . o

to T M 9 I I on

is e2wa g Irs.vrAryp wroer 6\s~ em aH wsrt/ vr>\l rL19v- T o ne u r wayWESI-AEQ- -- g Ti-

A%-%- /.C VE /C S ELATR/C a.P rib (.-I

9" S

TITL "c TYP WS IDR-O!/P

4'' 2.. -

20 Is

s/MMV r I- EMAT/C "~ QIDQ

''TF. B-1. Mgnetohdroai faclt pe WSH w 100 A un 4 wirng s m c

8 J

ToTLE" TYAE WSH W41LD17R..-/OOOAP-

2 WZ7Jr1VC/ 11U ZIVC R ?Z'F .A6, NO e48.0 75

Fig. B-l9. Magnetohydrodynamnic facility type WSH welder 1000 A, unit 4, wiring and schematic

68 JPL Technical Memorandum 3-3

Page 81: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Lj--2#51 0--- •724

SI

II

o .

7RS

LEGNER4D

,... ST/NG OUJE IZEO MAG.CW AlER PS

-RT M -RO 3. 02DA8, P-" . . . .

_____Er7A~R B WRLA'fl. PYIA/ " .

OT U x/PFRAAf l3-1 ATrAKPMP

b II-70-b7 1D6H AT& ACP&// £74 PSIATE q C/ANGE DDNCHK ( ENG Pf REL

Fig. B-20. Building 148 NaK pump blower schematic diagram

JPL Technical Memorandum 33-633 69

Page 82: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

M TOL

MMPANL P " B208V 3 607

AP 20 -12050YR

3TOP STAT M7 T

C a7

Z 7 C BFI8

K_7

LE GEDSYMBOL DEVICE OtC T/IOH

M WEJ1T/N4HOUSE SI Z E M /d. JW NAR PTOZL ' CTr '/42 / M

STOPASTARTI M/CRO W W#ZD8 PNVAEACF

ON, OFF " " OPER,/ND, O.t2CI ,

R_ RES 2250.D. SW "ACe POTT BR /1/MP/fLD &KRP//N /'i007 IUS 3/?P R Ef / a41 !ITryAHITR

A /H3-*7 /sUED FORCONSRLCT/ON !61 A478 L/ # L.V DAE I CHAtAE IDWN I eK N m IPP REL

Fig. B-21. Building 148 heat exchanger blower schematic diagram

70 JPL Technical Memorandum 33-633

Page 83: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

.R __ o

O IR ji$ M.-

- - ' " V11

/2ovrr2{ E 2.

3 AA21 _ lei

L / EGEND

- R C O /-7,, LFORIE'P d B F J A 316 Y4 3 " J

JPL Technical Memorandum 33-633 71

-r"A T TerJAA2 o 7o

VtotL V H o

ZOVU !Y84 140 2 3 0f

0g B

JPL echncal emorndum33-63 7

Page 84: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

PANElL P-3I I 2

ZO OCY l I -CBi o -

MS h'3 M-

M2/N PB-lIA#& V j IT' E 3 -

66 __

I I T NE

SY4fO0L Of /CE LOC/ATIOBlfR /re E OREH P.T1fVIP

M, MS C,4 MO4 L 6-//-2 8UtL. 975 797 NEAR

MAf2, LY/honia tYLE 2n--/938 JIZEOM3, M E/ /DZ/tZ2 SIZEO ,

N/ TOSA CROM&OLOX 20OV 000OY R6AP 473340 tYAK NTRAF WEST CONTROLLER PAALt CdMEF ALLIJ C ALAFRS ROtrRY S;. _ __'

FI 4 815 FS'l Z CB

/ ?OD0Kl frD) ID OHA //-5 / /ED FOR CODR/ON 6H 47B OeD 11~

fYD47W CIRiV OW CH ENV JPP REL

Fig. B-24. Building 148 100-kW test, NaK heater schematic diagram

72 JPL Technical Memorandum 33-633

Page 85: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

ON M

F ,oCo L J 4r 3 4

CAFSS I' 5 / I i 2

1 i

SA2.JAA

KA 10

A1O- -7 £2 5

C A- JAAZ 7

7RA

MOT 0it

AP -1-//dAlP s It1 .9 -d r /SP/ c

IC -$-7 CAN6E CAPATORS O 20KVAR L.0. /. PL.

S At.t7 .. IEAORCOA fROCTIOI 0Gb' ,qTS

Fig. B-25. Building 148 NaK pump schematic diagram

JPL Technical Memorandum 33-633 73

4L71 / ID FOR CORl/CON / 478 A/ 4

DRE CHNGE DN X ENC V77 REL

JPL Technical Memorandum 33-633 73

Page 86: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

CaE.r---- ,--v C OC

V Ald

R1 rR 0

C949 3 CBa3

2250.XR " pRqM 6/Y

2Z60Ab/

S. 28 #- 4R ADS L//r/W I0r I //

A //-4~-7 /£3UEFORCONJrUC/O/l DG// ATS 1 A.M

RV DATEI CHANG(FA OWN CHK IH6 1PP feL

Fig. B-26. Building 148 hot trap schematic diagram

&XR

rR 2TRAAGX

F 440//tor 1 VA

-O'F/od.'r MCRO - 6PRATr0 e-/O4 9C3

SEE 0YV6 D/002445E FORT/0/V OFPAHFL C6H1

BI //-II" ADDED t75HTD/D) 06/1

A J-a- 7 SewSf FOR/o0NSPr TT A1 Ar

Sv 7 A!OAf ,tc - U JA& REL

schematic diagramchematic74 JPL Technical Memorandum 33-633diagram

74 JPL Technical Memorandum 33-633

Page 87: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

x4 A3 73

A?

iSY/BO V I0 E V 7/ OCA/O2

fi0 1__0//p_ Y

/VOTE:

