techniques for measurement of dynamic stability derivatives in ground test facilities

236
l\fc> AGARDograph 121 n a. (m V . Q < < Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities by C. J. Schueler, L. K. Ward and  A .  E. Hodapp, Jr OCTOBER 1967 ROYAL AIRCRAFT ESTA3L?SHM r N r 1  8  A P R  ms LIBRARY

Upload: eeebbbuuu

Post on 02-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 1/236

l

AGARDograph 121

n

a.

(m

V .

Q

<

<

Techniques for Measurement

of Dynamic Stability Derivatives

in Ground Test Facilities

by C. J . Schueler, L. K. Ward and

 A.

 E. Hodapp, J r

OCTOBER 1967

ROYAL AIRCRAFT

ESTA3L?SHM

r

Nr

1

 8

 APR

 m s

LIBRARY

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 2/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 3/236

AGARDograph

  121

NORTH ATLANTIC TREATY ORGANIZATION

ADVISORY GROUP

  FOR

  AEROSPACE RESEARCH

  AND

  DEVELOPMENT

( O R G A N I S A T I O N

  DU

  T R A I T E

  DE L'

  ATLANTIQU E NORD)

TECHNIQUES FOR MEASUREMENT

OP DYNAMIC STABILITY DERIVATIVES

IN GROUND TEST FACILITIES

by

C.J.Schueler, L.K.Ward  and  A.E.Hodapp, Jr

October 1967

This is o ne of a series of publications by the  AGARD-NA TO Fluid Dynamics Panel.

Professor Wilbur C.Nelson

 of

 The  University

 of

 Michigan

 is

 the  editor.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 4/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 5/236

PREFACE

T he au t h o r s w is h t o ex p r e s s t h e i r ap p r ec i a t i o n t o t h e n u mero u s

o r g an i za t i o n s an d i n d i v i d u a l s who s u p p o r t ed t h e p r e p a r a t i o n o f t h i s

AGARDograph by making infor ma t ion and m at er ia l av a i l ab le .

I n p a r t i cu l a r , t h e au t h o r s a r e i n d eb t ed t o t h e A r no ld E n g i n ee r i n g

Development Ce nte r , Arnold Air Force S ta t i on , Tenn essee, USA, fo r

approva l o f the use of AEDC m at er i a l and as s i s t a nc e in pr ep ar a t io n

o f t h e f i g u r e s .

Per sona l thank s a re ex tended to James C .Usel ton fo r c omp i l ing

in fo rm ati on on Magnus fo rc e and moment t e s t i n g , Dr W.S.Norman f or

h i s co n s u l t a t i o n o n s ev e r a l o f t h e s e c t i o n s , A r t h u r R . W all ace f o r

checking p or t io ns of th e m anu scr ip t s , Mrs L .P . Dean, Mrs J.A .Y oung,

and Mrs W.C.Scott fo r typ ing t he manu scr ip t and r e f er en ce r es ea rch

an d t o Mrs T . R . H e st e r f o r c o o r d i n a t i n g t h e p r e p a r a t i o n o f i l l u s t r a t i o n

work.

i l l

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 6/236

C O N T E N T S

P a g e

SUMMARY II

R E S U M E i i

P R E F A C E i i i

LIST OF FIGURE S V

NOTATION AND ABBREVIATIONS xi

1. INTROD UCTION 1

2.  S T A T E M E N T O F T H E P R OBL E M 3

2.1 DEVELOP MEN T TRE NDS 3

2.2 EQUA TION S OF MOTION 4

2.2.1 Axes Sys tem s 4

2.2.2 Inerti al Mo me nts 5

2.2.3 Aero dynamic Mom ents 7

2.2.4 Single Degree of Freedom 9

2.2.5 Stabil ity Deri vati ve Coe ffic ients 11

3. CAP TIVE MODE L TESTING TEC HNIQUE 13

3.1 GENER AL DESCR IPTION OF TEC HNIQUE 13

3.1.1 Model Piv ots 13

3.1.2 Sus pensi on Syst em 18

3.1.3 Balance Tar e Dam ping 21

3.2 DYNAM IC STA BILITY DE RIVATIVES - PITCH OR YAW 24

3.2.1 Th eo ry 25

3.2.2 Rep rese ntative Syst ems for Test s of Comp lete Mode ls 55

3.2.3 Rep rese ntativ e Syst ems for Test s of Control and

Lifting Sur fac es 69

3.3 DYNAM IC ROL L DE RIVATIVES 71

3.3.1 The ory 71

3.3.2 Repr ese ntative Syst ems 74

3.4 MAG NUS EFFE CT 76

3.4.1 Type s of Magnus For ces 76

3.4.2 Test Pro ced ure 77

3.4.3 Repr esentat ive Syst ems and Drive Units 77

3.5 PRES SURE MEA SUR EME NTS 81

3.5.1 Tra nsduc er Insta lla tio n 82

3.5.2 Pres sure System Resp onse 82

3.5.3 Cal ib rat ion Te chnique 83

R E F E R E N C E S 84

BIBLIOGRAPHY 92

FIGURES 120

DISTRIBUTION

iv

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 7/236

LI S T O F FI G U R E S

Page

Fig.1 Meth ods of measuring dynamic stability derivati ves 120

Fig .2 Axes syst ems 121

Fig.3 Orientation of coordinate systems 122

Fig.4 Multipiec e crossed flexures 123

Fig.5 Cross-flexure, cruciform and torque tube pivot s 124

Pig .6 Small scale instrument flexure pivo t 125

Pig .7 Knife edge pivot 126

Fig.8 Cone pivot - three degre es of freedom 126

Fig.9 Ball bear ing pivo t 127

Fig.10 High amplitude forced oscillat ion balance with ball bearing pivot 128

Fig .11 Gas bearing pivot 129

Pig. 12 Gas bearing load charac terist ics 130

Fig.13 Damping charact eristics of AEDC-VKF gas bearing 131

Pig .14 Gas beari ng for roll- damping system 132

Pig.15 Spherical gas bearing 132

Pig.16 Two-dimensional oscillator y apparatus 133

Fig.17 Half-m odel oscillating rig 134

Fig.18 Half-m odels and reflection planes 135

Pig.19 Support interference effects

(a) Ik = 2.5 . d

s

/d = 0.4 , a = ±2 deg 136

(b) Ik = 2.5 . d

s

/d = 0.8 , a = ±1.5 deg 137

Pig.20 Support interference effect s

(a) Ho = 3 , d

s

/d = 0. 4 , a = ±2 deg 138

(b) H,, = 3 . d

s

/d = 0.8 . a = ±1.5 deg 139

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 8/236

Page

Pig.  21 Support interference effect s

(a) Ik = 4 , d

s

/ d = 0 . 4 . a = ± 2 d eg 140

(b) Ik = 4 , d

s

/d = 0.8 . a = ±1.5 deg 141

Pig.  22 Variation of static and dynamic stability coefficient and base

pressure ratio with sting diameter for Z

s

/d = 3 142

Fig. 23 Model balance and support assembly for hotshot (AEDC-VKP Tunnel P)

tunnel 143

Fig.

 24 Free oscilla tion balance system 143

Pig.

 25 Transverse rod and yoke system installed in test section tank 144

Pig.

 26 Dynamic stability derivatives versus amplitude of oscillation,

Mac h 10 145

Fig.27 Damping derivatives for the flared and straight afterbody

configurations measured in conjunction with a series of simulated

transverse rod configurations, forced-oscillation tests, amplitude

1.5 deg , Mac h 5 146

Pig.  28 Mag netic suspe nsion system, end view 147

Fig. 29 Basic "V" configu rati on magnet ic suspe nsion system 147

Pig.  30 Contribution of aerodynamic, still-air and structural damping to

tota l dampi ng 148

Fig.  31 Sketch of the vacuum system used to evaluate still-air damping 148

Pig.

 32 Variation of structural damping with static pressu re 149

Fig.

 33 Variation of the ratio of model still-air damping to model

aerodynamic damping with Mach number 149

Fig.  34 Variation of the angular viscous- damping-moment paramete r with

angular restoring-moment para meter 150

Fig.

 35 Tric ycli c pitc hing and yawing 150

Fig.

 36 Typical free-flight epicyclic pitching and yawing moti ons of a

nonrolling statically stable symmetrical missi le 151

Pig.

 37 Typical free-flight epicyclic pitching and yawing moti ons of a

rolling statically stable symmetrical missi le 151

Pig.

 38 Typical free-flight pitching and yawing motion of rapidly rolling

statically unstable symmetrica l missile 152

vi

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 9/236

Page

Fig.39 Moti on transformatio n

  152

Pig.40 Comp lex angular motio n

  153

Pig .41 Exponentia l decay  of the  modal vectors  153

Pig.42 Phase diagram  154

Pig.43 High frequency free-os cillat ion balance for  Hotshot tunnel tests  155

Fig.44 Model displacement system

  156

Pig.45 Free oscillati on balance and  displac ement m echanism  157

Pig.46 Large amplitude

  (±15

 d e g ) ,

  free-oscillation balance

  158

Fig.47 Free-os cillat ion transvers e

 rod

 balance

  159

Pig.48 Photographs of the  free-oscillation  (±35 deg) transverse rod

balance

  160

F i g . 4 9 F r e e - o s c i l l a t i o n b a l a n c e 16 1

Pig .50 Tra nsv er se rod ba lan ce for low de ns i ty hyp er so nic f low tun nel 162

Fig .51 Photograph of the as sembled ba la nce 162

F i g . 5 2 S m a ll s c a l e f r e e - o s c i l l a t i o n b a l a n c e 163

Fig .53 Bas ic mass in je c t io n ba lan ce and porou s model 163

P i g . 5 4 D ynamic s t a b i l i t y b a l an ce s u i t a b l e f o r g a s i n j ec t i o n 164

Fi g. 55 O ltr on ix dampometer 165

F i g . 5 6 T y p i ca l c a l i b r a t e d s l o t t e d d i s c s and p r i n c i p l e o f d ampo mete r

opera t ion 165

F i g . 5 7 F r e e - o s c i l l a t i o n d a t a r e d u c t i o n 166

F i g . 5 8 S t i n g b a l an ce a s semb ly o f t h e f o r c ed - o s c i l l a t i o n b a l an ce s y st em 166

F i g . 5 9 S ma ll amp l i t u d e ( ±3 d eg ) , f o r c ed - o s c i l l a t i o n b a l an ce 167

Fig .6 0 Dynamic s t a b i l i t y co nt ro l and r ead out sys tem 168

F i g . 6 1 O n - l i n e d a t a s ys te m f o r f o r c e d - o s c i l l a t i o n d yn am ic s t a b i l i t y

t e s t i n g 1 6 9

v i i

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 10/236

Page

P i g . 6 2 C o n t r o l p a n e l f o r f o r c e d - o s c i l l a t i o n s y s te m 170

F i g . 6 3 F o r c e d - o s c i l l a t i o n b a l a n c e 1 71

P i g . 6 4 S ys te m b l o c k d i ag r am f o r f o r c e d - o s c i l l a t i o n b a l a n c e 172

F i g . 6 5 P h o t o g ra p h o f t h e f o rw a r d p o r t i o n o f t h e f o r c e d - o s c i l l a t i o n

ba la nc e mechanism 173

Pi g.6 6 Schem at ic v iew of model and dr iv in g- sy st em components 174

P i g . 6 7 D e t a i l s o f o s c i l l a t i n g m e ch an is m 175

F i g . 6 8 B l oc k d i ag r a m o f e l e c t r o n i c c i r c u i t s u s e d t o m e a su r e m od el

dis pla ce m en t of ap pl i ed moment 176

F i g . 6 9 F o r c e d - o s c i l l a t i o n d yn am ic s t a b i l i t y b a l a n c e 177

F i g . 7 0 Y a w - r o l l b a l a n c e a nd a c c e l e r o m e t e r s 178

F i g . 7 1 F o r c e d - o s c i l l a t i o n b a l a n c e w i t h e l e c t r o m a g n e t i c e x c i t a t i o n 179

P i g . 7 2 C uta wa y v ie w o f t o r s i o n a l f l e x u r e p i v o t w i t h s t r a i n g a g e s f o r

f o r c e d - o s c i l l a t i o n b a l a n c e w i th e l e c t r o m a g n e t i c e x c i t a t i o n 179

Fi g . 73 Mag net ic model sus pen sion system 180

Pi g.7 4 Cone model for ma gnet ic sus pe nsio n 181

P i g . 7 5 B a s i c L c o n f i g u r a t i o n m a g n e t i c s u s p e n s i o n s y s te m 1 81

P ig .76 Magne t i c susp ens ion sys t em 182

P ig .77 Magne t i c suspe ns ion work ing se c t io n . 7 i n . x 7 i n . hyp er son ic

wind tu nn el 183

F ig .78 Schemat i c d i ag ram o f t he susp ens ion magnet a r r ay o f a s i x -

component mag net ic wind tu nn el ba lan ce and sus pen sion system 184

F i g . 7 9 M odel s u b j e c t e d t o a f o r c e d o s c i l l a t i o n i n r o l l w h i l e s u sp e n de d

in th e s ix - componen t ba l a nce 185

F ig .80 View o f co n t ro l su r f ac e d r iv e 186

F i g . 8 1 A p p a r a tu s f o r e l e v a t o r o s c i l l a t i o n 187

F i g . 8 2 A p p a r at u s f o r e l e v a t o r o s c i l l a t i o n 188

F ig .83 Ske tch o f co n t ro l su r f ace p luc k ing mechan ism 189

v m

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 11/236

Page

P i g . 8 4 E l a s t i c mod el s u s p en s i o n and e l ec t r o m ag n e t i c o s c i l l a t o r f o r

o s c i l l a t i o n i n p i t c h 190

P i g . 8 5 F r e e o s c i l l a t i o n w i th a u t o m a t i c a l l y r e c y c l e d f ee d ba ck e x c i t a t i o n 191

P i g . 8 6 H a l f- mo d e l o s c i l l a t i n g r i g 192

Fig .87 Rol l -dam ping sys tem 193

Fig .88 Ai r be ar in g ro l l - dam pin g mechanism 193

F i g . 8 9 A i r b ea r i n g r o l l - d am p i n g b a l an ce 194

Fig .90 Dynamic s t ea dy - r o l l ba la nce 195

P i g . 9 1 F o r c e d - o s c i l l a t i o n b a l a n c e 196

P i g . 9 2 P i c t o r i a l d ra w in g , f o r c e d - o s c i l l a t i o n b a l a n c e 197

F i g . 9 3 I l l u s t r a t i o n s o f t h e v a r i o u s M agnus e f f e c t s

(a) Magnus for ce at low an gl es of at ta ck 198

(b) Magnus for ce at la rg e an gl es of at ta ck 198

(c) Magnus ef fe c ts on ca nte d f i n s 198

(d) Magnus ef fe c ts on dr ive n f i n s 198

F i g . 9 4 E f f ec t o f s p i n p a r ame t e r o n t h e M agnus c h a r a c t e r i s t i c s 199