r-e 7AFOOOzW TE4 _D/ _ AM 7 04

______TE Cf'O-Opfp rOk-/CHNv2C _____

Fig. B-28. Magnetohydrodynamic facility 1-1/2-hp blowerschematic diagram

JPL Technical Memorandum 33-633 75JPL Technical Memorandum 33-633 75

Page 88: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

8KR MS 7oe0 C

.6012/ CrF!/

TR N v JA H 2'-: 4 B7 P -WM CA a tA CABU

-2. K41I34I 63JM

Of/ UHI CAHI4 7P 6E Ax3T5Lor.*6422263

3~iz 0 7 W1i, 5 d-POT 7,?A1NJ#VYP-0 76OY22613

4 T 6L VOLTArIr,*%IP 10.LO~4 4002N

Fd IABI -S -M5 SZE 3MA,6YZC .7kV/rCH'

- ~~~ - OI7Xr f- d f M ICR O 5Ak rC W 2 ,068

cf Po - /l,?V OtRrOMR-IM9O 2 CIA' OTC LV V34 I fX2S0.LS

/ & Y/IAJh CLMSW 2 N* - /Tr44*AL's 2SOV3.4 3~-T.0,-

__________________________ I__I__L__ x_ A6 SR /0 0 t F fAWM

I C I I SI..fVIADCA'C ,T CNM"DZ A'vJr/Mr rBc~ AWih'~uI~

0 Fig. B-29. Magnetohydrodynamic facility lithium pump schematic diagram

Page 89: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

480

6 AAN 46//Z0 cr

0,J1 Ni HS YZv7 H4K tI _-/

71R 3 I

AX M av il , L 4 V4 ,r r A' 0R

C7l 6AMS EVICEr~N5.i- S

COJ3 cil fW PUM 0 '1 r4 zI P,11 2

w_ AM 2 M f,4 441 O r,?,9W7AR *4-AI'- OA02P

__ CP 52 ;x5 VT.-s ,64cRSw#/os,9, 00

(Co' (CE -j '04 CE/8'7ETERIb4CW/OAAQ

4 CBP-C-2 -CBdP I/I I. SE 57W (9--i 455W7W SOR 10,"002f-VC

VA 21116 ED ai A- S hA 6E~Z 500~EEI, A'/57 10.,40/8~~~ 51-18- 7-1'RW 4 0I YASJI 0,9, S.?A /)V MO 5'5T4V 80/0V

Fig B-30. .Manthdodynami failt cesiumWC pump,45 scheati diagrm'R- I

-JC1'OVO O CB ZS2 0S -

Page 90: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

APPENDIX C

FABRICATION DRAWINGS OF TEST SYSTEM

The fabrication drawings of the cesium-lithium test system are in-

cluded in this appendix (see Figs. C-1 through C-53). In some cases minor

deviations and/or modifications have been made for the reasons discussed

in the text. However, the essential features of the components and piping

arrangement are identical to the drawings.

78 JPL Technical Memorandum 33-633

Page 91: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

-OUO Tt QLOT FOLDOUT FRAME

S O _

~3--------

Fig. C-1. Layout and installation - 100-kW MHD ac generator erosion loop

80 PRECEDING PAGE BLANK NOT FIL JPL Technical Memorandum 33-633

Page 92: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

geom FMY )FODO FRAME\

!001 ,,7,

3.3

I''

Z/

-a t4t GUP i~u- - - -__, , - -- - __ .---.

3..d

3??

I i .a\ i;II I I I P

igM.. C- (ondT cPae r u 3 I 23

ouvor 700310M I0u1 9 754 TA *0LL.07 u

01351 70. 600* 1011043111103 01W4t1k0 0404 I 10

0911133 151 M E00100 .< I 10

as asmut T s Ass I IM

431.7 1? 24 407 04442 I 0:. - l 1

-031~0 YL-ITE -3. -'. -"

Fig. C-1 (contd)

JPL Technical Memorandum 33-633 81

Page 93: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

/ REMOVE APERTURE PLATE FROM MEEDLE ASSY. &WELDIN POSITION. THEN INSTALL MKEEDLE ASS5 & WELD,

&ALL WELDS TO BE ELECTRON BEAM.

iC911-7274 PLUG,HOUSING . 3

ID911-77 .NEEDLE ASS SY ...

J911-7-731 I HOUSING I ID OR . DS STOCK SIE NO FINDDWGT NO. N DESCRIPTION SPECIFICATION REF DESIGNATO ELEC SDW MATERIAL REQO FO.

Fig. C-2. Weldment injector assembly

.02x45'CHAMFER

.06 x4 5"CH WAMPFER

+.0001.178-.005

/750 +.oo DIA-. 005

DIA

32

3 MACHIkJE FIJI SH '1.

2. BREAK CORNERS .005-015 RAD.

1. MACHINED FILLET RAD. .OZ0.

PLUG I4DIA I LG Cb-I7.ZrDESCRIPTION SPECIFICATION REFDESIN EC MATERIAL

Fig. C-3. Plug, housing injector assembly

JPL Technical Memorandum 33-633 83

Page 94: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

0 00000000000000000 I - - 0 00

0000000....

3

WELD ALL AROUDv

INSTALL TO Z10/, R/AD TO /0W AFER TI//E WELD/A/O.

AELECTROAI BEAAf WELD/A/G 70 5E USED THOUGH-OUT.

1/1-7Z77 TUBE 37 3

DETA/L 09 D.//.7278 HOLDER, TUBE I lj

SCALE 10// C-7?76 APE&,l1/RE PLTE o AT

TYPICAL (37 PLACES) - OnleoCI SOcntO onon or on no

Fig. C-4. Needle assembly

84 JPL Technical Memorandum 33-633

Page 95: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

DIA

A .so I I15

.045 R .093

S L BREAK EDGES .005-.0\5 RAD.

SECT\OMi

APERTURE PLATE I r6D/Ax 3/16 Cb-17. Z,DESCRIPTION SPECIFICATION REFDESNTIO ELECDWG MATERIAL

Fig. C-5. Aperture plate

-

I

r-.. ........ 8 -

I. CLEAN & DEBURR TUBE ENDS.MEASURE & RECORD /. D. & WALLON ,LL T-UBES.

TUBING 935 OO l4 WALL Cb-17. Zr

Fig. C-6. Tube, needle assembly

JPL Technical Memorandum 33-633 85

Page 96: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

SECT IDN BSECTION - RE

SECTION A Re / 054'REF 3e

0000

3(.089)D RI LL

REAM TO .094 r.o01 DIA.

37 HOLES

9.--

jo

TYP

.437rYP

SECTION b-- SECTION QZS&TYPICAL (3PLACES) TYPICAL(3 PLACES)

3 MACI-IME FINISH

2. TOLERANCE, ANGLES I/4.

I BREAK EDGES .005-.015 RAD.

.384TYPSECTION O' YPICAL (&PLAC-. 5) ZTYPICAL CPLACE5) HOLDER,TUBE II/gDIA r

3/ Ch-lZr

Fig. C-7. Holder, tube

86 JPL Technical Memorandum 33-633

Page 97: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

3 r---

0o

00ON

ASSEMBLY INSTRUCTIONS

STEP 10. I. INSERTO INTO AS SHOWN. THE DIMENSION SHOWN IN

DETAIL A" IS DESIGN DIMENSION AND MlUST BE HELD

TO -. OOI. (USE .010 SHIM STOCK, REMOVE AFTER WELDiNG).

S ONOSE CONE WELD () & (AS SHOWN .

(REF) S-TEP NO 2. INSTALL () INTO ( AND WELD AS SHOWN.

--- I. NOTE: PRESS () LIGHTLY UNTIL IT BOTTOMS OUT ON THE

STEP OF®. THIS WILL ESTABLISH THE 2.100 WEEFfDIM-

STEP NO. COYER OW PLUC LL T-,ETC.

/ALIGN IJONDEX MARKS;uSE PFITURE J9117CO-l & J1II&sz-Z.

-. 005 CLEAVA5NCE (REF) 1. NFTER WELbWC;I STORE 1I PROPER CONTAIKER To PIMIENT DAMM E.

SPEC TIG WELD JPL 20035SPEC IDENTIFICATION JPL,-0002

SSTP NE OFSTRCTION5 ) C91177&o NO ZLE,ASS I 3.OIO(EE STEP ONE TTINS 77( CONE,AS SY

D9117753 SOD"' I ISCALE: 10/ 1E

Nm N O E E OS E O

Fig. C-8. Separator - 100-kW erosion loop

O--j

Page 98: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

A5 EMBLY PROCEDURE

STEP NO. I