Fi g. 95 Eff ect of boundary la ye r on th e Magnus for ce 200

Fig .9 6 E le c t r i c motor dr i ve Magnus force sys tem 201

Pig .97 Magnus force sys tem, tu rb in e dr ive w i th in th e model 201

Fig .98 Magnus force sys tem, tu rb in e dr ive w i th in th e model 202

Pi g.9 9 Magnus for ce ba lan ce 203

Fig .10 0 Magnus ro l l -da mp ing ba lan ce w i th a i r be ar i ng s 203

F i g . 1 0 1 V a r i a t i o n o f b ea r i n g t emp e r a t u r e w i t h s p i n r a t e f o r b y p as s

a i r co ol in g 204

P i g . 1 0 2 O i l m i s t l u b r i c a t i n g s y st em and o t h e r i n s t r u m en t a t i o n 2 05

Pig .10 3 Two typ es of Magnus ba lan ce gage se c t io ns

(a) Sandia s t r a in gage ba lan ce 206

(b) AEDC-VKP s t r a i n gage ba la nc e 206

i x

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 12/236

Page

Pig. 104 Compar ison of semiconductor and conventional gage outpu ts 207

Pig.105 Experimental response magnitude and phase- angle calibratio n for

1.38 in. of

 0.030

 in. nominal-diam eter tubing connected to a gage

3

vol ume of 0.02 in. for air at sea-lev el condit ions 208

Pig.106 Pump for sinusoidal oscilla ting pressur e 209

Fig.107 Cam-ty pe pulsat or calibra tor 209

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 13/236

NOTATION AND ABBREVIATIONS

N o t a t i o n

A r e f e r e n ce a r ea o r g en e r a l co n s t an t

C t o t a l d amp in g co e f f i c i en t o r g en e r a l co n s t an t

C

x

  t a r e d ampin g co e f f i c i en t

C

A

(- C

X

) t o t a l a x i a l - f o r c e c o e f f i c i e n t , - 2F

x

/yq

D

V

(

2

;

A

C

c

  c r o s s - w i n d co e f f i c i e n t , 2P

Y

/Po>VpA , (C

y

  = C

c

)

C

D

  t o t a l d rag co e f f i c i en t , 2D/Po,VgA

C

L

  l i f t c o e ff ic ie n t , I h / p ^ K

C j r o l li n g - mo men t co e f f i c i en t , 2M

x

/Pa)VpAd

C

l p

  BCj/B(Pd/2V

c

)

C

/ r

  B C j / 3 ( r d / 2 V

c

)

C

l / 3

  dC,/dyS

C

t/

g BCj /3(5d/2V

c

)

C j g * 3 C j / 3 S *

C„ pitching moment coefficient  o f a  mode l which

  h a s

 trlagonal  o r  greater

symmetry, 2M

y

-/

/

o

a

,VgAd

C

« p a

C

n p a

=

  C

n r

C

m a

C

m a

=

s

=

C

mp/3

C

mq

"

C

n /3

"

C

n 4

C

M a

C

B

  p i t c h i n g moment c o e f f i c i e n t , 2M

y

//Oa>V*Ad

C

mpr  = 3 V

5

(

P d / 2 V

c '

3

'

r d / 2 V

c >

C

mp /

3  =  3

2

C

m

/ 3 ( P d / 2 V

c

)B ^

C

m p

4  =  3

2

C

m

/ 3 ( P d / 2 V

c

) 3 C f i d / 2 V

c

)

C .

a

  = dC

ff l

/3(qd/2V

c

)

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 14/236

J

m/3

= 3C

m

/3/3

ma

ma

c

N

  (-c

z

)

C

N ,

C

Na

C

N a

C

n

C

np

C

npq

C

n p a

C

npa

C

n r

C

n/3

C

n/3

= 3c

m

/Ba

= d C

m

/ d ( ad /2V

c

)

n o rm a l f o r c e c o e f f i c i e n

= BC

N

/B(qd/2V

(J

)

= dC

N

/Boc

= 3 c

N

/ 3 ( a d / 2 V

c

)

yawing moment c o ef f i c i e

= 3 C

n

/ d ( P d / 2 V

c

)

= d

2

C

n

/ d ( P d / 2 V

c

) d ( q d / 2 V

c

)

= 3

2

C

n

/ d ( P d / 2 V

c

) B a

= d

2

C

n

/d(Pd/2V

c

)d (6cd /2V

c

)

= 3 c

n

/ d ( r d / 2 V

c

)

= 3c

n

/3/?

= 3C

n

/BC3d/2V

c

)

'yR

D

d

d.

P

X

  (-

P

A>

F

Y

 .

V - ° »

V

c '

'z/AoV^

side force coeffi cient, 2P

y

/

/

c

a

,V

2

A

cycles

 t o

 damp

 to a

 given amplitude ratio

  R

velocity o f  sound  in a  cylindrical tube

drag force

 o r

 general constant

model reference length, base diameter

sting diameter

voltage

forces along

 t h e XYZ  axes,

  respectively

frequency o f  oscillation

xii

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 15/236

f ( 0 )  v i s c o u s d a m p i n g

  a s a

  f u n c t i o n

  o f

  0

f ( 0

o

)   v i s c o u s d a m p i n g a s a f u n c t i o n o f  0

Q

H

x

, H

y

, H

z

  m o m e n t s o f m o m e n t u m a b o u t t h e X , Y a n d Z

  a x e s ,

  r e s p e c t i v e l y

H a n g u l a r m o m e n t u m v e c t o r

I

x

, I

y

, I

z

  m a s s m o m e n t s o f i n e r t i a a b o u t t h e X , Y a n d Z

  a x e s ,

  r e s p e c t i v e l y

i = / ( - I )

T ,

 J , k

u n i t v e c t o r s

  i n t h e X , Y a n d Z

  d i r e c t i o n s , r e s p e c t i v e l y

i . j * , k

  u n i t v e c t o r s

  i n t h e X , Y a n d Z

  d i r e c t i o n s , r e s p e c t i v e l y

J

z x

. J

x y

, J

y z

  p r o d u c t s

  o f

  i n e r t i a

K t o t a l s t i f f n e s s

K j f l e x u r e s t i f f n e s s

L l i f t f o r c e

I   m o d e l l e n g t h

  o r

  t u b i n g l e n g t h

l

3

  s t i n g l e n g t h

  o f

  c o n s t a n t d i a m e t e r

H v e c t o r r e s u l t a n t

  o f t h e

 e x t e r n a l m o m e n t s a c t i n g

  o n t h e

 m o d e l ,

( M

X

T

  + M

y

J +

  M

z

k )

  o r ( M

x

t + M

y

5 + M

z

£ )

M m o m e n t a b o u t

  Y

  a x i s

  ( M

y

)

M j o u t - o f - p h a s e m o m e n t

M

r

  i n - p h a s e m o m e n t

M

x

, M

y

, M

z

  m o m e n t s a b o u t

  t h e X , Y a n d Z

  a x e s , r e s p e c t i v e l y

M

X p

  =

  d M

x

/ d P

M

x S

*

  =   B M

X

/ B S *

M

&

  =

  B M

y

/ B < 5 c

U

e

  =  BM

y

/B0

U g =   BM

y

/B(9

I L ^ ,   f r e e - s t r e a m M a c h n u m b e r

x l i i

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 16/236

n number

P.Q.R scalar components

 of  cd in

 the

 X

 ,

 Y  and Z

  directions

(P = P

0

 + P,  Q = q

0

 +

 q.

 R

 = r

0

 + r)

P  =

  P d / 2 V

C

P

s

  s t e a d y - s t a t e r o l l i n g v e l o c i t y

p , q , r  p e r t u r b a t i o n s  of P.Q.R

P

t

  i n p u t p r e s s u r e

p,,,

  m e a su re d p r e s s u r e  at  gage

P

b

  mode l base p r es su re

Pa,

  free-stream static pressure

p m e a n p r e s s u r e

O o ,

  f r e e - s t r e a m d y n a m i c p r e s s u r e

R r a t i o

 o f

  f i n a l a m p l i t u d e

  t o

  I n i t i a l a m p l i t u d e

R e f r e e - s t r e a m u n i t R e y n o l d s n u m b e r

r t u b i n g r a d i u s

 o r

  r a d i a l d i s t a n c e

t t i m e

U . V . W s c a l a r c o m p o n e n t s

  o f

 V

c

 in th e

 X

 ,

 Y

  a n d

 Z

  d i r e c t i o n s

( U

 =  u

Q

 +

 u ,

  V = v

0

 +

 v ,

  W - w

0

 + w)

u , v , w p e r t u r b a t i o n s   of U,V,W

V

c

  or V

  v e l o c i t y

  o f t h e

 m o d e l c e n t e r - o f - g r a v i t y w i t h r e s p e c t

  t o t h e

 m e d i a

(Ul + v j + wk,  v

0

 =

 w

0

 =

 0)

V volume

 of

 pressure gage

V

t

  volume of  tube

XYZ body-fixed axes system (Pig.3)

 or

 components

 of

 external forces

X

e

Y

e

Z

e

  earth-fixed axes system (Fig.2)

X Y Z nonrolllng axes system (Fig.3)

X.Y

 Z„

  stability axes system (Fig.2)

o S S

xiv

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 17/236

X

T

Y

T

Z

T

  tunnel-fixed axes system (Inertial refe rence. Fig ure 3)

X

W

Y

W

Z

W

  wind axes system (Fig.2)

x,z transfer distance

x

c g

  distance from

 the

 model nose

 to the

 model piv ot axis (rearward po sit ive)

a angle

 o f

 attack

/3 a n g l e  o f  s i d e s l i p

y  r e f e r e n c e p h a s e a n g l e

A

  log

  d e c r e m e n t

B *

  c o n t r o l s u r f a c e d e f l e c t i o n a n g l e

0  I n s t a n t a n e o u s a n g u l a r d i s p l a c e m e n t f r o m   t h e r e f e r e n c e f l i g h t c o n d i t i o n

0±  o u t - o f - p h a s e p o s i t i o n

0

Q

  o s c i l l a t i o n p e a k a m p l i t u d e

 o r

 i n i t i a l a m p l i t u d e

0

T

  i n - p h a s e p o s i t i o n

A. d a m p i n g r a t e

p

  v i s c o s i t y

p

w

  f r ee - s t r e am o r amb i en t d en s i t y

£ complex ang le of at ta ck (v + iw)/V

c

  o r , f o r s ma l l an g u l a r d i s p l a ce

m en ts, /3 + ioc

< p   a r b i t r a r y p h a se a n g l e o r r o l l p e r t u r b a t i o n

X

H,0 ,$ Eule r ang les ; ang les of yaw, p i t c h and ro l l . F ig ure 2(b)

(? = 0

O

  + 0 . 0 = 0

O

  + 0. $ = 0

O

  + cp)

ip,0.4> p e r t u rb at io n s of * , 0 , $

H v ec t o r an g u l a r v e l o c i t y o f t h e n o n - r o l l i n g co o r d i n a t e s y st em w i t h

r e s p ec t t o i n e r t i a l s p ace (O i + q j + r k )

c o   an g u l a r c i r c u l a r f r eq u en cy

co.  n a t u r a l damped c i r c u l a r f r eq u en cy

lo v ec t o r an g u l a r v e l o c i t y o f t h e b od y co o r d i n a t e s y st em w i t h r e s p e c t t o

i n e r t i a l s p ace (P i + q j + r k , q

0

  = r

0

  = 0)

xv

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 18/236

<ad/2V„

( ' ). C )

(")

n

Subscripts

a

t

E

i

i o r 2

Abbreviations

AEDC

PWT

VKF

AGARD

BRL

DTMB

HSD

LRC

LTV

reduced frequency parameter

first

  a nd

 second derivati ves with respect

  t o

 time

  t

vector notation

nonrolling coordinate system notation

aerodynamic

tare

effective values

initial conditions

local values

Initial pitch axis

 o r

 refer ence flight conditi ons

new pitch  a x e s ,   times,

 o r

 nutatio n

  and

 precession mode s

wind

 on

vacuum

free-stream

Arnold Engineering Development Center

  ( U S A i r  F o r c e ) ,

  Arnold Center,

Tennessee.

Propulsion Wind Tunnel Facility, AEDC.

von Karman

  G a s

 Dynamics Facility, AEDC.

Advisory Group

  f o r

 Aerospace Research

  and

 Development,

  a

 Division

 o f

the North Atlantic Treaty Organization, NATO.

Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland.

David Taylor Model Basin (US   N a v y ) ,   Carderock, Maryland.

Hawker Siddeley Dynamics Ltd, Coventry, England.

Langley Research Center  ( N A S A ) ,   Langley Field. Virginia.

Ling-Temco-Vought A erospace Corporati on, Dallas, Texas.

xv 1

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 19/236

MIT Massachus etts Institute of Technology, Cambridge , Massachuse tts.

NACA National Advisory Commit tee on Aeronautic s (now the National Aero

nautics and Space Agency,

  N A S A ) .

NAE National Aeronautical Establi shment, Ottawa, Canada.

NASA National Aeronautical and Space Agency, Washington, DC.

NOL Naval Ordnance Laboratory, White Oaks , Maryland.

OAL Ordnance Aerophy sics Laboratory, Dangerfield, Texas.

ONERA Off ice National d'Etudes et de Rec her che s Ae'rospatiales (National

Bureau of the Aerospace

  Research),

  Paris, France.

PU Princeton University, Princeton, New Jersey.

RAE Royal Aeronautical Establish ment, Farnborough, Hants, England.

SU Southampton University, Southampt on, England.

UC University of California, Berkeley, California.

UM University of Michigan, Ann Arbor, Michigan.

WADD Wright Air Development Division, Wright-Patters on Air Force Base,

Ohio.

xvli

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 20/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 21/236

S E C T I O N  1

INTRODUCTION

Analysis o f  aircraft  and  missile aerodynamic performance  and  stability requires

knowledge o f t h e  forces and  mome nts which  act  under conditions o f  steady  and  unsteady

flight.  One of the  first studies o f  aircraft stability  wa s  that of  Lanchester

1

  around

1900,  followed later by  more complete  and  rigorous analysis by  Bryan

2

, which  is  still

the basis for  much of the  dynamic stability work today.

Requirements  for  supplying a erodynamic charact eristic s  for  perfor mance analysis

have been met, to  some extent,  by  relying  on theories supported  by  experimental m easure

ments t o  establish  t he  validity  o f t h e  theories.  In some cases, th e  theory h a s  only

limited application especially when viscous flow h a s a  pro nounced influence on the

flow field,  as in the  case o f  high speed flow (hypersonic speeds and  above) and low

Reynolds numbers. There  are  some situations  for  which the  phenom ena cannot  be  described

adequately  by  theory.  In other cases theory  is not  applicable because th e  configuration

and flow field  are so complex that t h e  many approximations required invalidate  a  wholly

theoretical approach.

  Thus,

  in prac tice , strong reliance  is  placed on experimental

results for use in analyzing  th e  modes of  motion  o f t h e  aircraft o r  missile.

Early experimental techniques making  u s e o f  oscillating models to  dynamically simulate

rigid modes o f  motion  for  determining stability derivati ves  are  well summari zed by

Jones

3

.

  It is of  interest  t o  note that no  fundamental changes in the  basic experimental

methods ha ve taken place since that ti me, 1934, although much work h a s  been done toward

refinement  o f t h e metho ds, equipment  and  instrumentation. Little emphasis wa s  placed

on dynamic stability experiments until about 1940,  a nd  from that time to 1945  experi

mentation  wa s  primar ily concerned with subsonic flow  and  tests were made  for  small

perturbat ions. Wind tunnel experiments  and  flight tests within t h e  early forties were

directed more toward static stability  and  control problem s. With t h e  advent of  high

speed aircraft, missiles, rockets,  and  re-entry vehicles , increased emp hasis h a s  been

placed

 on

 performance

  and

 dynamic stabil ity pro blem s since missions demand precis e

control

 no t

 only

  in

 small disturba nces from level flight,

 but

 also

 in

 large scale

maneuvers.  A s a  result, dynamic stabil ity measu rements have become increasingly important

at supersonic, hypersonic  and  hypervelocity speeds and at  large perturbations.  T h e

experimental methods suggested  by  earlier experiments have been used  in different forms,

and many improvements have been made   in the  experimental techniques since about 1950.

These improvements have been  in the  areas o f  balance system, model  and  support system

design, instrumentation, data acquisition,  and  data reduction.

In 1954 Valensi

4

 presented  a  review o f t h e  techniques primari ly  in use in Europe for

measuring oscillatory aerodynamic forces and  moments o n models oscillating  in wind

tunnels.

  Th e  following year AGARDograp h  11

 (Ref. 5)

 by  Arnold  wa s  published on the

subject  of  dynamic me asurements  in wind tunnels.  T he  most recent summary o f  techniques

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 22/236

for measuring oscillatory derivatives in wind tunnels was published by Bratt

6

  in 1963

as a part of the AGARD Manual on Aeroelasticity. The paper discus ses the basic principles

employed in measuring derivat ives and gives some account of the associated instrumentation.

Much of the report deals with the methods and instrumentation employed in England.

Since these earlier works, the emphasis on dynamic stability testing has increased,

and many reports have been prepared on the subject, so there exists a need for a review

and summary of the current dynamic stability testing techniques in use at supersonic

speeds and above.

There are many experimental techniques which are suitable for measuring dynamic

stability d erivati ves; however, only those techniques that are in most common use in

wind tunnels will be described. In addition, many different systems exist for measuring

the same quantities and, since they differ primarily in the specific application, no

attempt will be made to describe all systems; only systems considered to be representa

tive and those having unique features will be discussed. The report is organized

primarily around the aspects of dynamic stability testing in wind tunnels at supersonic

speeds and abov e, although m uch of the report is pertinent to aspec ts of testing at

transonic and subsonic speeds. Although free -flight testing in ground test facilities

encompasses the use of the wind tunnel and aeroballistlc range for measurements of

dynamic stability derivative s, these t echniques are not included as a part of th is

AGARDograph because other publications on these subjects have been published and are

in preparat ion

7, 8

.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 23/236

S E C T I O N 2

S T A T E M E N T O F T H E P R O B L E M

2. 1 D E V E L O P M E N T T R E N D S

Aircraft or missiles in high speed flight are free to respond to disturbances with

motio ns involving many degrees of freedom. During vari ous stages of aerodynamic design

of a vehicle, as the configuration is developed, dynamic chara cteristics must be known

and progressiv ely refined to a high degre e for the final configura tion performa nce

specification. The designer must necessarily be concerned with the interpretation of

aerodynamic stability data and with the evaluation of the influence of their accuracy

on an integrated system design.

There are three methods of obtaining stability data:

(i) Theory and empirical data,

(li) Wind tunnel and aer oballistic range model testi ng,

(iii) Sub- or full-s cale flight testi ng.

During the preli minary design stage, it is most expedient to rely primar ily on theory

and empirical data for performance evaluation whereas, in the later stages, design

concepts inevitably require evaluation through the use of some scale model tests. As

a final phase in the design development, sub- or full-scale flight tests are required

to verify performance and obtain in-flight measurements for verification of theory and

prediction methods.

There are certain speed regimes where theoretical results may be inaccurate due to

insufficient or inaccurate basic data. For example, in the transonic speed regime

(0.9 < Mo, < 1. 5) theoretical meth ods for dete rmining dynamic stab ility deriv ative s are

very limited, and, therefore, reliance is place d on methods involving the use of

empirical data on similar configurations and correlation plots showing the manner in

which the stability derivatives vary with Mach number for similar configurations.

Within the superso nic and hypers onic regio n (1.5 < M^, < 10), theoreti cal met hods

are available for estimating der ivatives for bodies of revolution and relatively simple

lifting configuratio ns. At Mach numbers above 10 in the hypervelocit y speed regime,

theories generally fail to predict the derivatives because visc ous effects have a

strong influence on the vehicle aerodynamic characteristics.

In order to Improve the accuracy of aerodynamic de rivat ives that are used in per

formance pre dic tions and to validate theoret ical estima tes, model tes ts in ground test

facilities are recognized as being essential to the development of aircraft, missiles

and re -entry vehic les.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 24/236

Study of vehicle motions in flight involves consideration of many degrees of freedom.

When the vehicle is considered as a rigid body, six degrees of freedom are required.

Since the vehi cle is not a rigid stru cture, additional relati ve motio ns of components

such as aeroelastic deflection of lifting surfaces and movable controls constitute

additional degrees of freedom.

The vehicle motions may be separated into high frequency and low frequency motions,

where high frequency motio ns studies such as flutter are primarily concerned with

structural elastici ty and unsteady aerodynamics. At low frequencies the moti ons involve

rigid body motions and are studied as dynamic stability using quasi-static aerodynamics.

The mode of model testing discusse d in the present A GARDog raph is concerned with this

latter type motion and the determination of rotary damping derivatives.

In scaling down a vehic le for model t ests the paramet er tha t must be considered in

addition to the Mach number and Reynolds number is the angular velocity or frequency

of model oscillat ion in relation to full-scal e conditions. The scaling param eter,

called the reduced frequency, in the form cdd/2Va, contains the frequency of oscilla tion

and represents the ratio of some characteristic dimension of the vehicle to the wave

length of the oscillation. This type of scaling parameter also applies to dynamic roll

tests and has the form Pd/2Vo, .

Experimental techniques for measuring dynamic stability derivatives in ground test

facili ties may be classified in many different  ways.  The classifica tion that will be

followed here is presented in Figur e 1. The two major classi ficati ons are derived on

the basis of whether the model is free to move in all basic degrees of freedom or

whether it is restricted in several degre es of freedom. The sub topics shown in Figure 1

for discussion were selected as those methods currently being employed for most high

speed testing; however, it should be emphasized that the outline does not show the case

of the model fixed in the test section with pert urba tions generated in the flow. As

noted in the Introduction, only those methods which apply to captive model testing

techniques will be discussed in this AGARDograph since free-flight tests in the wind

tunnel and range are the subject of AGARDographs published and now in preparation

7, 8

.

Additional general information on meth ods not described herein may be found in Reference 9.

2. 2 E Q U A T I O N S O F M O T I O N

In order to place the role of dynamic stability testing in perspective, it is helpful

to examine the equations of motion. Although the mathe matica l treatment of vehicle

dynamics is well known and found in many te s t s

10

'

12

, a brief derivation of the equations

of motion is included to illustrate the basis for the experimental techniques used in

the study of dynamic stability.

2.2.1 Axes Sys tem s

The equations of motion will be developed using the axes systems shown in Figures 2

and 3. Model orientation is determined relati ve to the tunnel fixed axes X

T

Y

T

Z

T

(inertial reference).  The XYZ axes are fixed in the model with the X and Z axes

in the model's plane of symmetry. When the origin of this system lies at the center

of gravity, these axes are then defined as the body  axes.  The angular orientation of

the XYZ system with respect to the X

T

Y

T

Z

T

  system and inertial space is given by the

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 25/236

Euler angles ¥  , 0 , and $ . Somet imes it is convenient to use the nonrolli ng axes

system  (XYZ).  Thes e are special body axes whose angular orientation in space relative

to the X

T

Y

T

Z

T

  system is determined by the angles ? and 0 . This axis system can

be used even though the model is rotating about the X

  axis.

  The origins of all

systems are assumed to occupy the same point in space

  (Pig.3).

2.2.2 Inertial Mom ents

The angular momentum of the model may be expressed as

H = /(r x V

p

) dm ,

(1)

where r is the radius vector from the origin of the rotating XYZ axes to the parti cle

p of mass dm and V is the velocity of the particle p relative to inertial space.

The radius vector r is measured relative to the body fixed XYZ

  axes;

  therefore,

in order to evaluate the velocity of p relative to inertial space, it is necessary

to use the well-known transformation for the rate of change of any vecto r from fixed

to rotating axes as follows:

dr

V

P

  = dT

dF

= — +  co x r ,

dt

where

Pi + Qj + Rk

Assuming the model is a rigid body, the equation reduces to

V =   co x r ,

since r is then not a function of time.

Substituting t his equation into Equation (1) yie lds

H = J F x  (co x F) dm .

This expression is then integrated over the vehicle to obtain

fi = L j ] [ i ] W .

where

[j]

  =

  LiJkJ

[I]  -

{co} =

-J

-J

P"

Q

R

YX

ZX

-J

XY

-J

Y

-J

- J

xz

yz

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 26/236

The moment ac t i ng on th e ve hi cl e i s eq ual to th e r a te of change of angu lar momentum

2M   .

H

d t

dH _ _

= — + w x H

d t

Th i s ve c to r equa t io n can be r educed to t he fo l low ing s ca l a r f o rms:

I

X

P + ( I

z

  - I

y

)RQ - J

X Z

(R + QP) + J

X Y

(RP - 0) + J

Y Z

(R

2

  - Q

2

) = £ M

X

)

I

Y

Q + ( I

x

  - I

Z

)PR - J

X Y

(P + QfO + J

Y Z

(PQ - R) + J

X Z

( P

2

  - R

2

) = £M

Y

)

I

Z

R + ( I

Y

  - I

X

)QP - J

V 7

(Q + PR) + J

Y 7

(QR - P) + J

Y V

(Q

2

  - P

2

) (2M

7

) .

'YZ

V

'xz

N

'XY'

(2)

Roll pitch

  and ya w

 rates

 for the XYZ

  system

 may be

 obtained from Figure

 3 as

follows:

P

  = $ - * sin 0

Q  = 0 cos $ + ¥  cos 0 s in $

R

  =

  y cos

 0 cos $ - 0 sin $ .

In orde r

 to

 simplify

  t h e

 nonlinear differential equations given above

 to a

 form

which facilitates analysis o f t he  motio n, vehicle symmetry will  be  assumed,  and the

motion will  be  restricted  to  small dist urbances from  a  reference condition.  L e t

P = P

0

+ P ,

  ¥ =

  0 + 0 .

  e

t c. , where

 th e

 zero subscripted quantities

 a r e t h e

 reference

conditions and the  unsubscripted lower case quantities   are  perturbations from this

reference c ondition.

For t h e  following discuss ion,  the  reference condition  is  selected such that

q

0

  = r

0

 =

  0

Q

  =

 0

O

 = 0 and the

 reference quantities

  p

0

  and

  cp

Q

  are not

 necessarily

small. Considering vehic les having symmetry about t h e X Z  plane  ( J

w

„ = J „ „ =  0)  and

xy y z

n e g l e c t i n g p r o d u c t s o f p e r t u r b a t i o n q u a n t i t i e s , t h e e q u a t i o n s o f m o t io n beco me

V "

  J

x z< r + QP)

= £M),

I

y

q + ( l

x

  - I

z

) P r + J

X Z

P

2

  = ( 2 M )

Y

I

z

r + ( I

Y

  - I

x

)Pq - J

X Z

P = (2M)

Z

T he r o l l , p i t c h a nd yaw r a t e s a t t h i s c o n d i t i o n a r e g i v e n a s

Po = ^o

p = cp - \p s in 0

q = 0 co s $ + 0 cos 0 s i n $

r = yi co s 0 co s $ - 0 si n $ .

(3)

(4)

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 27/236

For models having triagonal or greater symmetry, the nonrolling coordinate system

XYZ may be conveniently used when these axes correspond to the mode ls' principal

inertia  axes.  Since the body is moving with respect to the Y and Z axes (rotating

about the X  axis),  the restriction of symmetry is necessary, otherwise the moments of

inertia with respect to the XYZ system will be time varying. For the above case,

the angular momentum expression is given as

H

I

Y

Pi  + Iqj + Irk ,

where

I = I

Y

  = I

z

q - q cos $ - r sin $

r = r cos $ + q sin $

$ ~ f P(t) dt ,  1*1 »  \-\b sin 0\

Jo

Note that, even though $ = 0 for the nonrolling coordi nates, its XY plane is

rotating with respect to the X

T

Y

T

  plane at the angular rate   -xft  sin  0 .

The equations of motion referenced to the nonrolling coordinates are given as

dH .

— + n x

  H

  =

  S M

 ,

dt

where

M

O i + qj + rk .

These equations of motion reduce to

13 +

l i * -

I * *

I

X

PF

I

x

P q

=

=

=

(2M)

X

( 2 M )

?

( 2 M )

2

(5)

2.2.3 Aerod ynamic Mome nts

The general pr ocedure for expanding th e aerodynamic moment relat ions is that deve

loped by Bryan

2

. It is assumed that the moments are functions of the steady-state

reference conditions and the instantaneous value s of the distur bance veloci ties, con

trol angles, and their time derivatives. A Taylor series expansion of an aerodynamic

reaction yields this form. For example, the aerodynamic reaction A = A(U.V, ... ) is

expressed as

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 28/236

A(U,V,...)

  =

  A (u

0

, v

0

. . . . )

  + — (U - u

0

) +

i

Buy

o

+

  ( B T )

0

( V

-

V

°

) +

( S )

0

( U

-

U

O >

2   +

B

2

A \

(U

 - u

Q

)(V -

 v

Q

)

 +

\ B u B v /

0

2

^

2   I

  v

'  ' 0 '

B

2

A \

where

\Bv

U

  = u

0

 + u , etc.