WELD ITEM (D &@ TOGETHER AS SHOWN.

WELD ITEMI S9 TO (;WELDO TO(

STEP NO.e

INSERT STEP t4NO INTO®. ALIGI THE STEPS

OF (5) THAT RECEIVE ( THEN WELD AS 5HOV ,ITEM 9 MSIY tB USE) F8GTIONISNIA LAT DO NOT WEL " TQIS TI'ME. \STEP NO.3

INTALL(&&AS SHOWNTWIST ENDS OF TOGETHER~(S LAYERS). \700 DIA4BASIC

INSTALL AND WELD ( AS SHOWN .PMSS (@UNTIL IT TTM5I O & )g

STEP NO .

MACHINE THE INNER SURFACES OF(&. MACHINE THE REAR

SURFACE OF (; BORE HOLES FORF @ & INSTALL .(P555 13 UNTIL IT TOM BOR.00 DI EN 3 HOLE.S (EQOILLY SPACE D)

INSTALL AND WELD @&@ INTO 3P

IMAvC-IIE TIE I.D.O;(:AS soUW 8 -.. _oo E VVA-§

1A .0005

3.5o .30op --DIA A

DIA 'AET F.oo. ,50,~;aRPA

. - .090-- EDGE

6.TIr WELD TWIZOU6OUT.SPEC IDENTIFICATION JPL.ooOZ 17 ! INDEX MARK THIS AREA OF @ IN ALIGNMENT WITHSPEC TIG WELD JPL Z0035 &1 DOWEL PIN .

SI"OlIAMETER TO BE CONCENTRIC TO DATUM (A) WITHIN .001.

k I91I7t7s PIU, T 3 1 3. MACHINED FILLET RADIUS:.015 R..iCIIT4- . t.ai1.. I R 2. FEMOVE ALL BURRS AND SHARP EDGES .CX R MAX-

----77 - PLATe I-drOI i 1. MACHINE FINISH

I lb

C9177(o PLATE, To II~IE Ie&~oSJK 6o'q COLU.II. 8

-E r-(- U Co2lds -5-k 3 7' 3

Iq911T59 BAUD, SEPARATOR I

Ol51T758 ooL . I 5

1C!AIIrS __CYLIUI5ECR Sc- 4CSI177s. 5AFFLE N .. I 3

Cu : I=1E I 1-l -a coVAe seme

Fig. C-9. Assembly, body, separator - 100 kW erosion loop

88 JPL Technical Memorandum 33-633

Page 99: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

S 4.093.945D/A 3.550 DIA

DIA

4.000

DIA 3. I

DIA 3.00T CONCNTRIC ITHIN .

.140

4 ALL DIAMET.RS TO BE. CONCENTRIC WITHI" .005PECXPT 4.09 bk.

3. MACHINED FILLET RADIUS: .OOSR2. REMOVE ALL BURRS AND SHARP EDGES .010 R.1. MACHINE FINISH fY.

SPEC IDFNTIFICATION JPL 000O 3

COL-L a ~ 3/4 4 /8 D IA Cb-IX Er Iw 0 or DASH STOCK SIZE NO. ND

PART NO. DESCRIPTION SPECIFICATION F DESI T ELEC DW MATERIAL R NO.NO. REF DESIGNATION - ELEC ONI REQ NO.

Fig. C-10. Collar separator - 100-kW erosion loop

JPL Technical Memorandum 33-633 89

Page 100: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

DR2ILLE) .1 TT .4 KOLE ,) EQUALLY SPACED

IN FLAT LAYOUT.)

4.000 t-.-\

.I25 STK

ATO BE COMNCENTrRC WITH IN .001 AFTEX WELD\NI0.

3, MACHINED FILLET RADIUS:2. REMOVE ALL BURRS AND SHARP EDGES .015 R M1A).

AACHINE FINISH (el

SPEC TIG WELD JPL 20035SPEC IDF TIFICATION JPL ooo0002

3AFFLe I il .s25 X a.2 DIA. Cb- IZro . O ASH STOCK SIZE no. (O

PART N DESCRIPTION SPECIRCAl ON R DESIGNATION - EC W MAOR NO .

Fig. C-11. Baffle 1, separator - l00-kW erosion loop

90 JPL Technical Memorandum 33-633

Page 101: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

TIG WELD

-70 DeILLA8 DIA24 Ac0.s,

EQUALLY SPACEDIN FLAT LAY OUT

-. 0003.945

DIA

.17-flp

.. 125 STK

ATO BE CONCENTRIC WITHIIN .00 1 AFTRF WELDING.

3. MACHINED FILLET RADIUS:2. REMOVE ALL BURRS AND SHARP EDGES. O 1 5 R MAX .1. MACHINE FINISH 6

SPEC IDENTIFICATION JPL000OZ

SPEC TIG WELD JPL20035

BAFFLE Mo.2 1.IZs5 x 7 DIA C - I Zi. I

A O NOS DESCRIPT.ON SPECIFICATION REF E ONT EEC W MATERIAL OD NDPART NO. NO. REF DESIGNATION • ELEC DWO No.

Fig. C-12. Baffle 2, separator - 100-kW erosion loop

JPL Technical Memorandum 33-633 91

Page 102: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

2 5 -. REV CHANGE DESCRIPON

.ool TIG WELL1.531 (CLE AN OU"

.',"3 s PPACTICAL

I-A- I

3.613-900

D/A

-.003 s. 7 853.810 -,A

0 .001

.25so 0.1250.

.125 r-.250t.oo1 TY

rrP

DeI2LL8 -I A TRU,I PATTEl 5 A S .O0WijIN FLAT LAYOUT

SAFTER WELDING. BEPORE WELDING

3. MACHINED FILIET RADIUS: .0 O MAY.2. REMOVE AIL BURRS AND SHARP EDGES .005 R. MA ,

.I. MACHINE FINISH 6

SPEC- IDENTIFICAIOAN PL 4]

SPEC TIG WEI-D JPL 2o0035 3

CYLIKJDER SCREUEJ _r_ x 2 6 x 12 3/'LG. Cb-I Lr I-1TCOZn S nNO. FINO

PAW NO. NO. DESCRIPTON SPECIFICATION REF DESIGNATION. ELEC OW MATERIAL NO.

Fig. C-13. Cylinder screen, separator - 100-kW erosion loop

92 JPL Technical Memorandum 33-633

Page 103: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

TIG WELD

ID HOLE .

68 76 - 6.765

OPTONAL - O00CHAMFER

2RLL +43 HU

THO .04 4.75 PLA -ES

OTH ENDS

(LENGT ISTEM 3

P ACES 4 \w OIMENSION5 APPLY' AFI-TER WELDIA/.

3.2 .MACHINE FILLET RAD: .010 MAX.

2. MACHINE FIN/SH /. BREAK EDGES .0/5- R MAX

S PEC /DEATIFICATION JPL A0005 6

SPEC TIG WELD JPL20039 5

3 PLATE PLA7F 94LG Cb-IZ " 1 3

HOLE A D'k B ODA. C. DI& D DA. S -DA. I BLDY PLATE .;4 XIO224.L Lb-/7 Zr- 3 AP BAT PLAIT/*x/OXI 2L 0 . CO-IT 2, / .

A I .. 5-t SlI.oop"s I.5.o5.o oo .o,5 . o , ,oo .7oto I " 66 -o.

Fig. C-14. Body, separator - 100-kW erosion loop

O .oT L;E~l~dLZG C-hZ

Page 104: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

TIG WELD-SMOOTH FINtSH

5.75DIA

4.DIMENSIONS AFTER WEL-DIMG.

3. MACHINED FILLET RADIUS:2. REMOVE ALL BURRS AND SHARP EDGES .05 R MAX,i. MACHINE FINISH 6

SPEC IDENTIFICATION JPL20002

SPEC TIG WELD JPLZOO35"

BAI, .125 X I x L Cb- 17r i IOW OR DASH STOCK SIZE NO. FINDPART NO. NO. DESCRIPTION SPECIFICATION REF DESINATION ELEC D MATERIAL RED NO.

Fig. C-15. Band, separator - 100-kW erosion loop

94 JPL Technical Memorandum 33-633

Page 105: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

.500STK -

J2 x 45°

3.817DI4

+--- -- +0o

+.oooG.875-.ot0

-. 020 RM/N

.030 RM/N

2. BREAK EDGES.015 R.

I. MCHINE /NSs

:SPEc IDErr/CCATIroA JPLZ. 000o :

'PLATE, TOP PL ATE X X 7 /A C -/ 7.

SCRIPTION SPECIFICTIOF NO .FINPART NO. NO. SPECIFICATION REF DESIGNATION ELEC DW MATERIAL RED NO

Fig. C-16. Plate, top, separator - 100-kW erosion loop

JPL Technical Memorandum 33-633 95

Page 106: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

TIG WELD

.1Z x4~' CAM

DRILL '30(. 18 e-00) DIA MI OT t .o5s)-

3.750-_ o /

I.0oo \\

. INJE CTOR TUES(REF)

2

GE- DE-TA.. A

*0 DRILL.15 DEEP ----

3. MACHINED FILLET RADIUS:.010 R MAX.2. REMOVE ALL BURRS AND SHARP EDGES .OIOR WMA" .I. MACHINE FINISH / 00