This expansion  is  linearized  by neglecting products  of the perturb ation quantities;

therefore,

  for the

 above example

  the

 linearized aerodynamic reaction be comes

A(U,V,...) A(u

n

. v

n

, . . . )  f (—

  1

  u +  I — I v + ... .

Aerodynamic reactions

 can be

 expanded with respect

 t o t h e

 variables

  U

  ,

 V , W

 ,

 P ,

Q , R , the  control d eflecti on angles,  and  time derivatives o f  these variables.  For

a given configuration, conditions

 of

 symmetry

  and

 past experience concerning relative

effects o f  these derivatives can be  used to reduce the  number of derivatives needed

to describe

 the

 aerodynamic moment system.

  F o r a

 spinning vehicle having t riagonal

 or

greater symmetry,  the  moment equations can be  reduced to

M

x  =

  M

xo +  l - ~ \  P + (r r r )  8*

VWo w

)M

Y

\  /B M

Y

\ / 3 M

Y

\  /BM

Y

The term (BM

Y

/Bv)

0

  in th e p i t c h equ at io n and th e term (BMg/Bw),, in th e yaw

e q u a t i o n a r e u s u a l l y n e g l i g i b l e e x c e p t f o r t h e c a s e w hen t h e v e h i c l e i s s p i n n i n g r a p i d l y .

These term s are caused by th e Magnus ef fe ct . They ar e g iven in a more fa m i l ia r form

a s f o l l o w s .

Let

< * ) ,

  '

  YV

° ' W o "

  Z

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 29/236

Taking th e first term as an example and assuming that it is primar ily a function

of P , its Taylor series expansion about the condition P = 0 is given as

'BM

M

Yv 0

( P....) = M

Yv 0

( 0. . . . ) +( - ^ ) (P - 0) +

v O l

Bp

The first term on the right hand side is usually negligible; therefore, this expression

may be reduced to

BM

Y

T

P

M

Yvo<

p

) -rr^J

Similarly,

The pitching- and yawing-moment equatio ns are then given as

/ B M

Y

\

  / BM

Y

\ / B M

V

\ /B

2

M

V

"•

=  M

  K I 7 ) /

+

( l r )

0

i +

^ '

  r + l

^' "•

  m

The terms M

x o

  , M

Y 0

  , and M

z o

  in Equations ( 6), (7), and (8), respectively, are

the moments about the X , Y and Z axes while the model is at the reference flight

condition. The reference condition is often chosen such that these terms are zero.

Equations (3) describe the motion of a model which has three degrees of freedom in

rotation about a point fixed in space . Unique test equipment is required in orde r to

obtain these moti ons using a captive model test technique. Two balances which have

this capability are described later in Section 3.1.1. In most capti ve model dynamic

stability  tests,  the model is restrained to a single degree of freedom, i.e., rotation

about a single

  axis.

  An example of a typical dynamic stability b alance would be a

single-degree-of-freedom system using a flexure pivot. The equation of motion for a

system of this t ype will be developed in the following discussion.

2.2.4 Single Degree of Freedom

The velocity components in the body axis for the case of a model mounted on a single-

degree-of- freedom flexure pivot at an angle of attack a and oscilla ting symm etrically

at a small angle  0  are

u   - \

w

  (a +  d )  =  Va , cos a -   d \

m

  sin a

V = 0

i

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 30/236

10

W

  s

  Vo,

 sin (a + d) - d v

w

 cos a + V^ sin a

 i

(9)

P  = 0

Q  = a = £ .  ii = 0

R  = 0 .

The reference conditions used here

 are

 those that exist when

 the

 model

 is at the

 angle

of attack  oc .  Under these conditions. Equation (2) reduces to

I

Y

q  =

  ( 2 M )

Y

 .

Only the derivation of the equation for a single degree of freedom in pitch is presented,

since the derivations for osci llations in yaw and roll are similar and are treated in

detail

 in

 many

 of the

 refere nces included (see,

 e.g.,

 Reference 4) .

An elastic restraint

 is

 provided

 in the

 balance

 to aid in

 restori ng

 the

 model

 to the

reference attitude following a displac ement. When the aerodynamic moment is expanded

to include all significant terms and the resto ring moment Kj((X +

 0 )

  and the damping

moment  C.6  of the restra int are added to this to obtain the total moment, the equation

of motion in pitch is written as

I

Y

q  = M

Y0

 + M

u

u + M

q

q +

  \ v +

 M^w + Kj(0 + a ) +

  C

x

0

 .

where

M

u

  =

  (BM

Y

/ d u )

0

 , M

q

  =

  (BM

Y

/3q)

0

M

w

  =  (BM

Y

/Bw)

0

 , M* =  (BM

Y

/Bw)

0

 .

After including the relationships for the linear and angular compo nents of velocity

(Equation (9)), the equation above reduc es to the form

I

Y

0 + (-M

q

 - Va,M£ cos a -  C . ) 6 +

+ (MjjVa,

 sin a -

 i^Va,

 cos a -  i . ) 6 - M

yo

 +

 KjOC

  = 0 . (10)

In

 the

 undisturbed case, conditions

 of

 equilibrium give

M

y o

  =  KjOC ,

and, for small va lu es of a , Equation (10) becomes

I

Y

0 - (-M

q

  - V ^ - C,)0 + (-Kj - M

w

V

eo

)t9 = 0 . (11)

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 31/236

M

0a

Met

M

0a

M

(9t

=

=

=

(Mq + V„,M*) ,

Cj .

VL/fc.

K j .

11

Defining th e damping-moment pa ram ete r and th e res tor in g-m om ent para m ete r by Mg and

Wg , r es pe c t iv e l y , where

aerodynamic

damping-moment parameter of

e l a s t i c r e s t r a i n t c o ns id e r e d

as a t a r e

aerodynamic

s ta t i c -moment parameter o f

e l a s t i c r e s t r a i n t c o n s id e r e d

as a t a r e .

With the se d e f i n i t io n s , Equat ion (11) becomes

id - m

h

  + m\

e&

)d - ( M

M

  + m\

ea

)d = 0 .

Following

 the

 procedure presented

  in

 Reference

 4,

 similar expressions

 can be

 written

for  t he  equations o f  motion  in the  body axis for ya w and  roll.

2.2.5 Stability Derivat ive Coeff icients

The stability derivative coefficients

 are

 obtained

  in

 this section using the refere nce

condition

  ?

0

 =   d

Q

 = w

Q

 = v

0

 = q

0

 = r

Q

 = 0

 . This

 is a

 typical condition

  for a

 sym

metrical model oscillating about

  its

 zero-angle-of -attack trim.

  T h e

 NACA system

11

  will

be used here with

 t he

 time constant defined

 as t* = i/ u

0

 . The

 aerodynamic moments

are defined

  in

 this system

 as

, 2

M

x

  = pV

2

A*C

z

  (12)

M

y

  = p\

2

c

A lC

m

  (13)

M

z

  = p \

2

c

A lC

n

  . (14)

where V

c

  = / ( U

2

  + v

2

  + w

2

)

and  it is  necessary that the  refere nce length  ( I )  be  defined  in half lengths; e.g.,

I  = d/2

 ,

  I = b/2 , etc.

The coefficient form

 of the

 derivative

  ( BM

y

/Bw)

0

  is

 obtained, using Equation (13),

as follows:

Since (Bv

c

/Bw)

 = w/V

c

 , the

 first term

 on the

 right-hand side

 o f

 Equation (15)

 i s

negligible.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 32/236

12

T he a n g l e o f a t t a c k i s d e f i n e d t o f i r s t o r d e r ( s m a l l a n g l e s o f a t t a c k ) a s

ot

where

u ^ V

o — "c

Substitution  of  this definition into Equation (15) yie lds

^BM'

^

  :

 'VIC. ,

where

J S .

Ba

The coefficient form of the  derivative (BM

Y

/Bq)  is  obtained, using E quation (13),

as fo l lows:

©..-*-ft

(16)

T he c o e f f i c i e n t C i s d e f i n e d , u s i n g t h e t i m e c o n s t a n t a nd t h e d e r i v a t i v e f rom

t h e r i g h t - h a n d s i d e o f t h i s e q u a t i o n , a s

3

  =

  t*(^)

  =

  l 9 V 3 ( q Z A

c

) ]

0

.

Using t h i s d e f in i t i o n , Equa t ion (16 ) becomes

^ M

v

,

=  P ^

A l t

  ^

T he r e m a i n i n g c o e f f i c i e n t s a r e o b t a i n e d u s i n g t e c h n i q u e s s i m i l a r t o t h o s e o u t l i n e d .

Us ing Eq ua t io ns (6 ) , ( 7 ) , and (8 ) and th e above methods fo r ob ta in i ng the co e f f i c i en t s ,

Eq ua t ion s (12 ) , ( 13 ) , and (14 ) can be w r i t t en in t he fo l lowing c oe f f i c i en t f o rms , where

I = d /2 :

M

x

  = |

P

V

2

A d C ,

0

  +

C / P

S )

+ C

 

8

*

S

*

['

A d |c

m0

  + C.JX + c

mo

  v

ina

ma

v2V„

+ c

mq

^2V„

+ C,

M

z

  =

  j p V

2

A d

  C

n 0

  +

  C

n p

p

  + C

n /

g ( - - 1 + B L - ( -

9

  \

2 V

9

\2Vm

>2V,

n p a

v2V„

a

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 33/236

13

S E C T I O N  3

C A P T I VE M O D E L T E S T I N G T E C H N I Q U E

3.1 G E N E R A L D E S C RI P T I O N

  O F

  T E C H N I Q U E

Methods for  obtaining rotary deriv ative s  in pitch, yaw or  roll involve restraint of

the model

  in

 several degrees

 o f

 freedom

  and

 measurement

  of

 mome nts required

  to

 sustain

an oscillation

  for

 specified conditions

 o f

 frequency

  and

 amplitude (forced o scillation

technique)

 or

 measurement

  of

 model motion after

  it has

 been disturbed (free oscilla tion

technique).

The basic units

  in the

 captive model testing system

  are the

 pivots,

 the

 support

system and,

  in the

 forced oscilla tion t echnique, mecha nisms

 for

 forcing

 the

 model

oscillation.  T h e  pivot  is a  very important part o f a  dynamic stability test system,

and

 the

 selection

 of the

 type

 o f

 pivot

  and

 desi gn will depend

 on

 several fac tors, some

of which have

 a

 direct bearing

 on the

 quality

 of

 data that

 may be

 obtained with

 t h e

system. Also o f  importa nce  is the  suspe nsion system  and the  influence  it may  have on

the aerodynamic measurements. Detailed descriptions

 o f

 model pivots, suspension systems,

and balance tare damping characteristics

  are

 presented

  in

 Sec tions 3.1.

 1 to

 3.1.3.

3. 1. 1 Model Piv ots

Pivots

 of

 various types which

  are

 employed

  in

 dynamic stability balances include

ball bearings,

 g a s

 bearings, knife edges, cones,

 and

 crossed flexures.

  The

 selection

of a  particul ar type pivot will dep end  on the  system operating requirements and the

environment

  in

 which

  it

 will

  be

 used.

  One of the

 most important factors that must

 be

considered

  in the

 design

 of a

 dynamic s tability balance

 for

 aerodynamic damping measur e

ments

  is the

 damping that

 the

 system contribute s

 to the

 meas ured wind

 on

 damping.

Aerodynamic damping decreases with increased Mach number

  and

 becomes

 a

 small per centage

of the  measured damping  at the  hypers onic Mach numbers.  O ne  exception that will be

discussed

  in

 Section

  3,1.3 are g as

 beari ngs which generally have negligibl e tare

damping. Because

 o f i ts

 importance, ta re damping will us ually

  be one of the

 principal

considerations

  for

 selection

 of the

 pivot type

 o r

 bearing

  for

 roll damping balance

systems.

3.1.1.1  F l ex u r e

High pivot friction

 may be

 avoided

  by

 employing crossed flexures

 o f th e

 general

type shown

  in

 Figure

 4.

  These bend

  in

 such

 a way

 that

 the

 center

 of

 rotation remai ns

at essentially  a  fixed position.  T h e  crossed flexure provides stiffness, which is

necessary

  to

 overcome static moments

 o n

 models tested

  at

 angles

 o f

 attack

  by the

 free-

oscillation technique. Flexure piv ots

 are

 used

  in

 many applica tions,

  in

 particular

scientific instruments, because they have many favorable characteristics. They

 a r e

simple

  in

 desig n,

 yet

 rugged

  in

 constructio n

  for

 their flexibility; they

 do not

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 34/236

14

introduce hysteresi s

 o r

 backlash

  in the

 system; they

 do not

 require lubrication;

 and

they

  are not

 susceptible

 to

 wear. Their main disad vantage

  is

 that they

 are not

 suitable

for large angles o f rotation because of  stres s considerati ons, especially under com

bined loadings.

  The

 design

 of

 flexure piv ots

 for a

 particular application requires

consideration

 of the

 model loads, mom ents,

 and

 oscill ation frequency

  for

 dynamical

similitude. Experience

  at the

 AEDC-VKF

 h a s

 shown that crossed flexures have linear

stiffness characteristics and  structural damping that   is  repeatable even though the

flexure

 is of

 multipiece construction. This method

 of

 construction

  is

 desirable because

the flexures can be  machines as a single unit  and  then cut  into sect ions for the in

dividual flexures.

  The

 theory

  for

 design

 of

 symmetrical crossed-flexure piv ots

 is

given  in References  13 through 16.

Examples o f flexure piv ots, including cruciform  and  torsion tube pivot s, that have

been used

  in

 various applications

 are

 shown

 in

 Figure

 5. For

 each

 o f

 these,

 t he

 pivot

tare damping varies inversely with the  frequency o f oscillat ion. Strain gage s mounted

to

 o ne

 member

 of the

 crossed flexure

  are

 employed

 to

 obtain

  a

 signal v oltage which

 is

proportional

  to the

 angular dis placeme nt.

For some applications, such as  tests in very small tunnels or low density tunnels

which have

 a

 small test core,

 it may be

 impractical

  to

 machine flexure pivots

 of the

type shown  in Figure  5. Th e  AEDC-VKF h a s  developed  a  small dynamic stability balance

using

 a

 commerc ially available instrument fl exure pivot

 of the

 type shown

  in

 Figure

 6.

The characteristics o f  this pi vot were found to be repeatable and  linear. Angular

motion time histories

 are

 measure d with

 an

 angular transducer described

  in

 Section

3.2.2. 1.

3 .1 .1 .2 Kn ife Edge and Cone

Knife edge and cone p iv o ts of th e typ e shown in F ig ur es 7 and 8 have rec en t l y been

u s e d i n d yn am ic s t a b i l i t y b a l a n c e s y s t e m s b e c a u s e t h e y a r e n e a r l y f r i c t i o n l e s s .

T he p r i n c i p a l d i s a d v a n t a g e o f e i t h e r t h e k n i f e e d ge o r c on e p i v o t i s t h a t som e

method o f r e s t r a in t must be employed to ho ld the p iv o t s i n con t ac t and f ine ad jus tme n t s

a r e n e c e s s a r y t o e l i m i n a t e b i n d i n g .

The s ln g le - de gre e -o f - f r e edo m kn i f e edge p i vo t shown in F igu re 7 was used in a s i n g l e -

degree-of-

  f reedom f r e e -o s c i l l a t i o n ba l a nce sys t em deve loped a t DTMB. Here kn i f e edges

a r e used to cons t r a in t he mode l and a l so fo rm the ax i s o f r o t a t i on .

A s i m i l a r t ec hn iq ue ha s a l so been used by DTMB fo r a t h r e e -d egr ee - o f - f r eed om ba la nce

system; however , i n th i s ca se , th e model mount ing system i s a cone on the end of t he

s t i n g i n s e r t e d i n a c o n i c a l d e p r e s s i o n c o n t a c t w i t h i n t h e m od el ( F i g . 8 ) . T he m od el

i s f r e e t o r o l l , p i t c h , and yaw abou t t he cone and i s he ld on th e p iv o t by mode l d r ag .

In each o f t hese cases , mode l a t t i t ude i s measu red f rom pho tograph ic r eco rds o f mode l

mot ion.

3 . 1 . 1 . 3 B a l l B e a r i n g

Ball bearing pivots may be  used  in a  dynamic stabil ity balance system  for pitch and

yaw derivative measurements  if  high resultant model loads are to be supported  and if

aerodynamic damping

  is

 large

  so

 that bearing dampi ng constitut es

 a

 small part

 of the

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 35/236

15

measured damping. Experience  h a s  shown that a  ball bearing pi vot  is  likely  to  have

about  two  orders o f  magnitude higher damping than that of a  flexure pivot designed to

carry comparable loads. Although  th e  ball bearing pivot   h a s t h e advantage o f  being

suitable  for  large angles of  rotation, bearing dam ping  i s a  function of the amplitude

of oscillation

  and is

 often nonrepeatable.

  A

 ball bearing pivot used

 in an

 AEDC-VKF

free-oscillation balance  is  shown  in Figure 9.

Ball bearing pivots are  quite fre quently used  in forced-os cillation balances when

high amplitudes o f  oscilla tion cannot  b e  obtained with flexure pivots. Although t h e

bearing damping  is  high,  its  effects may be  eliminated  in the  measurements by  measuring

the forcing torque on the  model side of the  bearings,  a s  shown  in Fig ure 10.  For  such

a balance system, angular contact bearings are  used with preloa d  t o  eliminate free play

in t he  bearings.

Ball be arings are  used  in Magnus force  and  moment ba lance s ystems where mod els  are

spun to  high rotational speeds.  In this application, b earing friction  is not important

since

 the

 measurements

  are

 static forces

 and

 moments

  in the yaw

 plane; however, bearing

heating may be a problem  at  extremely high rotational speeds.

Until recently, roll-damping balance systems have been designed with ball bearings;

however, ne w systems in development  are  designed with  g a s  bearings to  overc ome bearing

damping, wear, requirements  for  lubrication,  and  sometime s cooling. Angular motion

time histories may be  measured with t he  type o f  angular transducer described  in Section

3.2.2. 1.

3.1.1.4  Gas Be ar ing

Although  g a s  film lubrication  is an old  concept,  it is  only since about 1950 that

the study

 o f g a s

 bearings

 h a s

 noticeably accelerated.

  T h e

 reason

  for

 this

 is

 that

special bearing requirements can often  be  best satisfied with a g a s  bearing.  G a s

bearings were used  in special wind tunnel drag-fo rce balances  a s  early  as  1956; howe ver ,

they were no t  applied  to  balances  for  dynamic stability  in pitch  and yaw measurements

until about  1961 (Ref.

 1 8 ) ,

  and  roll dampi ng until  1964 (Ref.

 1 9 ) .

  Applications  in wind

tunnel testing techniques have been extensive since these early developments. This is

understandable since all of the  desirable features o f a  pivo t, which include high load-

carrying capability,  low damping,  and  unlimited rotation,  a re  combined  in a gas  bearing

pivot; whereas flexures and  ball be aring pivot s have only some o f  these characteristics.

Gas bearing pivots are  used extensively  for  dynamic stability testing  in the  AEDC-VKF

at hypersonic speeds where th e  aerodynamic damping  i s  very low.  It is  difficult to

measure damping accurately with a  flexure pivot ba lance under this condition becaus e

of

 the

 high percentage

 o f

 tare damping.

An example o f a  journal-typ e  g a s  bearing pivot used  in an AEDC-VKF one-degree-of-

freedom dynamic stability balance  for  measuring pitch  o r y a w derivatives  is  shown in

Figure 11.  Th e  inner o r  core section o f t h e bearing  is  supported  on each s ide by a

sting,  and the  model  is  mounted  to a pad on the  outer movable ring. Supply g a s ,

generally   dry  nitrogen,  is  supplied through  th e  core to a  radial  set of  orifices in

the center o f t he  bearing. Filter s  are  provided  in th e  core to  remove foreign particles

that will cause bearing fouling.  A  closed  g a s  supply  and  retur n system  is not used

at  th e  AEDC-VKF, since test s have shown that t h e  small flow rates have negligible

influence  on base pressur es  and  wakes. Bearings have been developed  at the  AEDC-VKP

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 36/236

16

with two radial rows o f  orifices spaced to  improve t h e yawing-moment carrying

capability. Bearings

 are

 usually designed

  for

 specific applications; however, com

mercial  gas  bearings now exist that may be  used  in one-degree-of-freedom balance

systems.

  This

 is an

 important fact since design, development

  and

 fabrication

 of gas

bearings

 can

 become v ery time-c onsuming

  and

 costly.

The gas  bearing shown  in Figure  11 was designed with inherent orifice compensation

according

 to the

 procedure outlined

  in

 Refere nce 20. Analysi s

 o f

 this type

 o f

 bearing

is a  problem of  compres sible flow with friction  in three-dimensional passages that

change area with loading. Treatm ent

 of

 this problem consisted

 of

 reducing

 the

 complex

analysis o f t h e  bearing to the  analysi s o f a  simple, flat plate model.  A s  will be

shown later, these simplifying assumptions lead

 to a

 model realistic enough

  to

 yield

acceptable results for  design.

The

 ga s

 bearing shown

 in

 Figure

  11

 differed from

 the

 design model

 o f

 Reference

 20

in t he  follo wing ways:  ( i) the gas  plenum  wa s located  in the  fixed center port ion of

the bearing

 to

 supply

  gas

 through radial orific es

 to

 float

 t he

 outer moving ring

 and

(ii) plat es were added t o t h e ends o f t h e  bearing. These provided   a  self-centering

feature required

  for

 proper operation

  and

 some degree

 of

 lateral restraint.

  In

 addition,

the end  plat es were designed with shields t o  direct the exhaust  gas toward the  center

of

 the

 bearing; other wise,

 gas

 exhausting ra dially would impinge

 o n the

 inside

 of the

model

  and

 possib ly influence

 the

 damping measur ements.

  The

 beari ng shown

  in

 Figure

 11

is capable o f  carrying high radial lo ads; however,  the lateral load cap ability i s

small, y et

 adequate

  for

 most purposes. Where side loads

 are

 large, additional

 gas

supply orifices and  pads should  be  provided on the

 ends.

The performance characteristics necessary  for  evaluating th e  journal  g as  bearing

for application

 to

 dynamic sta bility te sting include

 the

 radial load capa city, bearing

pressure,

  and the

 tare damping. Cur ves illustrating

  the

 relationship

  of

 radial load

to critical pressure

 are

 presented

  in

 Fig ure 12.

  T h e

 critical pressure

 is

 defined

 a s

the pressure loading for an outer shell eccentricity r atio o f approximately  0.5 of the

bearing clearance. Perm issi ble loading

  is

 nearly

  a

 linear function

 of the

 supply

pressure

  and

 agrees with

 the

 performa nce predicted

  by

 theory.

As noted previ ously,  the one most desirable characteristic   of the gas  bearing for

use

  in

 dynamic stability balance sys tems

 is the

 extremely

  low

 tare damping. Dat a

 on

the damping of the gas  bearing  in Figure  11 ar e  presented  in Figure  13 as a  function

of frequency

 of

 oscillation

  and

 radial load.

  In

 true viscous damping,

 the

 damping

moment,   M

0

d ,  is  defined  as a  moment pr oportio nal to Mg  which  i s invariant with

oscillation amplitude

 and

 frequency. This

 was not

 found

 to be the

 case

 for the

 bearing

when evaluated over

  a

 range

 o f

 frequencies

 and

 loads

 at 11.5 de g

 oscillat ion amplitu de.

The results

 of the

 evaluation

 o f t h e

 bearing damping pre sented

  in

 Figure

  13

 shows

 an

inverse relationship with frequency  as is the case for  flexures and a  dependency on

radial load.

  T he

 damping

  is in the

 form

Mg =

  Cc o

b

 ,

w h ere C a nd b d e pe n d o n r a d i a l l o a d . I n a c t u a l p r a c t i c e , t h e s e s m a l l v a l u e s o f

ta r e damping ar e us ua l ly ne gl ec te d . For example , th e damping shown in F ig ure 13 i s

on ly 0 . 8% of t h e ae rodynamic damping fo r a t y p i ca l b lun t cone r e - e n t ry co nf i gu ra t ion

at Mach number 10.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 37/236

17

Gas beari ngs have been used extensively in industry for appl ication to machinery

operating at high spee ds where bearing friction is very important. Satisfa ctory opera

tions at high rotational speeds with very low friction makes the gas bearing very

attractive for use in roll-damp ing balance systems. Until recently, ball bear ings

were used exclusively; however, they have many disadvantages, such as significant tare

damping, wear, lubrication requirements, and heating, that can be overcome with the use

of gas bearings. A typical example of gas bearings applied to a roll-da mping balance

is shown in Figu re 14.

Bearing pivots described up to this point only allow rotation about one  axis.  Many

problems encountered in flight can only be investigated experimentally using a balance

which has rotational freedom about t hree mutually perpendicular  axes.  A prime example

of a flight phenomenon of this type would be the coupling of the rigid body pitch and

roll modes. A three-degree-of-freedom balance provide s this capability and in addition

simultaneously perfo rms the functions of the several one-degree-of-freedom balances

as it incorporates into one balance the ability to measure pitch, yaw, and roll damping.

The single-degree-of-freedom balances still have an application as they can be used

to restrain the motions to pure pitch, yaw, or roll in situations where this becomes

necessary.

An inherently compensated, spheri cal, gas journal bearing shown in Figur e 15 has

been developed at the AEDC-VKF for use as the pivot in a three-degree-of-freedom

dynamic stabilit y balance. The inner core of this bearing consists of four spherically

surfaced pad s arranged in a manner which allows the bearing to resi st loads in any

radial direction. Gas is supplied through an orifice located at the center of each

pad. This configuration is capab le of supporting maximum radial l oads of 100 lb using

nitrogen or 160 lb using helium. Changes in the bearing core design will allow the

bearing to support radial loads of approximately 350 lb. The damping inherent in the

spherical bearing, like that of the cylindrical bearings, is extremely low.

Continuous motion histories provide the da ta required to determine the aerodynamic

derivatives.   For very small flexures or bearing pivots, it is desirable to measure

the motion without physically contacting the moving parts of the system. A device

referred to as an angular transducer was originally developed by the AEDC-VKP for use

in dynamic stability balance s yst ems

2

  . The variable reluctance angular transducer,

shown mounted on a cylindrical g as beari ng in Figure 11, consists of two E-c ores

mounted on the outer movabl e ring of the bearing. When the coils contained in the

E-cores are excited, magnetic paths are established through the E-cores, their adjacent

air gaps,  and the eccentric ring. As the bearing rotat es, the reluc tance of the

magnetic path s through the E-core s and eccentric ring remain constant, while the re

luctance of the air gap changes. Thi s change in relucta nce pro duc es an analog signal

proportional to the angular displacement.

Instrumentation for the spherical ga s bearing consists of three mutuall y perpe ndicular

angular transducers

  (Pig.15).

  The pit ch and ya w transducer s located on the forward

portion of the instrument ring operate from an eccentric which is concentric in roll

and ecce ntric in pitc h and yaw, whereas the roll transducer located in the aft portio n

of the ring oper ates from an eccentric which is concentric in pitch and yaw and e ccentric

in roll.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 38/236

18

Gas bearing technology  is growing very rapidly,  and  many texts have been prepared

on

 the

 methods

  for

 design

  and

 analysis

  (see the

 Bibliography).  Refer ence 22, Vol.1,

contains detailed summaries o f design methods, material selection,  and  measurement

techniques,

  and

 Vol.II

 is

 devoted

  to

 applications.

3.1.2 Sus pensio n Syste m

The de sig n of th e susp ens ion sys tem wi l l depend for the most p a r t on th e type of

mode l t o be t e s t e d and the measuremen t s r eq u i r ed . Mode ls may be ge ne ra l ly ca t eg or i ze d

as (1 ) two-d imens iona l mode l s wh ich span the t e s t sec t ion and a r e suppor t ed f rom the

s i d e w a l l s , ( i i ) t h r e e - d i m e n s i o n a l , s e m is p an m o de ls w hic h a r e m o un te d o n a r e f l e c t i o n

p l a n e s u p p o rt e d by t h e t e s t s e c t i o n s i d e w a l l , a nd ( i i i ) t h r e e - d i m e n s i o n a l , f u l l - s p a n

mode l s wh ich a r e supp or t ed by a s t i n g , a s id e s t r u t , o r a magn e t i c susp ens io n sys t em.

Wi th th e exc ep t ion o f magne t i c susp ens ion , each mode l moun t ing syst em p r es en t s a

p o t e n t i a l p r ob l em when b e i n g u s ed f o r t e s t s o f s om e t y p e s of c o n f i g u r a t i o n s , t h a t b e i n g

th e in f lu en ce o f t he sup por t on th e ae rodynamic measuremen t s . When th i s p rob lem canno t

b e d e a l t w i t h i n c a p t i v e mo de l t e s t i n g b y p r o p e r s u p p o r t d e s i g n o r e v a l u a t i o n o f t h e

i n f l u e n c e o f t h e s u s p e n s i o n s y st e m , f r e e - f l i g h t t e s t i n g i n t h e win d t u n n e l an d r a n g e ,

and t e s t i n g wi th magne t i c mode l susp ens io n i s u sed .