DETALSCA.LE UJoWE.

SPEC TIG WELD JPLZoo36"

SPEC IDENTIFICATION JPLZoo.

C9117762 I-IiG,NJOZZLE I

C91 II7212 1u J-cro. AaSy I IDIN OR DASH STOCK SIZE NO. FINDPART No. NO. SCRIPTION SPCIFIA N REF DESIGNATION -ELEC DWG ATERIAL REQD NO.

Fig. C-17. Nozzle assembly, separator - 100-kW erosion loop

96 JPL Technical Memorandum 33-633

Page 107: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

' ,,00 STK

.09 x 45" CIAI

CHAIFER .MAX

jMACAI-.AS REQD TO FIT C911-72to NIOZ.eLE.

SM1AKE FROM COIlE REMOVED FROM C91177&3, IF FEA-IBLE.

3. MACHINED FILLET RADIUS:2. REMOVE ALL BURRS AND SHARP EDGES .OIR MAX.I. MACHINE FINISH

5PEC IDENTIFICATION JPLeROOo

12C Y2 x _7 /3 DIA Cb- I . IDiW OR DAS STOCK SIZE NO. FINDPART NO. NO. REF DESIGNATION ELEC DWG REQD NO.

Fig. C-18. Ring, nozzle, separator - 100-kW erosion loop

JPL Technical Memorandum 33-633 97

Page 108: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

4.875DIA

f.+00

G' 75DIA

4. THE REMOVED CORE WILL SE USED TO PRODUCE C9117762.

3. MACHINED FILLET RADIUS:2. REMOVE ALL BURRS AND SHARP EDGES .0301 MAX.1. MACHINE FINISH 6

SPEC IDENTIfICATION JPL ZOOOt 4

PLATE, 80OTTOM PLAT k x 7 DQ C-IZP7. /DI R DASH ISTOCK SIZE NO. nNDPA NO. NO. DESCRIPTION SPECIFICTION RE SINAIO E MATRIAL RO NO

Fig. C-19. Plate, bottom, separator - 100-kW erosion loop

98 JPL Technical Memorandum 33-633

Page 109: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

TIG WELD

.09 4 5

4.874DIA

4.428DIA

1.00-4

3. MACHINED FILLET RADIUS:.030 MAX.2. REMOVE ALL BURRS AND SHARP EDGES .015 R.1. MACHINE FINISH

SPEC IDENTIFICATION JPL2QOOZ 4

:SPEC T IG WELD 'JPL 20035 3

RING 5PL1ATEr x -i 5 G, Cb-I Z I

A OECRIPTIONm REF DESIGNATION C G MAIT RfQ0 NO.

Fig. C-20. Ring, separator - 100-kW erosion loop

JPL Technical Memorandum 33-633 99

Page 110: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

OO0

r 2

WELDL

( r v ec\ w. 0 1 s s at W E L D 21

FTE WLDi To P E O A I To vNT . i NE

CIA

IN LGMENT WITH NOTCH A I-

N . DIMENSI ONS HPPL AFTER W WLDINGRE At7- I TsINVE t EA.0 L C I G

SFig. C-21. Assembly, cone and support, separator - 0-k erosion loop

gONE AD ONECAL. TURNS. WIbE TEncOosTOoE , Lse, 100 erson

U.

Page 111: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

- 00-05 -. B-

\ A ..05 0- -- DEEP

TD TA OI DR.

..00. 5A00.0DIA .030 R 538

20 .046 3.700

.6Z5DEEP PERFECT BASICA /THD-OTTDM DR L108L.00AND TTOM TAP BLEND R

CSI SK AS PE Q

TANGENT POINT 00 CA3 z250 - 0005 I ,- Fo o IA 4 , -F

5DAR L&GOO DIA.MATCH DOlL. FOA FINDS .0-IS SCALE: 2/L(3T PCREI FIT REOD R040 ADBASIC3 PLC91177ES TP 73PLACES NOSE CONE NE

A.0005 Zn

5 TUB344 .04 OLG C r

SCOTRUDD JONT 4400 w

3 TUa MIL-T- us0 N 3/~. 3 3 .3.00 RS I

A .1238DIA XI (CbI 2 I

9IA DIO,7 (IM'INEWCD

JPL Technical Memorandum 33-633 01

3S M A C H I N E D F L E A

SPEC / 1/~ -TI WELD JPLSOOS5

SP6C I C5

. E34O LO CA 3 - (IC

PI2A L STA (Cb-17 .r 5

.050 -- 00

i '0 a (Cb -IP

JIA TIc Memradu 3 S.101 G9s DI, Mk N

JPL Technical Memorandum 33-633 101

Page 112: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Go* .052 RPATTERN ' 3 L D e T0°

PLESTYP PTT-RNC

4.375- -000DIA4.125

DIA 5//

4.00 4.58DIA (TO0I. MLCX DIM)

PATTERN A" a .1 /O 1.250

4.730 O-YEFSEE TAB CHART 3 P725CES

e e7.25

4.750

TAB CHART 4.ALL DIAMETERS TOBE CONCENTRIC WITHIN .010.PATTERN DIM X 3. MACHINED FILLET RADIUS:.OIO MAX.

-- .47 2. REMOVE ALL BURRS AND SHARP EDGES .015R MAX.1. MACHINE FINISH

DRILL N0. GO C .

THRU ONE WALL90 CSK.125 DIA

4 HOLESPEC TIG WELD JPLZOO35 4

HOLE PATTERNTYPICAL (3 PLACES SUPPORT, TUBE PLATE

3)S7?/z I4VLG Cb-17. I

EUALLY SPACESIFIN

Fig. C-23. Support, tube, separator - 100-kW erosion loop

102 JPL Technical Memorandum 33-633

Page 113: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

71?

.OZOR D/

• /

-0724- .S005T1K

4. I*7ITC, FIT WITH P/)Tr NO. C911777/1,FOR' SNUG FIT.

3. MACHINED FILLET RADIUS: .010 MAX.

2. REMOVE ALL BURRS AND SHARP EDGES.C)IOR MAX.1. MACHINE FINISH 6

SPEC I/DENTIFICAT/OA! JPL 20002 3

PL UG, TUBE SUPPORT PLATEI 4, DIA ,IC-I /* Zr " /

R # DESCRIPTION SPECIFICATION RF OESNA LC.WG MATERIAL D NO.PART NO. MN.INEFINIS

Fig. C-24. Plug, tube support-100-kW erosion loop separator

JPL Technical Memorandum 33-633 103

Page 114: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

1.75

(REF)1.Z5 - -625ID

(REF)

8 CovoQT 4rioQS(lF) K-A5ECTIOrJ A-A

(REF D/ME'S/ON5 EX/,5r. ONARROWHAD BELLOW, NO. 2/0/2)

/ BELLOW'S TO qAVE A A/O. 6 END C OFF

TERMIl~TIOJ471 , R1EDUCD 1:IA 1METE. AS SHOWNW1ATERIAL .005; I PLY , 100 PSI AT 800F,MAX DEFLECTION .25; SPRING RATE (P/LB IN.;EFFECTIVE AREA 1.6( SO IN.

/JIM/ILA R TO ARROWHEAD NO. 2/O/l ARROWHEAD PRODUCTS,44 I KATELLA AVE.,LOS ALAMITOS CALIF. OR ELUAL..

(BULLETIN NO.501-R)

SPEC IODEMTIFICATIOIJ JPL.20002I BELLOWS 5 E e 14-7 CRES I I

DWG OR DASH sO STO IZE MATERIAL NO. FINDPANT NO. NO. DESCRIPTION SPECIFICATION REF DESIGNATION -ELEC DW ATERL REQ NO.

Fig. C-25. Bellows, separator - 100-kW erosion loop

104 JPL Technical Memorandum 33-633

Page 115: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

1.50

1.12

u 12. -

.___ _ .__ .. 25 DIA

.0ZO 45L-/ " .3 4 5 DIA(REF)

r.0Po MATCH TO TUBE(D91177G6o-5).00o--,O & CLEARA NICE

5/-18NF-ZA TRD

THD RELIEF MINAS REQD

3. MACHINED FILLET RADIUS:.O'O MAX2. REMOVE ALL BURRS AND SHARP EDGES .OI5R MAXI. MACHINE FINISH .

9PEC IDENTIFICATION JPL .000g

COUPLI .G 5/+DIA X.t L 5 ZiEf5CE IIW RSTOCK SIZ

I NO. FINDOWa OR DSH SPECIFICATION MATERIAL REO FID

PART NO. NO. REF DESIGNATION ELEC DW MATERIAL NO

Fig. C-26. Coupling, separator - 100-kW erosion loop

JPL Technical Memorandum 33-633 105

Page 116: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

1404

.OZ0 R TYP 107R TENDS

COE:'xT- D ED JoiwlT

3. MACHINED FILLET RADIUS:2. REMOVE ALL BURRS AND SHARP EDGES ..OOt. t MAX.1. MACHINE FINISH CU-V

SPEC IDENT/I7CAT/ON JPL aooo 3

2 TOalUC, NO.2 j62500.XI D 321 CRES I -

I TLUZati N-1 .5.25ODx.5oID Cb-IZ%E. I IS" OR STOC ISIZE NO. NSPART NO. o. DCRIF DSINATION - LE DWG ATERIAL NO.

Fig. C-27. Tubing, separator - 100-kW erosion loop

-I .030.015 *.o

o05

'

.\0oo oIA

- -F.220

.070

\ .010 X4S* C-,MFER

3. MACHINED FILLET RADIUS:.010 R.2. REMOVE ALL BURRS AND SHARP EDGES 0ooSR tAX.1. MACHINE FINISH

SPEC DE-NTIFICATION IPL eOOOc

PIL .12'5DA x /2 L4. Cb-1%Z1 IDSS OR ISH STOCK SIZE NO. FINDPART NO. DESCRIION SPECIRCATION REF ON LE MATERIAL R NO.

Fig. C-28. Pin ring, separator - 100-kW erosion loop

106 JPL Technical Memorandum 33-633

Page 117: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

SAz4RP POINoo

.580 .. 032x45 CIATI

-,04x 45s C4AAM

1.8

1.A MAHNEJ20

A- ®.0

3. MACHINED FILLET RADIUS, .0(5 10 MA

1. MACHINE FINISH

F 2. C-.os cone, seaator-- 00-k erosion 121

J. MciEQor u 33- 633I B , ,iz 07G3

2 RMOVE ALLBURRSAND S0H AR ED4 GSO

JPL Technical Memorandum 33-633 107

JPL Technical Memorandum 33-636 33 ;:- l 07

Page 118: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

c:)

00

ooy,/. PEN D.3 TY)1.5

E~b~e~DPULL- .15YP

Y~(bR-AK A~LL t-QG-5)

1'2M I QJ 4 ECTi0I4 -IrODTASL A5C ALE- '

SCALE /l(TYP 2 PLCS)

0'

A __ ________ _B

0Ai~ tEFOf2E IW.5TALLATfONJ OF ITEMS3 4 4 5, r2EAV~ -IOLE5 pc--~F1FC0 Izo2 _____ __

iK IT&M 5, .000 TO .oe FDIAK4ETF2AL 911712-2 LGE-NT AC-SY __________ ____

CLEARAWK4OE, FOr2 PAGI FIT. 51I20-1 GLLECT ASSY ________2_ __i4

(D' 71 ULKWEAD T _____ ___

__ __ __ __ __ __ __ __ __ __ __ __ __ __ __ _11_ _ ~II) I 5 ELL I___

o0H~ 7U4 WS IE A I.CERM~~EH ~~~ . H1E~~ 1-1 -P051TOUEI12 _____~ 1.00 1 .25 Nb)- I, z i

1 .2_.004 CNEEA.NTS-jW1 A",

Fig. G-30. Heater assembly - 100-kW erosion ioop

(.A)

w'

Page 119: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

I-*EO N () I&0) E .004 LAGER

100I%,PEETIZATION - - - -T1i WELD TYP

1.7t TYP

~M~AGmA ,~TO (X.0TY REF

.80TP

vIEW A-A .E "2-CALE:+ DETAIL C

2OTATED 50'-50' FOU CLAIZtTY VIEW b-P

SCALE:I 5CALE!

A

AC

-I ASSY4"2001 SI-WN ROTATEED 180' FOM)0

INSTALLED POSITION,L

24

.0634' C. BEFO2E IWSTALLATIOW OF ITEM 5,51'3. I/ R I'EFE12eAM OLE I ITEM2,

.00'2 TO.004 DIAMETAL CLEA2AMCE,

SFOr PAsIC FIT.

A SPEC T- WED 4 200o5 o

(A SPEC IDEm JPL 20002 5

2 -3 PORT 9 c I % r 2 5

SCALE; 1/1 A -I SHELL. AssY

Fig. C-31. Shell, lithium heater - 100-kW erosion loop

JPL Technical Memorandum 33-633 109

Page 120: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

7OO

-A

W rO, A B2-.O(O(l 5 sULATIOA ( 30o.478 41."77

UwDEr2CUT) 3o.812 42.25

DETAIL ' (TYP BOTH ENDS). .300(AFTER SWAGIG)sCALE 2/,

SECTION A-A

Z,.IIA WITI41k TI15 2EGlOkI TO fE .500O:;o SCAL.E(TYP EACH EKIJD)

I -7 1f2OD .157 DIA TAi.TALUM 7

S- SIELD o(.,O00.0'0 WALL Mb-l% Zv- G

-5 1 OD .157 DIA TANTALUM 5

A1 AI2 -4 I~kiULATLIO .040 TK PbeO 4-

1 -5 5IELD 510D x.030WALL kb- IZr 3

x -2 ELEMElT ASSY 2-I ELEMENT A~SY I

RNOOKS NO. nINOP ART N. A IFI IO REF SIONT ION LEC DWNA RE NO.

Fig. 32. Element assembly, lithium heater

PTOCK R .250(f2EF)

4.45 0. ooo

.A.OOT

1.255

* " TY -tf-f----u FULL 12

.57o '-:000 -(TYP 4 PLC5)

I -II

DRILL (.2812 OA.4 HOLES /

A 45x.oro(TYP) 4- PLACE5

/. DIA TO 5E DETEI2MINED DU2IWG SECTIOM A-AIMSTALLATIOJ OF C9117120.

I. ALL SU2FACE PIMISI-IE5 TO 5E- '/. SCALE 4/1

5ULKWEAD .'250 PLATE sb-I%Zr IP " N. N. REESO ON SPECIFT IOIONIOS MNNRINL E .N SN

Fig. C-33. Bulkhead, lithium heater

110 JPL Technical Memorandum 33-633

Page 121: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

nMJuT FR

.1 .2 25Dd8

5.12 003516 AA AZ52Z'.Ao'j...- DIAN.18 MCAB

SIZE 000 -lz Is 'EOIFPl M L0IG T PeT5s FIT .03T*.I 11o DI P,

I .0507a A57 - I01D

45' 1.0 1:.80 z ymx2ot .OR/LL (r. 875 )na- 115- 45'CHAM THROCPE r.031 .12 .03--0.35Asn5

CAE

I I 1.78 01 F 7 ~I I VIiE I.37SLLEV

IrA.I6,to52 99 .A ot

-s a.a sr oFD

I I I I

_ 2 _53 *00 t5 44LA~ ~o

/.050. 6 .P L U1,

SUES

SS . '000 NOTEI-42 1 .25.ct T O On O A LL I AMETESS TO BE

/.5.0f30 .co /,tormof,002

/9 D9 SIZE AS BEOD TO 500id ALL D0AME00R TO SE oTLsWTHIN .00 E.700 Loo- scA .3 - LN OBEE IT co TIm To EACSAE

-m .664

SCALE 4/I DLE D/ SCL 2/1 L£ 2/ ,

*MCI4.TED (LTTEE, RESIE]INI RI 0ADPI 1351RNSTIN

4643

.. au a62

.3 3 2 1.) .811ANT + 300wE.P)n s~o I.an~ co. r1- 9usdwIt LA

- IA I I

-'sz~~~AC.. Z5s~ 30 Twa Ltur nTo~~ Is FREF) S 4NN.

.0 .74BLOOA

DN~m sway I aE ,.sco

2 I .00 I.O44.03,

t.00.

T2 PAE

D119 ?/I19 .FOR DO.- 32 LIGJT WLD FIT 60T 0

J& SCLOC 4/t SCALE 1A

ESCEF 'N" a, 0cA1. /~r ''lt~ I~i

00ST S110 RHCT

i- Z3 4_ B5 REF

". E.T-AEY 8)CT OS (IS L UIG

- ,,,.',c C m ov -, LE oIrJP3.E 8 OsPEL NZ\OMIB NA S"PPT-

0IFBC NTIFICATION JP

2LtU W0EF w. L s14

2(

0gIU TO EIUIC r-,ExY-oC-ETIr WEISTb IIIMITCOsJELP PEE Co G L ? C N E S77E~ M N I3 t K. A T L!IIY P 31 C 3ES

II WIR FROZSIAA LLAS

65Dm Cu1 .IIf A/A CoU:I

II f4. TE S OFIN TIi4 PN l , Ij l L SLELE o so0 So 321 CEES i 6

Du., 5E V BOA 5 5 VIB OAW E 31 E S

ii IS

GsAIN ACCESS TO TwIlS AEEA.TUIS WELt . MACHINED FILLET R*A-S:*I .1414A

EIAADLE BLOCK PLAWELENT ON CONDEERWED AT 2EQ

DETAIL A^t / .r1cwmn"a mn :a g

DA51C51WP PCTC

- LAST ZD O 10 ' E : WE, D ?L COG EHOV.awE3

Fig. C-34. Co denser - 100-kW erosion loop, cesium

4JPL Technical Memorandum 33-633 111

15 THE Xl TO LST WELMIzI R TIC I REOVE AL TURNERAND SHAP EDGIL .01 S O OZ I

E V NT &/OR TIQ- LINE5 1 I 1 '1

0ETA,%L A2 I

JPL Technical M morandum 33-63

Page 122: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

0 -o .50

----- 4-----I 0 I

-4 --

3.00 1. 530

PROCURE FPOM I UCLEAR MeTAL: INC.,CONCOR , MIAb5., OR EQoAL.

.DIFFUSION BOND LIMITS.3. MACHINED FILLET RADIUS:2. IEMOVE ALL BURRS AND SHARP EDGES1. MACHINE FINISH 66

i bPEC IDeNTFICATION JPL Z0002Co-ETRJOINT SCWreD 5 li IPS x 3 LG Cb-I%2r/31C!