Suppor t sys t em s fo r t he t h r e e t yp es o f mode l s commonly in ve s t ig a t ed in wind tun ne l s

may be ge ne ra l ly g rouped in to two ca t e go r i e s : ( i ) t he wa l l suppo r t method fo r t he two-

d i m e n s i o n a l a nd t h r e e - d i m e n s i o n a l s e m is p a n m o d e ls a nd ( i i ) t h e s t i n g , s t r u t , a nd

m a g n e t i c s u s p e n s i o n s y s te m s u p p o r t f o r t h e t h r e e - d i m e n s i o n a l f u l l - s p a n a nd

  body-of-

r e v o l u t i o n m o d e l s .

3 . 1 . 2 . 1 W all S u p p o r t

The wa l l sup por t me thod fo r t e s t i n g ha l f mode l s has t h e advan tage tha t , f o r a g iven

t e s t s ec t io n s i z e , a l a rg e r model can be t e s t ed and thu s a l a rg e r Reyno lds number can

be ob ta in ed than wi th a comple t e mode l. The l a rg e ha l f model a l s o s im p l i f i e s t h e

m od el c o n s t r u c t i o n , i n s t r u m e n t a t i o n i n s t a l l a t i o n , a nd r o u t i n g i n s t r u m e n t a t i o n w i r e s and

p r e s s u r e t u b e s o u t of t h e m od el t h r o u g h t h e l a r g e c o n t a c t a r e a s a t t h e t u n n e l w a l l s .

L a r g e a n g l e s of a t t a c k c a n b e o b t a i n e d w i th w a l l - s u p p o r t e d m o d e ls w i t h o u t i n t r o d u c i n g

i n t e r f e r e n c e s from s t i n g s u p p o r t s . I n a d d i t i o n , m e a s u r in g s y s t e m s a nd i n s t r u m e n t a t i o n

f o r d yn am ic s t a b i l i t y t e s t s o f t h e c o m p l e t e m od el o r c o n t r o l s u r f a c e s c a n b e l o c a t e d

o u t s i d e t h e t u n n e l , s o t h a t e q ui pm e n t s i z e i s n o t a n i m p o r t a n t f a c t o r . I n m any t e s t s

o f wings o r con t ro l s u r f ac es , t h i s i s t he on ly method o f suppo r t t h a t can be used to

a c q u i r e dy na m ic s t a b i l i t y d a t a w i t h o u t a l t e r i n g t h e m od el c o n t o u r f o r an i n t e r n a l

ba l a nce . An example o f a two-d imen s iona l and th r ee -d im en s io na l mode l mounted on th e

tun ne l w a l l s , w i th equ ipmen t f o r measu r ing dynamic s t a b i l i t y , i s shown in F ig ure s 16

and 17 t o i l l u s t r a t e t h e p r i n c i p a l a d v a n t a g e s o f t h e w a l l - s u p p o r t me th od d e s c r i b e d

2 3

.

When mode l s a r e moun ted d i r e c t l y on the t un ne l wa l l s , t h e e f f e c t o f t h e t u nn e l

bou nda ry - l a ye r f l ow has t o be con s ide r ed , s in ce i t may change the f l ow f i e ld o ver t h e

model . As note d by van der Bl ie k

2 4

, t he wa l l boundary l ay e r i n f lue nce d the l i f t and

drag co e f f i c i en t on d e l t a wings and wing-body com bina t ion s mounted on the s ide wa l l s

and had a t endenc y to p romote se pa ra t io n and s t a l l nea r t h e wing ro o t . Al though s im i l a r

c o n c l u s i o n s h av e n o t be en f o r m u l a t e d f o r dy na m ic s t a b i l i t y t e s t s , t h e i n f l u e n c e on

s t a t i c t e s t s r e s u l t s sh o u ld b e s u f f i c i e n t t o i n i t i a t e c o n ce r n a b o ut t h e i n f l u e n c e o f

t h e t e s t s e c t i o n w a l l b o u nd a ry l a y e r .

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 39/236

19

In order t o  alleviate  the  influence o f  the'wall boundary layer, several m etho ds

have been used with success

 at

 subsonic speeds

 by

 vario us investigators. These include

boundary-layer removal through porous walls o r  slots ahead o f t h e  model  and th e in

stallation o f  V-shaped vortex generators  on the  tunnel wall ahead o f t h e  attachment.

Formation

  o f

 large disturbed areas

 o n the

 model close

 t o t h e

 wall

 may be

 prevented

 by

using fences attached  to the  model o r  displacing  t h e  model from th e  tunnel wall by

inserting shims between  the  model  and  walls. Each   of  these meth ods h a s t h e disadvantage

of altering  t h e  shape o f t h e  model configuration  and not  completely eliminating t h e

influence o f th e  wall bo undary layer.

Tests have shown that wall boundary-layer effects are  largely eliminated  by  using

reflection planes o f th e  types illustrated  in Figure 18. With this method,  a  reflection

plane  is  introduced  a s t h e longitudinal plane o f  symmetry  and is  displaced from t h e

wall to  allow passage of the  wall bo undary layer flow.  Fo r  some mounting method s,

contouring  in the  flow pa ssage  may be  necessar y  to  eliminate choking o f t h e flow and

the resultant ineffectiveness o f t h e  reflection plane.  T h e  reflection plane  can be

fixed

 to the

 wall

  and the

 model rotated,

  o r t h e

 model

  can be

 fixed

 to the

 plate

 and

rotated  as a  unit. When t he  model  i s  rotated  on the  reflection plate ,  as is generally

done in dynamic stability tests,  a gap  must  be  allowed, which ma y  introduce leakage

around  the  model reflection-plane junction  and  change  the  local flow field. Tests  o f

very blunt models on reflection planes will produce significant boundary-layer separa

tions and  thus alter  th e  mode l flow field. Informa tion  on reflection pla ne design i s

given  in Reference 26.

3 . 1 . 2 . 2 S t i n g S u p p o r t

Sting supports  are  principally used  in tests o f  complete ve hicle configur ations and

are inserted into t h e  model base through t he  center o f t h e  wake to  minimize their in

fluence

 o n the

 model flow field. Careful attention must

  be

 given

  to the

 design

 of

the sting to  insure that  it  provides  a  stiff support; however, modifica tion  o f t h e

model contour may be  necessary  to  accommodate  the  sting. Such  a  modification  is a

compromise between  a  small diameter sting o f  constant length  for a  distance behind

the model  and one  which will ca rry  th e  aerodynamic loads without significant movement

of the  pivot  axis.  Often t he  consequences o f t h e  compromise  are not clear,  and  there

fore tests are  required  to  evaluate t h e  influence.

Static tests

27

  have shown that both th e  sting diameter   and  sting length hav e an

influence on force and  base pressure data for  most configurations. Some forced-

oscillation systems have shaker motors  in enlarged sections o f t he  sting support, to

simplify  t he  overall design  and  reduce the  complexity  o f t h e  driving linkages.  In

these cases it is  important that t he  enlarged section  be  located  an ample distance

downstream  o f t h e model base to  permit proper formation o f t h e wake. Very  few experi

ments have been conducted  to  investigate specifically  t h e  influence o f th e sting

diameter  and  length o n dynamic stabilit y measureme nts.

A series o f  tests have been conducted  at the  AEDC-VKP  (Ref.28),  over  a  range o f

Reynolds numbers, to  investigate  the  influence o f t he  sting diameter  and  length o n

the dynamic stability o f a  10-deg half-angle cone with  a  flat

  base.

  To  determine t h e

relative effects o f  sting length, distu rbances downstream  o f t h e model base were

introduced  by  placing  a  20-deg conical windshield  at  vario us stations along  the  sting

from

 0.75d

 to  3d. Relati ve interference caused  by the  sting diameter size wa s  created

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 40/236

20

by repeating

 t he

 tests with diameters

 o f

 0.4,

 0.6, and

 0.8d.

  The

 test result s i ncluded

dynamic stability, static stability,

  and

 base pressure data, since base pressure s

 are

very sensitive to the  degree of  Interference t hat t h e  support presents to the  base

flow.

  Representative results

 are

 shown

  in

 Fig ure s 19,

 20, 21, and 22 for

 Mach numbers

2.5,

  3, and 4

 over

  a

 range

 o f

 Reynolds numbers

 and

 sting l engths using thr ee sting

diameters.

  Evidence

 of

 interference caused

  by the

 support length

 may be

 judged

  by the

deviation of the base pressure ratio from the  reference curve corresponding to the

longest sting length

  (i

s

/d =

 3).

Boundary-layer transition

  is

 generally

  at the

 model base,

 at a

 Reynolds number which

is slightly less than the value where t he  minimum base pressur e occurs.  An analysis

of

 the

 results based

 on the

 base pressure data

 and

 schlieren photo graphs

  f or L / d = 3

shows that the Reynold s number range wa s  sufficient  for a  transitional  and  fully turbulent

wake.  There

 i s

 evidence

 in the

 data presented

  in

 Figure

  19 to

 confirm that some support

geometry configurations can have  an influence on the  dynamic stability derivatives.

However,  it

 appears that

  if the

 support

  is

 designed usi ng crit eria

 f or

 static force

and base pressure

  t e s t s

27

,

  it is

 unlikely that

 the

 dynamic stability data will

  be in

fluenced. This observation does

 no t

 apply

 to

 configur atio ns which have contoured  bases,

since these

 are

 more critical with regard

 to the

 Influence

 of the

 support because

 t h e

wake condition h a s a  direct influence on the  pres sure distribu tion around the  base.  A

further complication ar ises

 in

 this case because

 the

 base must

  be

 partially removed

 to

allow movement  of the model over the  sting.  In cases where the  relative influence o f

the support system

 on

 damping resu lts cannot

  be

 assessed

  by

 capti ve model testing, wind-

tunnel, free-flight,  and  aeroballistic range tests are  necessary to  obtain compara tive

results.

Some examples

 o f a

 very rigid sting

  and

 support

  for a

 high frequency, free-os cillat ion,

dynamic stability balance system  are  shown  in Figure  23 and a more conventional support

for

 a l o w

 frequency system

  is

 shown

  in

 Figure

 24.

3 . 1 . 2 . 3 S t r u t S u p p o rt

Where limitations

 o n

 model amplitudes

 are

 imposed

  by

 mechanical interference between

the model base

 and

 sting, these

 may be

 overcome

 by

 mou nting

 the

 model

 on a

 transverse

rod support system

  so

 that

  it is

 free

 to

 rotate

 on the rod

 with

 no

 restraints.

  An

example of one  such system us ed  in the  AED C-VKF 50-in. M ach  10 tunnel  is  shown  in Figure

25.

  The  balance, consisting o f a  gas-bearing pivot, model lock,  and  position

  trans

ducer,  is

 contained within

 the

 model; nitrogen

 gas for the

 bearing

  and the

 model posi

tion lock and  instrumentation leads pas s through  the  transverse  rods.

Extension

 of the

 transverse

 rod

 into

 the

 model will affect

  the

 flow over

 the

 model

primarily

  in the

 region

 aft of the rod and

 along

 the

 sides

 of the

 model.

  A

 region

 of

flow separation will exist on the  model ahead o f t h e rod. Since th e  interference flow

field caused

  by the rod

 will depe nd

 on the

 boundary-laye r flow

 and the

 position

  of the

interference on the  model surface,  it is to be  expected that meas urements obtained with

a transverse

 rod

 support system will

 be

 dependent upon

 t he

 oscillation amplitude

 and

the Rey nolds number

 of the

 flow.

  An

 example

 o f

 such

  a

 dependence

  is

 shown

  in

 Figure

26,

  where data obtained with

  a

 sting support

  are

 included

  for

 comparison.

  It is

 apparent

from these results, for a   10-deg half-angle cone at  Mach number 10, that both Reynolds

number

  and

 oscillation amplitude

  are

 important parameters.

  It

 should

 be

 noted t hat

when

 the

 Reynolds number

  is

 large

 t he

 influence

 of

 Reynolds number

  and

 amplitude

 dis

appear

 and the

 resul ts obt ained with

  a

 sting support

  and

 transverse

 rod

 support

 are

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 41/236

21

in agreement. Howeve r,  at low Reynolds numbers, very large differences can exist in

results obtained  by the two metho ds, t hus indicating significant adverse effect s from

the transverse rod.

The Influence

 o f t h e

 size

 o f t h e

 transverse

  rod

 supports

  at

 Mach

  5 is

 shown

 in

Figure  27 for a blunt c one cylinder m odel with  and  without  a  base flare.  A  cylindrical

ro d  and  double-wedge  rod  were tested with roughness on the  model nose to  produce

turbulent flow and  thus to  eliminate separation ahead  o f t h e base flare.  The  results

show no  significant effects caused   by rod  size  for  diameters  up to  30 % of the  model

diameter  and no effect s caused  by rod  configuration,  i.e., a  cylindrical  rod as  com

pared  to a  double- wedge rod.  A  significant reduction  of the damping occurr ed when

roughness and the  transverse rods were eliminated  for the  configuration with th e  flared

base, because o f t h e r o d wake influence on the  region o f  separated flow ahead o f t h e

flare.

Although very  fe w systematic investigations h ave been conducted  to  investigate t h e

effects

 o f

 transverse

  rod

 geometry

  on

 dynamic da mping ove r

  a

 range

 of

 model configura

tions,

  Mach numbers, Reynolds numbers,  and  amplitudes, t h e  data available tend  to in

dicate that  (i) rod  influence becom es negligib le  at the  high Reynolds numbers when t h e

flow  is  turbulent  and  (ii) rod  size effects   are  small pr ovided   the rod is  small com

pared to the  model

  size.

  Tests with transverse  rod  support s should  be  supplemented

with te sts employing  a  sting support balance system  to  provide comparative data at

low amplitudes, where the  influence o f t h e transverse  rod is  most pronounced.

3. 1 . 2 . 4 Magnet i c Model Suppor t

Magnetic suspension provides a  means for  suspending  a  model  in a  test unit without

any physical support,   and  thereby eliminates  any  questions about  the  experim ental

results being influenced

  by the

 method

 o f

 physical support (sting

 or

 strut).

  T h e

magnetic suspension system consists o f a  series o f  electr omagnets which prod uce magnetic

fields and  gradients o f  magnetic fields  to  provide forces and  moments o n a

 model.

 T h e

model h a s a  mag netic moment which  may be a part  of the model  if a  permanent magnet i s

used  in the  model construction. Other metho ds for  providing  a  magnetic moment are

described  in Ref ere nce 29. Included   in the  system  for  control  is an optical system

which monitors t h e  position  o f t h e model  by  light bea ms passing through  t he  test

section and  focused onto sensors. When t h e  system  is in equilibrium, forces  and

moments caused  by  gravity, aerodynamics,  and  inertial effects,   for the  case o f a  moving

model, balance o u t t h e applied mag netic forces  and  moments. Changes  in model position

activate th e  control system,  and  curre nts flow through  t h e  magnetic coils to  produce

forces and  moments o n the  model t o  hold  it in equilibrium.