DWO OR DASH DESCRIION SPECIFICATION 'o SIE NO FI O PART NO. NO. PECICA REF DESINTION. ELEC DW MATERIAL RED NO.

Fig. C-35. Joint, coextruded - erosionloop cesium condenser

. ~PAGE BLANK NOT FILMED

JPL Technical Memorandum 33-633 113

Page 123: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

4 ceU~C~ VUMV 1W-MIN W . klTQt"END

.50A

2.30 .t0 TYPCAL

3. U .

I

- 1.94 -

T HtES SU p~ CES CO.TE .OOro.03O THK ALUMINA,(ISc":jU\J-E MIN.') P, FTEV \AJELDI1C\,

-L B .CET- S-WNi-LW 3. MACHIN ' INIO-2 - OPFST -. 2. tEMOVE A.L 'BURR,TC.

I. ALL BEND AbIl .9"

SPEC IDETIFI CATION 39L 200OZ _

2 B AcKET .It1-(IIG )x3 x5~ CSH RK 1

\ -5T<ACK T JZS(H GA)k3tX5 S 304 CrOa oN -DSSTOCK SIZ j NO. FIND

oG H4ATERA . NO.

PART NO. NO. REF DESIGNATION ELEC DWA

Fig. C-36. Bracket, bus support, inner (LH and RH)

114 JPL Technical Memorandum 33-633

Page 124: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

-c

750R .300

S9*30'

EF

APEFOM THESE FUWCTQONS AFTER A

DEErMIN. LC4GTH AT tEXT ATSSY.APEt \DNT\F\CAT\ON JP\- ZOO&

3. MACHINED FILLET RADIUS:. O-' r. 7a3AR , \ tA \IA Lc ForC COPPER I2. REMOVE ALL BURRS AND SHARP EDGES .03 0 R . n S D C T S I 0 RE3. MACHINED oE, R. oc, OOR DASH Soc, SIZE NO1. MACHINE FINISH 1PARt NO. DNO. REFP DESIGNATION- ELECDWS M

Fig. C-37. Bar, bus, lead-in (RH)

DRILL (.(,88tooo) DEPTH SHoWN90 CSKx.875 DIA.

.09 45CHAMFER

o 2.25 3

3. MACHINED FILLET RADIUS:2. REMOVE ALL BURRS AND SHARP EDGES .015 R.1. MACHINE FINISH

SPEC IDENJTIP)CATIOM JPL20002

ADAPTER, AFT IBAR I"DIAX31/ LG 347 CRES"a OR DSHI DESCRIPTION SPECIFICATION roK S IZE DMTERIL

No . REF DESIGNATION . ELEC DW RE ' NO.D

Fig. C-38. Adapter, aft

,JPL Technical Memorandum 33-633 115

Page 125: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

.50 R 6.00

1--

T o 35' 12EF

A PESORtA THESE FUNCTIONS AFTEP ,A DETEMIE LENtTh AT NEXT __Y_

SP. IENTI FICATIIM JPL ZO Z I.EF3. MACHINED FILLET RADIUS: .O00 R B ~A \Il .\B LGg-BI OHC COPTe I2. REMOVE ALL BURRS AND SHARP EDGES .OQO IR .1. MACHINE FINISH PART NO NO. DESCRIPTION CIIC ON RFDINATION MATERIAL RD

Fig. C-39. Bar, bus, lead-in (LH)

1l 6 JPL Technical Memorandum 33-633

Page 126: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

t I

2.18

IsTEMG N Sk5WN_

, .2 Y DC D I/7'9

ABOVEESE SUIACES FTER WLDI. .

2. REMOVE ALL BURRS AND SHARP.EDGES .o4, A.

51 SE 30.

-.2

D2I.te '--w002 i

.4. ALL s SN -RAI% .1912

. MACHINED FILLET RgC 4 B a esADIUS:

8 o nia2. REMOVE ALL BURNS AND SHARP EDGES.04ZMIsAsX

P EC IDEM-nPfiJT1F oA .WL zoom

SmtC.. uskoft IWtISINC IP4 2555cr __

OG IMSOW wi xo24 304 CIES62 I WELSMEN

Fig.C-402 1B bu supo 2lI WELJA5.I tZ1

Fig. C-40. Bracket, bus support, outer

-3HlN.,,,,,.. .,,, 0eP*

Page 127: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

.310 0$A _r-F---

- 5. - .680 0 DIA

DETAIL V

I - 7?078

-- 0975 . .

-1085

I 1.50DIA

D"A

DETI Z,75

. 1 3.955 .

HOLE PATTERN A 6.375 /

TYPICAL (6 PLACES) /OETAILZ SECTION

HOLE PATTERN 0D

DETAIL Z TYPICAL (3 PLACES)HOLE PATTEN 8"

DETAIL ZHOLE PATTERN C

TYPICAL (2 PLACES)

0 .

-QI---YPICAL

SECTIO-

/ D,& SECTION

A DIA -

1 - 8 DIA

- C DIAl-

E DIM

DETAILCAALE:NONE 3. ALL INTERNAL DIAMETERS TO BE CONCENTRIC WITHIN .005 TIR.

TABULATED 2. MACHINE FINISH

TAB CHART L BREAK CORNERS .005-.015 RAD.

m 5 B :DIAT A 1 BA DIA C1.Oim DIMEC DIM. GA "IZR)DR 4~' A .OOS .376 --- THRU

B (AS)IDRILL 4O 3805 .562 .03 .7 TR

C-lz.500-RILL 2 750.005 .875 07 1.00 THRL HOUSING IIhDIAABLO Cb-IrIr I U .48O5 ;.376 .46 1 won =

Fig. C-41. Housing, injector assembly

.118 JPL Technical Memorandum 33-633

Page 128: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

C) 1.003 .Di

45CYP t44 CT

S4 IV4AC.o

3 7 0 ' . 2 2 5

V IE A - S73I

.a2 .A A

1,17FICATI.cAn N XPL. .2

GS/ " . LI" ~7 Ll B l.YBDt hNUM. V L -MACINEb SUIVaCES. i T O IN

.BREAK ALL ED4ES CONElM. OISTMAA rlmon mmt Om

Fig. C-42. Bar, bus transition (LH)

Page 129: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

00

CI*45'~~4 4rYPCS QY.

2 Z 5

I. AC- 4 4.8 '__________________________

- - i~t ~ .( 5m

~VIEW

* t3W 0*15'

SPEC mtER4TFICbTIN j 1PL 2000 Z 2

/5k BAQ.25A xjS4L(. -BAZ IVOLYBDENUM I

1.BR ! M- LGIS 4 ORMERS .0%512MAX. r_ -Ofl - 0..

Fig. C-43. Bar, bus transition (RH)

Sj

Page 130: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

FOLDOT FOLDOUT FRAME

241.00 0.305 / 30 /owx*.. 55T 304 A

. 24 -rTusa on. awuLx i'L. ser at1 g 82*A qsso 023 LE 6s VAR N 8W 0.0. I MSe

L2:us w 3/xtxiz. '/' isr 5o* 4 2SeaC .E.c lFIC10 JPtL200O O

-EC 9JELD IUS -JOLO0

7o5 / */G1.E o t97 i ~S vA57- s70 0aee t. _______ 2 IS21 o -217 TUBE s s a 0 s r RI

0- 5 / rso TUE ' IdI14J5Ai AR7AKI 2.?b m3Z _30 Q2d.30, 00050 -____ __.___5____o._2 _ 15

--4'i 5 / 254.5037. IS 07..OsuJC.E ____ VARIAN 8 0.0. 3S 13Z

I.75e 0on Do _ _ _10.7TO IU.L eE r .LS~B L C7 *I* /ax172x404. ss so 4 (

e,- DO P % xEC O .

35,.,, SO'3 '35*-30 EsA IA ,'OD 3 i-l1

.50U9L17.5 LA GE 5 )

a'!*e, . so I I

PLAN1 VEW pLANtJ VIEW

OF Tu LO )CATIOkJB OF Gi 55ET LOCT O

1 000I

i ~ ~~~~~~~~~~~ECTIO 8) U~E ) ZV jsL S 0

O MD4 E 6 O .750 D1A

-00 - ftS .0 .5 5

or &o - o 6 EXTEPIOR SURFACE OF DOOR TOLC.

15\

RE TRACED WIFTH COOLNC ~ LCUT 70 SUIT

ThIIASISIO.J Z0.F75 S700 CC DO00.32

PLACE OU.LY. ALL. OTPE-S VOUUIU~LA3 :7.125

PEMOVE ALL BUROS 51 SSECTIOW 15.0 0-0.

(FULL ) a~MACI-4,MME FiUI5L 4

8.000016. / ZII TU65 2ALE5 2zil TL)6EV)AY

PALO A -70, CAL F.(CouFLAT L VACUUMFLAL5s)

53250so .2.I2SRE2 5 5.85006 -- 7 --

G -~e -

.

-- -

00 14.0

K20I 5206.7/ 21605 V4Tl./L.4 OLD

Ao 2 E t522 4 4 OF T7SE 207.55 CALLED OUT.o 0.55 D567Q PLAK V/SW4 OF DOOO2 A5SY ABOUS. T7-3E5 OJi.L E. PLACED

(sc6L0 V4-) Sv.7 071 wSLDGD To DooS.

DETAIL D OTA4.L SECTI/k C af A S AR 9 EU DEAI B

(FULL sc6.e) (wo.t oc.67e) (2s 7w) DUoo.

Fig. C-44. Door assembly - 100-kW erosion loop