A magnetic susp ension system with V-magnet o rientation d eveloped  at the  AEDC-VKF

(Ref. 30)

 for  static force, mom ent,  and  wake me asurem ents  is  shown  in Figures  28 and

29.

  A  similar system,  but  with  L   orientation  o f t h e magnets h a s  been develo ped by

MIT (Ref. 31) to  obtain static force, moment,  and  dynamic stability measurements.

3.1.3 Balance Tar e Damp ing

3 . 1 . 3 . 1 D e s c r i p t i o n o f D ampin g

Wind tunnel m odel s have to be  mechanically suspended  on a  bearing o r  spring  to

 pro

vide oscillatory motion. Exceptions to  this are  recent develo pments o f  magnetic model

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 42/236

22

suspension systems which have been refined to the degree that damping data have been

obtained

29

. Mechanical susp ension introduces damping which must be accounted for in

the analysis.

Aerodynamic damping as a rule cannot be measured directly with most balance systems,

since it is a part of the measure d total damping; theref ore it must be obtained in

directly as the difference between the total and tare damping. With gas bearing pivot s

this is generally not necessary , since they usually hav e a negligible amount of tare

damping. It is customa ry in writing the linear differe ntial equations expressing an

oscillatory motion to assume that the total damping, which is the aerodynamic plus tare

damping, is propo rtional to

  0 .

  Therefore the motion in pitch for a free oscillation

may be expressed by

I

¥

0 - (M

5a

  +

  U

h

) 0

  - ( M

5a

  +

  W

e t

) 6

  = 0 .

where the subscript a identifies the aerodynamic term and t identifies the tare

term.

The term tare damping is applied here to denote the operation of non-aerodynamic

influences which, by r esisting t he motion and absorbing energy from the system,, reduce

the amplitude of motion. A constant-amplitu de oscilla tion would continue to exist if

damping forces of vari ous kinds did not exist. Damping forc es arise from the mechanical

system damping, damping capacity of the materials used in the system, and air damping.

Although it is convenient to classify the contributing factors in this manner in  dis

cussing tare damping as applied to dynamic stability testing, the mechanical system

damping and damping capacity of the materials are inseparable in the measurements and

constitute the term M^

t

  . Air damping is important only insofar as determining the

magnitude of M^

t

  from air-off tests.

Mechanical system damping involves distinguishable part s of the system and arises

from slip and other boundary shear eff ects at mating surfa ces, interfaces, or joints.

Energy dissipation here may occur as the result of dry sliding (Coulomb friction)

lubricated sliding (viscous forces ) or both.

The damping capacity of materials, or material damping, refers to the energy  dis

sipation that occur s within the material when the structure is undergoing cyclic stress

or strain. These internal energy los ses may be considered as being due to imper

fections in the elastic properti es of the material. In a truly elastic member, not

only is strain proportional to stress but also, on removal of the stress, the material

retraces the stress-strain relationship that existed during the application of the

stress. Even if mate rial s are stressed within the elastic limit, some energy is lost.

Energy dissip ation in a material during a stress cycle leads to a hyste resis loop in

the stress-strain curve and the a rea of the loop denotes the energy lost per cycle.

Air damping resu lts from a loss of energy caused by restrictive effects as a mass

moves through a medium such as air. The damping may result from dynamic pressure,

vis cou s effects, and vort ex formation and shedding; however, the relative ef fects of

each are not known. Theore tical studies of the visc ous damping force on a sphere and

cylinder oscillating in a fluid

3 2 , 3 3

  show that each will experience forces proportional

to the velocity and square root of the fluid density. Experimental air-damping data

for circular and rectangular plates, cylinders, and spheres are presented in Reference

34 and show the effect of pres sure , vibrator y a mplitude , frequency, shape, and surface

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 43/236

23

area on the air  damping  for  models that  a re  mounted  on the end of a  cantilever beam.

The results show that  air  damping associated with plat es  is  directly proporti onal t o

the ambient pressure  and  amplitude  i s  indicative o f t h e  influence o f  dynamic press ure.

Low amplitude results for  cylinders oriented p erpendicular   to the  plane o f  oscillatory

motion

  are in

 agree ment with

  a

 theory

  by

 S t o k e s

33

  and are

 proportional

  to the

 square

root of the  density  but  show no  vari ati on with frequency.

It is  preferable  to  design dynamic-stabi lity balance system s  in such a way  that t h e

tare damping  is  small compared  t o t h e  aerodynamic damping.  F o r  some classes o f  models

at hypersonic  and  hyperveloci ty speeds, where t he  aerodynamic damping  is  low,  the  tare

damping  can approach,  or  even exceed,  t h e  aerodynamic damping.  An example o f t h e

contribution  o f t h e  mechanical system  and air  damping relative  to  aerodynamic damping

is shown  in Figu re 30.  It is  apparent from this example that,   a s t h e  Mach number Is

increased, extreme care must be  taken  to  obtain me asure ments o f  tare damping with a

high degree o f  accuracy,  so  that t he  difference constitute s  an accurate measurement

of t he  aerodynamic damping.

3 . 1 . 3 . 2 E v a l u a t i o n of S t i l l - A i r Dam ping

Mechanical  and  material damping  can be  determined  by  tests in still  air at

 atmos

pheric pressure; however, this can introduce large errors in some cases, since t h e

damping th us obtained includes  air  damping.  To  determine  t h e  magnitude of air damping,

tests are  made  in a  chamber o f t h e type shown  in Figure  31 to  permit variation  in the

ambient pr essure.  Th e  wind tunnel  can also  be  used  for  this test; however, i t s

environment must  be  free o f  even sma ll amou nts o f  airflow and  turbulence.  A  typical

set of  tare dam ping meas urements  for a  blunt cone model  are  shown  in Figure  32 for a

range of  pressure s from atmosphere  to  vacuum.  T he  level o f  damping  at a  vacuum re

presents  the  mechanical system  and  material damping, since the air damping  is  essen

tially zero.

  An

 example

 o f th e

 magnitude

  of the air

 damping

  a s a

 percentage

  o f t h e

aerodynamic damping  is  shown  in Figure 33 for a series o f  model shapes.  At  supersonic

speeds the air damping  is on the  order of 2 to 4%,  but  increases significantly with

Mach number, even approaching 100% o f t h e  aerodynamic damping  at  Mach 10.

The necessity  for  accurate tare da mping resu lts h a s  been mentioned  and  specific

reference made t o  some o f t h e sources o f  damping  in a  mechanical system,  o ne  being

energy dissipation  in joints o f  multiple piece systems.  To  ensure that t are damping

is repeatable  and  co nsistent,  a  number o f  tare damping re cordings  are  usually made

following removal  and  replacement  of the  model  and  flexure o r  pivot system until tare

damping  is  shown to be  repeatable.

In cases where

 t h e

 axial and/or normal forces

 are

 large, measurements

  are

 made with

the pivot loaded  to  determine  i t s  influence on the  mechanical damping  and  pivot

stiffness.  In most cases the  pivot static loading will have little effect on the  tare

damping characteristics.

Since th e  model undergoing test will oscillate   at a  frequency different from that

of th e  tare damping tests at a  wind-off condition,  it is  necessary  to  establish how

the energy loss o r  tare,  M g

t

 , at a  vacuum , will va ry with frequency.  Fo r  flexure-

type pivots Smi th

35

  notes that  the  tare damping p e r  cycle is a  constant fraction of

the energy stored  in the  spring  at the  be ginning  o f t h e cyc le, independent  o f t h e

frequency. This is  equivalent  t o M ^

t

 =

  C/co ,

 which wa s  found earlier  in experiments

by Welsh and  Ward

36

.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 44/236

24

3 . 1 . 3 . 3 D am pin g C h a r a c t e r i s t i c s o f D i f f e r e n t M e t a l s

Damping characteristics

 of

 mater ials exposed

 to

 cyclic stress

 are

 affected

  by

 several

factors, which must

 be

 considere d

  in th e

 selection

 o f

 materials

 for

 flexure pivo ts.

Some

 of the

 factors

 are

(1) condition

 of the

 material

  -

 composition

  and

 effect

 o f

 heat treatment,

(ii) state

 o f

 internal s tress

 -

 effect

 o f

 machi ning

  and

 changes

 in

 stress

 due to

cyclic motion

  and

 temperature h istories,

(iii) stress Imposed

 by

 service conditions

 -

 type

 o f

 stress, magnitude, stress

variations,  and  environmental conditions.

Factors which include

 the

 magnitude

 of the

 stress, stre ss history,

  and

 frequency

 may

be si gnificant  at one operati ng condition  and  unimportant  at  another. Final selection

of

 a

 material should

  be

 based

 on

 tests

 o f a

 specimen

  in th e

 configurat ion

  in

 which

 the

material will

 b e

 used

 and

 under si mulated operat ing conditions.

It should

  be

 recognized that,

  in

 most systems where oscillations

 o r

 vibrations

occur,  the  damping introduced  by the  properties of the  materials employed is, in general,

only one  factor contributing  to the total damping. Nevertheless,   a  knowledge of the

characteristics

 of

 structural material s

 is

 important

  and the

 choice

 o f

 material should

be guided by its damping characteristics.

Materials having

  a

 Young's modu lus which ranged from

 6.2 x 10

s

 for

 magnesium

 to

28.5 x 10

6

 lb/in.

2

 f or Armco  17.4 stainless steel have been tested  in the VKF to provide

material damping data

 for use as a

 guide

 in

 selecting materials

 for

 flexure-pivot

designs.

  An

 example

 o f t h e

 material damping results

 for a

 range

 o f

 frequencies

 and

beam stiffnesses

  is

 shown

  in

 Figure 34. Additional information

 on

 material damping

 may

be found

  in

 Reference

 37.

3. 2 D Y N A M I C S T A BI L I T Y D E R IV A T IV E S  -   P I T C H  O R Y A W

The basic methods

 for

 obtaining dynamic stability meas urements

 are

 well known, dat ing

back to  early 1920 when Briti sh r ep ort s o n the  subject began  to  appear.  It was  found

that aerodynamic pitch damping derivatives consisted  of two  parts,  M and M

a

 ,  and

experiments were devised

  to

 account

  for

 these terms separately. These experiments were

successful; however,

  it was

 concluded that

 the

 technique

 was not

 satisfactory

 for de

ducing  M

a

  at  high speeds (transonic) or  high frequencies. Some mode s o f  oscillation

such

  as

 short-period damping

 can be

 evaluated satisfactorily

  if the sum of the

 damping

derivatives,

  for

 example

  (c +

 C

m ( 3 t

) ,

  is

 known, even t houg h

 the

 separate val ues

 of

C  a nd C ^ a re  unknown. Insta nces m ay  exist at  supersonic speeds  in which the

application

 of

 test d ata

 t o

 calculations

 m ay

 require

 the

 damping derivatives

 in

 some

way other than

 the

 combined form; however,

 the

 general practice

 h a s

 been

 to

 measure

the derivatives in combi ned form. Wind tunnel techniques that  are in most general u s e

at supersonic speeds and  above can be  summarized  as the  free-oscillation  and  forced-

oscillation methods.

The free-oscillation method  is one of the  earliest used and is  considered to be th e

simplest from

 the

 vie wpoint

 o f

 equipment

  and

 instrumentation.

  The

 model, restrained

by

 a

 pivot,

  is

 deflected

  to an

 initial a mplitude

 and

 released,

  and the

 decaying motion

is observed.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 45/236

25

W ith t h e f o r c ed - o s c i l l a t i o n t e ch n i q u e , a r e s t r a i n e d mo de l i s f o r ced t o p e rf o rm

s i mp l e h a rmo n i c mo t io n by mean s o f an o s c i l l a t o r , t r a n s m i t t i n g f o r c e s t h r o u g h a l i n k ag e

to a to rqu e member which i s r i g id ly c onnected to the model. Normal ly th e s t ru c tu ra l

damping of ba la nce sy s tems used a t sup er so nic and hyp er so nic speeds i s very low and

the to rq ue member s t i f fn es s i s a l so low . Thi s r e qu i r es th e sys tem to be ope ra ted a t

or near i t s r eso na nt f r equency . In ord er to ob ta i n da ta over a w ide f r equency rang e ,

t h e mod el moment o f i n e r t i a o r t h e s t i f f n e s s o f t h e s t r u c t u r a l r e s t r a i n t may b e v a r i ed .

An a l t e r n a t i v e me th od t h a t may b e u s ed f o r t e s t s o v e r a w id e r an g e o f o s c i l l a t i o n

f req ue ncie s i s r e fe r re d to as ine xo rab le forc in g ; and as th e name im pl ie s , t he model

i s d r i v en i n a co n t r o l l e d man ne r by r i g i d l i n k ag e .

M ost f o r c ed - o s c i l l a t i o n s y s tems emp lo y s p e c i a l i n s t r u m en t a t i o n t e ch n i q u es wh ich

u t i l i z e a f e ed back co n t r o l s y st em f o r co n t r o l l e d o s c i l l a t i o n o f t h e mod el when n e g a t i v e

d amp in g i s p r e s en t . I n ad d i t i o n , t h e s e co n t r o l s y st ems p r o v i d ed amp l i t u d e co n t r o l f o r

measur ing p o s i t i v e damping .

B oth f r e e - o s c i l l a t i o n and f o r c e d - o s c i l l a t i o n b a l a n c e s may b e f u r t h e r c a t e g o r i z e d a s

e i t h e r s ma l l - am p l i t u d e o r h i g h - a mp l i t u d e s y st ems . A s ma l l - amp l i t u d e b a l an ce meas u r e s

lo ca l va lu es of damping and p i t c h in g moment s lop e , s in ce the model o s c i l l a t e s a t

am pl i tudes of about one or two de gre es , and i s o f t en used to ob ta in da ta a t a ng les of

a t t a ck o t h e r t h an ze r o . The b a l an ce s t i f f n e s s o r r e s t o r i n g moment f o r l a r g e - am p l i t u d e

b a l an c es i s n o r ma l l y ze r o o r n ea r z e r o . F o r ce d - o s c i l l a t i o n s y s tems may b e o p e r a t ed a t

about ±15 de gre es , as compared to am pl i tu des which are on ly l i m i te d by the ba lan ce

s u p p o rt f o r f r e e - o s c i l l a t i o n b a l a n c e s .

Th e ma t h ema t i ca l t r e a t m en t o f s y s t ems w i t h f r ee - o r f o r c ed - o s c i l l a t i o n mo t io n may

be found in many t e x t s ; however , th e methods a re t r e a t e d in th e next s ec t io n for th e

sake of comple teness .

3 .2 .1 Theory

T he t h eo r y f o r l i n ea r an d n o n - l i n e a r o n e - d eg r ee - o f - f r eed o m and t h r e e - d eg r ee s - o f -

fre ed om f r e e - o s c i l l a t i o n s y st e m s w i l l be t r e a t e d . The f o r c e d - o s c i l l a t i o n t h e o r y w i l l

be developed , fo l lowed by a br i e f t r e a tm en t o f lo ca l and ef fe c t iv e v a lu es of damping

an d f i n a l l y t h e ae r o d y n ami c t r an s f e r eq u a t i o n s w i l l b e d ev e l o p ed .