JIPL Technical Memorandum 33-633 121

PLPN VIE4 PLAC E-S

45 C.~~ FGU5T OC;lh

a~0oi

T L -A 71 A. 7Z "OLS OU 5Z,70DIk, B-CooEC U Lt-y FA ES w ) ' .Of or

-. 0 er OSrOI (OMCC 011715A0 4 - )Ij 4 OF T1,E POLES CALL -0 OU

AS IA3"I DI- 11 B

DETIIL CE:TAI - S-CTIOU A-A w 4. E iAL '5PACES AROLIU

(FULL SC-E) (FULL - LE-) (-LE M*) 000e

la~ooo 014.1 Fig. C-44. Door assembly - 10VI

JPL Technical Memorandu'm 33-633

Page 131: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

POLDGJT ]FRAMEPRECEDING PAGE BLANK NOT FITMD FRA

/OB OL SCOLE LiTL'G

OLOUT FRM8 WA TEP JA CKET TO VIEW S

BVPASS POPT5,5000 -- 80 80- 6.50J

0 75.4 4 4.0 - A- -P

POLE FOO IFTIUS.

Fo 2 LIFT)U G A,

,-EFI _ _ A

/300 G.D. FGtNGE 14? 0/

MGT POLE

.5. 45o'

3(/uec

EUu P E_0

30 4

UUFO LAZ/6O FLO. - 4

- 5350 - - - - -e

AL. / 314.) ,/ '5'NL, 0 ". ALL r. S SA BE .Ao1 ' s E5L C

TFig. C-45. Vacuu tank assembly O0-kW erosion loop

JPL Technical Memorandum 33-633 13

(5cAL Eha) 3I HEDR uwe<:'4.61 3455 Z

Page 132: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

FOLDOUT FRA40 DIA OLE.THR

SPLACE (TYP). (TYPICL TH EIDS)97.-5 - 5 RER REF

SCALE 1/4- TUBING "U1

050 1

ET ,--- )

)REF1 3REF.

- 4252.75

DETaIL .DETIL A.O

SCL 1/ 4 scaLE Cc /4TYPP/

U BINE "L

_"__T___A TypULA I

99.382

6---- TL6.75 0//N -- 1 L A S 5 4 A

ALL WEL TO /ZCALE I U/ -. ND e" t PLA 'EEET8r.O

CPLE 1T/4 e oC

EGU ET (44I 6

6 TUSIN Stor./ND I IIywrI v S 5LL I 5I I

I 3-,3-LG F

SCALE / 4 ZCAL5 /G3

4.co 4 PEOUIPED TYPICAL PAD LOCATIONSCALE YZ .44( )REF A PLACES

ZTYP (4 PLACES)

Fig. C-46. Frame, weldment, vacuum tank support

124 JPL Technical Memorandum 33-633

Page 133: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

- I I -rANK(RE()

-] ,I

911-7131 5 DOLE

WAS_ER_ _ L" 112

((4) 78 CASTERh /C,

SS S T-7130 UN S LUG, SLL C.

, wASER I/ STEEL 4 4I

NU 7 AlEX '/ -2Z UNF-25 STEEL 8 9

7 WASHER , AT 8 .

DETA/L A DETAL B 9 1-7132. I FRMESCALE: / SCA LE: i/2 _ _S___ -_ SPEC__ _ _ICON R________NO__ECDW _ _ _R

TYP/CAL (4 PLACES) TYPCAL (8PLACES) o.

Fig. C-47. Frame, assemblyuNl

Page 134: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Is

3307

/ / /

- / / /

o"

Fig. C-48. Transition pieces, columbium separator

O0'--Ihe,! _'~o',I

Page 135: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

.10 s IATHICKNES SSE DETA/L A 60Z OFATR/AL

445

00A D"ETAL ATYPICAL FOR EXTERIOREND'S OF 7U/NG

3 PL A CES-

910

S3.50 ----- TYP

27FUL LPENE TRATON

SEC TAB C/-ART ---

LANGTH TO L 7Rh\6 krLD S C.OG. LGtAlLLR. TAB CHAkT

AzLOCATE /TEM 6 AS SHOWv WITH THE BOrTTo TAAGENT SYS D. )SH NO. LENGTHTO THE /NNER W/,LL OF rT-E P/PE. I -I 40.00

2 REMOVE ALL BURRS AND SHARP EDGES cs -2 31,00

1. MACHINE FINISH G ' NK -3

SPEC IDENTIFICATION JPL 204=2 \2

SPEC WELDING. Y3L 20000 It

10

2 t - CAP, %PLf G"PFLPL zCkvW 40 Stl\ CR-6

I - -7 P/PE-BODY P/P-sc/040A L. 3Z1 CKES 7

2 2. Z -6 TUBING D.05 O .o L 32 CRES (0I I I -s TUBING .D. 312/ CRES 5

I I -4 TUB/NG .O . 32/ CRE 4'- 3

- 1 - -2 P/PE-DY _ 6"PI6,j . o 3ICRES 2

- I -I PIPE-,BODY I''P/,PE lO D 3ICRE5 I

-3 -2 -1. ES SPCFICA O D El OW. R FiD

Fig. C-49. Sump weldment - cesium, lithium and NaK (tabulated)

JPL Technical Memorandum 33-633 127

Page 136: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

.062- 12.0

END CAP

.0 3.125

.06 TYP. (44) PLACES

3.00

1.50

4 L.020 DIA.(48) HOLES SPACED 900AROUND CIRCUMFERENCE.

.188 .D.X.03 W.x 13.0 L G. TUBEMAT'L-COLUMBIUM o*oZ IRCONIUM.

G> 1.125 .D. X .0 62 W. X 3.1 LG. TUBEMAT'L-COLUMBIUM 1I7 ZIRCONIUM.

--- .062 X.75 PA DOUBLERMAT'L.- COLUMBIUM 1% ZIRCONIUM.

Fig. C-50. Sketch, desuperheater, erosion loop

128 JPL Technical Memorandum 33-633

Page 137: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

.O 3 80HOLE( OME SIOE- FIND NO GONI)

'DIP, to O7A12 *00E

. I o

45. 76 E -0 0 I E P A L

se ETAIL A

SCALE 50CL

. REMOVE ALL NURAS AND SHARP EDGES I4OWOT.I 2

SMACHINE FINISH G

SPEC \ DENTif\C A TIO 3N JPL ZOt)O 13SPEC TG WELD JPL 2-O3

, I-

SI LC F.I71.EN WELD JNL 2 S LN

~-6 5I-GHT ----LAD 400o.7 E . - A 6

BPLL0WS(.O) -OLA FLEI \9-U- KI-40,S C T IA0- 3 A6 T 5

I- 5AC HNONE SCA REAS .E L EE MA.

L - U9% 1-761C5

Fig. C-51. Cooler, 100-kW erosion loop

PE Technical Memorandum 33-633 129

SPEC -ri70 \4ELD JPL 20035 Iz IS

SPEC FUSNOIN WELD JPL 2000C ________ _ III

S SPEC __B20EING . GE SPPS-SA I0

-71 Z11 TU5E -37 0 w CIES 321 1 17

-6 S12lI4 G."T N= hyp LAt)ISW 114 0 0

0 rSE_ p5 -316 r. 1 6SELL0,CS (MOZ) 0L6 Ri V3-76-I-01 C , 5

-4 TU&G :LNO Q-' i_____ SerUN E s o Ia CsS - 3

-S Sel-IIT TEE- 5LAD 24 C.ES -315 1 2- I-I 5 CP 1.20[)D\PIX 2 I

Fig. C-51. Cooler, 100-kW erosion loop

JPL Technical Memorandum 33-633 129

Page 138: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

THIERMOCOUPLE - CHROMaEL - A l.AIEL

SFLOW

12

24 4

SPLAN VIEW

Flow LEAos

Fig. C-52. Flowmeter FM-14

U Fig -. o e -

,

I- Fi -5 Ilwee M1

'1

Page 139: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

t-'

rHEHERmocouPLL - CnROMEL ALUMtL

0ESrlmrEp WIGmTr - 40 Las.

r FFLOW

4

PLAN VIEW te F 1

i

4 /0

Fig. C-53. Flowmeter FM-12

U-)O

Page 140: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

APPENDIX D

CESIUM-LITHIUM LOOP OPERATING CHARACTERISTICS

The operating characteristics of the Cs-Li loop were determined by

modeling the performance of the major components (Li pump, Cs pump, Li

heater, Cs condenser, Cs subcooler, bypass valve) and combining the rela-

tions together with the hydraulic and heat loss characteristics of the system.

The CAL program resulting from this effort is given in this appendix. The

results of variation of key parameters over a range of interest is summarized

in Fig. D-1. The independent variables are taken to be the pump voltages

E l and E2, the heat rejection rate Q, the NaK pump current I, the lithium

heater voltage E 3 , and the number of turns opening of the bypass valve N.

The variations of the condenser temperature T2, mass ratio rc, NaK tem-

perature T 3 , and lithium temperature T 1 are shown for individual variations

in the independent parameters. At the design point of:

T 1 = 1800°F

T? = 1300°F

T 3 = 900 0 F

C = 0.02

r = 10c

the control variables should have the following settings (from the figure):

E = 304 V

E2 = 283 V

E = 11.3V

Q = 24. 3 kW

T = 18.3 A

N = 0. 45 turns

The effect of variations of the control parameters from the design point can

be determined by following the appropriate curve.

132 JPL Technical Memorandum 33-633

Page 141: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

NOMENCLATURE

Al aB fraction of cesium in lithium at nozzle exit

A2 A area of loop at highest temperature, ft 2

B1 PB fraction of lithium vapor in cesium at nozzle outlet

*C C fractional lithium carryover

C2 Cpcs1 0 specific heat of cesium liquid and vapor at T 1 0 , Btu/lb F

C3 CpLi specific heat of lithium at T 1 2

C4 Cpl 9 specific heat of lithium and cesium mixture into desuperheater

*Dl Apfl frictional drop in lithium lines, psi

*D2 APf2 frictional drop in cesium lines, psi

D3 AT B drop in bulk temperature in nozzle,oF

El E 1 lithium pump voltage

E2 E Z cesium pump voltage

E3 E 3 lithium heater voltage

E4 E emissivity of foil insulation

L1 LvLi latent heat of lithium vapor, cal/g

L2 LvLi latent heat of lithium vapor, B/lb

L3 Lv latent heat of cesium vapor, cal/gcs

L4 Lv latent heat of cesium vapor, B/lbcs

M1 n T total nozzle flowrate, lb/s

M2 mLi t lithium flowrate in nozzle, lb/s

M3 mp lithium flowrate in pump, lb/sJPL Technical Memorandum 33-633 133

JPL Technical Memorandum 33-633 133

Page 142: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

NOMENCLATURE (contd)

M4 m cesium flow in nozzle, ib/scs

M5 m mass flowrate of dissolved cesium, lb/sCsj 9

M6 m 9 mass flowrate of lithium vapor, lb/s

M7 m desuperheater flowrate, lb/sDs

M8 inp2 cesium pump flowrate, lb/s

N1 n number of layers of radiation shielding

PO P0 inlet pressure of lithium, psi

Pl pl nozzle inlet pressure, psi

P2 P1 2 condenser pressure, atm

P3 P1 2 condenser pressure, psi

Q1 Q1 heat input from lithium pump, kW

Q2 Q2 heat input from cesium pump, kW

Q3 Q3 heat input from lithium heater, kW

Q4 Q4 radiant heat loss, Btu/hr

Q5 Q5 heat transfer in subcooler

Q6 Q4 radiant heat loss, kW

Q7 QR heat rejection date required, kW

R1 PLi lithium density, lb/ft 3

*R2 r mass ratio of lithium to cesium in nozzlec

R3 pcs cesium density, B/ft 3

R4 PLi lithium density, g/cm 3

134 JPL Technical Memorandum 33-633

Page 143: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

NOMENCLATURE (contd)

R5 ps cesium density, g/cm 3

*Tl T 1 nozzle inlet temperature of lithium, "F

*TZ T 1 2 condenser temperature, "F

T3 T 3 4 potassium low temperature, *F

T4 T 1 2 condenser temperature, *K

T5 T 1 nozzle inlet temperature, *F, *C

T6 TI9 temperature into desuperheater, *F

T7 T 1 0 nozzle exit temperature, °C

T8 T12 condenser temperature, *C

T9 T 1 0 nozzle exit temperature, *K

X1 T temperature of vacuum chamber

X2 temperature factor

X3 temperature factor

X4 temperature factor

X5 T10 nozzle exit temperature, 'F

JPL Technical Memorandum 33-633 135

Page 144: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Cs-Li LOOP PERFORMANCE PROGRAM

inoQ DEM1AND C1,T2sTI1,P.0T3pR2,A3lool. T4,;T2e,32*Q)/Ie8+273vI6

A-tLl A 2 1219012 N1q1510013 xsr,?oo

1,0.3 P3414.696*P21vo3I VlaA49S*P0A288/ P34.o178*R2&@ 43)____________________

'1405 M2;U1*R)/(1,o+R2)1#06 M3r~M2*(C1.OC1) ______ ________________ _________

ji0 R~3*1 24+(5.3O6/(1O.43.) )4(29)O*T )a.54'C4,l35/(105@))*(29'vTS)1.,) R1.62*4*R4 ____________________________________

Iola O3?(v39Q2*POo465)/(R2A,515*P3A,43t)13 A a5~0.o3j34-889)/(0O45)1. 14 B1 ( .00292*P0A,443t)R2&eO973)/CP341oO2)1:15 X53T1"D31 16 M5,01,02_________________ _____

1'2i TjvT4-2738 0

ra.12

'T7-+ __ _ _ __ _ _ __ _ _

1I 21~

I)F7

1.3, td U, 30

IcS24 U2Po24'9 QAC.4(84005.02059902/T4.,927958*LeGI 0 T41

'i 24

1*33 r2e((PO3D23,R3.%'397*M8+oCO224R3n A.5

1,351 L5al47.12*(1-(T5+273)/(2043) )4,354~7

1*36 Q3!.-947*f'3*C5*CX6-'Tl+03)-Q1

i2'Q (@2*(X3oX4)*s947

1"a x -y, ) n51 -4 3 0OO;2U

136 JPL T-echnical Memorandum 33-633

Page 145: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

Cs-Li LOOP PERFORMANCE PROGRAM (contd)

19433 30i19434 X7=(Q7GS)*(v947)/(=21*M9)jt435 X8w(Q5*a947)/(21*M5)

_1#31 M9IF As5T L1L(i)pX!J 6 9 )LSEIF ABS,(X9-X6)/X6)<,01 THEN M9 ELSE M9

15438 TO STEP 1434 IF ABS((XX6/X6) > 01i

1:44 TYPE E1sE2,E3,POP3sT1iT2 ,D3sC2.M4pL21,441 TYPE X6.J448 V7=29230M7/.R3 I

i,443 Kr9290(iPOP3)/R3*V7a2)'144 N34*6/KAs5

#*445 TYPE NiM3iX7x X8 .1'5 TYPE MlsM2M31M5M6,M7sM81.*46 TYPE Q1sQ2pQ3sQ5Q6,tQ71 461 TYPE 01,_i'Ae47 TB STEP 1000

JPL Technical Memorandum 33-633 137

Page 146: Technical Memorandum 33-633 - NASA€¦ · Technical Memorandum 33-633 Design and Operation of a 10000C Lithium- Cesium Test System L. G. Hays G. M. Haskins I D. E. O'Connor to C

CARRYOVER FRACTION C I

-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.180.20I I I I I I I I I I I

CONDENSER TEMP T2 , OF

11501200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700175050 5 I I I I I I I I I 500

-CI

--- T2

Src

....... T3

...--- T1

40- 4 - 400

I /

II

E

30 3 300

E2

"- / I/ '

A 1 5/20- 2 -\ 20

10- 1 - - 100

-,,

0 _ I I I I I I I I I 04 6 8 10 12 14 16 18 20 22 24 26 28

MASS RATIO r

I I I I I I I I I I I I

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

NaK TEMP T3 , OF

16501700 1750 1800 1850 1900 1950 2000 2050 2100 2150 22002250

Li TEMP TI, 'F

Fig. D-1. Cs-Li loop characteristics

138 JPL Technical Memorandum 33-633NASA - JPL - Coml.. L.A.. Calif.