3 . 2 . 1 . 1 F r ee O s c i l l a t i o n ( O n e- D eg ree -O f -F r eed om)

The eq ua t ion of motion for a body in pi tc h was de r iv ed in Se ct io n 2. 2 and has th e

same ge ne ral form as th e equ at i on s of motion for a body in yaw and r o l l . For f re e-

o s c i l l a t i o n s y s tems h av i n g s t r u c t u r a l s t i f f n e s s , t h e eq u a t i o n o f mo t io n h a s t h e fo rm

1,0 - (M

0a

  + \A

e t

)0 - (M

ea

  + H

B t

)9 = 0 . (17)

After introducing ne w nomenclature  for  simplification  o f t h e derivation o f t h e solution

to Equation (17), it  becomes

l

y

d + c d + K d  = 0 . (18)

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 46/236

26

T he g e n e r a l s o l u t i o n o f t h i s e q u a t i o n d e s c r i b i n g f r e e - o s c i l l a t i o n m o ti on c an b e

w r i t t e n a s

6

r t r t

Aj6 + A

2

e

(1 9 )

where Aj and A

2

  a r e a r b i t r a r y c o n s t a n t s and v

1

  and r

2

  a r e t he ro o t s o f t he

c h a r a c t e r i s t i c s e q u a t i o n . T h es e a r e o b t a i n e d a s

21,

' C

2r[

(20)

bu t , s i n ce the undamped na tu r a l c i r c u l a r f r equency i s co = i / (K / I

y

) , a n d l e t t i n g

C / 2 I

y

  = a , Equ atio n (20) becomes

r

1 > 2

  = - a ± / ( a

2

  - co

2

) .

The case o f  Interest is a <

 co ,

 where the roots are complex, representing the condition

where th e system will oscillate.  The   general solution t o  Equation (19) for this case

is

where

i.

 2

d  =   A j e ^ " ) *  + A ^ * " "

1

^ .

a ± bi

a - c/2I

v

(21)

b

  =

f

C

c o ^   (undamped natural frequency)

Equation (21) ca n also b e  written as

d

- ( C / 2 I

y

) t

&

0

e  c o s  (aj

d

 ±  -cp)

(22)

d

Q

  and   cp

  being arbitrary constants. Equation (22) represents

 a

 harmonic oscillation

with damping. When  cos

 (co^t

  -

  cp)

  = 1 ,  the envelope encompassing the points of  tangency

with the displacement

 i s

 described

 by

d

  =

  d

0

e

( C / 2 I

y

) t

From thi s relationship, the logarithmic decrement

  l o g

e

( 9 / 0

l

)  i s

 used

 t o

 obtain

 t h e

damping term  C  .  An often used parame ter for measuring the damping coefficient is

the time required

 to

 damp

 t o a

 particular amplitude ratio. Letting

  d \  and   0

2

 re

present a mplitudes occurring at  times  tj and t

2

 , respectively, and letting

6*

2

/(9j = R  , we  obtain the following equation for the damping moment:

s i n c e

C = - 2 I

y

f l o g

e

  R / C

y r

* 2

  _

  *l

  c

yR

f

  •

(23)

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 47/236

27

Prom Equat ion  ( 2 1 ) f o r t h e  na tu ra l damped f r eque ncy ,  t h e  s t a t i c moment  i s

K =  I

Y

OJ2  + i

Y

( c / 2 I

y

)

2

  . (24 )

The term I

y

( C / 2 I

y

)

2

  i s

  u s u a l l y v e r y s m a l l

  an d can b e

  n e g l e c t e d .

As shown  i n  E q u a t i o n s  ( 1 7 ) a n d ( 1 8 ) , t h e  dynamic damping  and  s t a t i c m om en ts c o n s i s t

of moments  d u e t o t h e  a e r o d y n a m i c s  a n d  moments produced  by  t a r e s  i n t h e  ba l anc e s ys tem .

T h e t a r e s  a r e  ev a l ua ted f rom w ind-o f f m eas u remen ts ,  a n d t h e  f i na l ae rodynam ic dynamic

damping  and  s t a t i c m om en ts  a r e  g i v e n  by

C  = -

  M

0w

  =

  ~ ^

M

0a

  +

  M

0t^w

M

0a

  =

  <

M

(?a  +

  M

£t>w  " ^

U

h \

K = _ M

0w

  =

  -  <

M

ea

  +

  M

6»t^w

M

0a

  =

  (

M

0a

  + M

0t^w ~ (

K

e t \ '

where th e su bs cr ip t s w and v den ote w ind-on and vacuum co nd i t io ns , r e sp ec t iv e l y .

S ince th e s t r u c t u ra l damping moment param eter va r i es in ve r se ly as th e f r equency of

o s c i l l a t i o n , i n c o r p o r a t i o n o f E q u a t i o n s ( 2 3) an d ( 24 ) a l o n g w i th t h e eq u a t i o n s abo ve

g i v es

M

ffa

  = 2 I

y

  l o g

e

  R

(f/C

yR

)

w

  -

  (f/C

yR

)

v

  £

"(9a

= i i W * ) : - « * > j ] •

I n c a s e s w he re t h e b a l an ce s y s tem h as n o s t r u c t u r a l s t i f f n e s s ( s y st ems u s i n g a g a s

b ea r i n g o r b a l l b ea r i n g p i v o t ) , t h e t a r e d amp in g may b e ev a l u a t ed i n d ep en d en t l y o f t h e

model . Se m i-em pir ic al means may be needed to f ind t he ta re damping at th e f requency

and the mot ion ax ia l load th a t w i l l be expe r ience d in the w ind tu nn el . Equat ion (23)

i s s imply used to y ie ld

M

5w

  = 2 I

y

f l o g

e

  R /C

yR

  .

The ta re damping is noted as M^

t

  and

Mg

a

  = 21

Y

f log

e

  R /C

yR

  - Mg

t

  .

The aerodynamic s t i f fn e s s i s ob ta in ed f rom Equat ion (24) as

M

0a = h

w

l •

The de r i va t i ve s , when reduced to a d im ens ion les s form for p i t ch in g mot ion , become

C

mq

  + C

ma =  U^MjoJid

2

)

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 48/236

28

It should be noted that the above equations were developed for a linear model. It

will be shown later, in Section 3.2.1.2, that erroneous values of damping may result

if the linear equations are applied to model s which have a nonlinear restoring moment.

It will also be shown in Section 3.2.1.2 that Equation (22) may be generalized as

0 =

* o < ° >

co(0)

co(t)

-(C/2I

Y

)t

  r v

  ..

e

  Y

  cos [T(t) -

  cp]

where T(t) =   jco(t) dt

and E quation (23) now becom es

C = -2I

y

f l o g

e

  [R(OJ

2

/O;J)*]/C

.VR

3 . 2 . 1 . 2 E f f e c t s o f N o n l i n e a r i t i e s

Many aerodynamic configurations of interest have damping rates and oscillation

frequencies that vary with time. Quite often these paramete rs are functions of the

dependent variable and its time derivatives; therefore the differential equation which

descr ibes the angular motion is nonlinear. In many cases, these nonlinearities are

slight,

 and the amplitude-time history may be broken into intervals over which the

motion is approximately exponentially damped. It has often been assumed that, by

applying the linear theory over these a pproximately exponentially damped segments, an

accurate estimate of the aerodynamic damping may be obtained. This is true only when

the aerodynamic stiffness is constant. Ni ch ol ai de s

38

  has shown qualitatively how

errors in the damping measurements can be made using this approach. In order to show

this,

  Equation (18) will be used in the form

9

  + Dj0 + D

2

£ =

(25)

where

Dj = Dj(0.r?.t)

D

2

  =

  D

2

( 0 . 0 . t )

  .

Multiplying Equation (25) through by 2#/ D

2

  and integrating yiel ds

- 0 ' ( S

2

/ D

2

)

|t

2

  P*

 2  ..

n

  J

t.

+  2DjD

2

]((9/D

2

)

2

 dt

Assuming th a t t j and t

2

  a r e t i me s t h a t p eak s i n t h e mo t io n o ccu r , t h i s ex p r e s s i o n

r ed u ces t o

d \ - 0 \ - J '

2

  [D

2

  + 2 D j D

2

] ( ^ / D

2

)

2

  d t

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 49/236

29

A dynamic stability condition is  obtained from this expression as

[ t

2

  + 2DjD

2

]  > 0 .

For zero viscous damping (Dj =  0 ) ,  the convergence or  divergence o f  the motion is

dictated b y  the rate of  change o f D

2

  with respect t o  time. Thus the variable aero

dynamic stiffness term

  D

2

  supplies

 a

 mechanism

 by

 which energy may

 be fed

 into

 or

taken away from the system.  The  linear theory, Equation (18), assumes that  D

2

  is

constant and therefore that the constant term  D j  determines the convergence or

divergence

 o f

 the system. One can readily see that

 if

 the linear theory

 is

 applied

 t o

a situation where

  D

2

  is a

 variable, the value

 o f Dj

  obtained will

 b e

 erroneous.

This is  true even if  the linear theory is  applied t o  the nonlinear oscillation over

small approximately exponentially damped intervals. The magnitude o f  this error i s ,

of course, dependent

 of

 the magnitude

 o f D

2

 .

When the aerodynamic nonlinearities are large, Equation (25)

 is

 very difficult

 to

solve. Fortunately, as mentioned previously, there are many aerodynamic configurations

of interest for which these nonlinearities are small.  In addition, these shapes usually

have damping moments that are small compared

 to

 the restoring moment.

  For

 such shapes

Equation (25)

 may be

 written

 as

6 +  V ^ 0 , 0 . t )0 + [D

20

 + D

2 l

( d . e . t ) ] 6 = d .  (26)

where

D

2

  = D

2 0

 + D

2 1

D

2 0

# » D.e

D

20  »  °2l •

This equation may

 b e

 reduced

 t o

 the van der Pol equation, which

 is

 given

 as

6 +  D

20

d  =   e $ ( 0 . 0 . t )  . (27)

where   < p ( 0 , 0 , t )  contains the nonlinear terms and e is a  small dimensionless parameter

which characterizes how close the system

 is to a

 linear conservative one. For

 the

above example,

e $ ( 0 . 0 . t )

  = -

  \D . (6 . e . t )d + D

2 1

(0 ,0 . t )0 ]

The motion may

 b e

 approximated for short time intervals

 by

 the solution

 for a

 harmonic

oscillator  (e =  0) which is  given as

0  =   0

O

 co s (/(D

20

)t +  cp) .

Since the right-hand side of  Equation (27) is  small but not zero,  0  and   cp are

actually slowly varying functions

 of

 time.

It i s  shown in  Reference 39 that a  second-order nonlinear differential equation,

like Equation (27), may be  reduced to an equivalent linear second-order equation with

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 50/236

30

v a r i a b l e c o e f f i c i e n t s w h ic h h a s a f i r s t - o r d e r s o l u t i o n i d e n t i c a l t o t h a t of E q u at io n

(27).

  T h i s eq u i v a l en t l i n ea r eq u a t i o n may b e w r i t t e n a s

a 20

- r ^ 0

+

  [/(D

20

)

  +

c p

m

]

2

0 = 0 .

om

where the  m   subscripts indicate mean values over a  cycle o f  oscillation.

The equation above can

 be

 rewritten

 as

0  + Cj(t)(9 + C

2

( t ) 0  =  0 .  (28)

In order t o  solve this equation, the  following transformation will b e  used:

0 ( t ) =  u(t)A(t) . (29)

Differentiating this expression

 and

 substituting into Equation (28) yields

uA + 2uA + iiA + CjUA +  CjUA + C

2

uA  = 0 .

Choose  u and A   such that

2uA + CjUA  = 0 .  (30)

This reduces the previous equation to

uA

 + UA +

 CjUA

 +

 C

2

uA

  = 0

 .

  (31)

Dividing Equation (30)

 by A and

 integrating yie lds

-i/c  dt

u  = K e

  1

  , (32)

where  K is  the constant of  integration.

Differentiating this expression and  substituting into Equation (31) yields

A + B(t)A  = 0 .  (33)

where

B(t)  =   [C

2

 -   i p \ - jCj] .

According to a theorem by  Winter

40

, the asymptotic solution of  Equation (33) is

A(t)  =   [B(t)]'*[Kj cos Y(t ) + K

2

 sin T(t )] , (34)

where  T ( t ) =   J"/B(t) dt .

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 51/236

31

This solution applies after a finite length of time has elapsed, such that the oscilla

tory motion approaches being periodic.

It is interesting to note that for certain forms of B(t) , Equation (33) may be

reduced to  Bessel' s dif ferential equation.

Equations (29), (32), and (34) may be combined and manipulated algebraically to

yield

0( t) = 0(0)

B(0)

B(t)

-ijc,(t) dt

e cos [T(t) +  cp]  , (35)

where   9 ( 0 )  and B(0) are the values of envelope amplitude and C(t ) respectively

at t = 0 .

For the case being considered, where Cj varies slowly and is small compared to

C

2

  , B(t) given in Equation (33) may be reduced to

B =   co

2

 ~ C

2

 .

The following form of Equation (35) may be applied over intervals of the d ata where

Cj is approximately constant:

l i i

— ' e '

T C l t

  cos [Y(t) +  cp] ,

co(t)j

where

T(t)

  = f   co ( t ) dt

J

o

Cj = C/I

Y

 .

In order to use this solution to determine Cj .   co  and   y  must be known as functions

of time. •

3 . 2 . 1 . 3 F r ee O s c i l l a t i o n ( T hr ee D eg r ee s o f F r eed om)

Solutions of the equations of motion referenced to the nonrolling coordinates will

be obtained in this section*. For this development it is assumed that the model has

triagonal or greater symmetry and that the XYZ axes correspond to the principal

inertia axes of the model. The effects of slight asymmetries of the model will be

considered, i.e., asymmetries which have a negligib le effect on the above assumptions.

3 . 2 . 1 . 3 . 1 E q u a t i o n o f P i t ch i n g an d Y awing M o t io n s

For a model of the above type rotating about a point fixed in space, Equations (5)

describe the motion.

• These methods have been extracted from References 38 and 41.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 52/236

32

Iq + I

Y

Pr

(SM)«  =

  p

V

2

Ad

(36)

Ir - I

Y

Pq =  (2M)ar  =

  p

V„Ad

 ~

(37)

where  I = Is = Ig .

For motion about

  a

 point fixed

  in

 space,

=  a

* * - f l .

The angular rates  in the  nonrolling coordinate system  are given as

q  = q cos $ - r sin $

r  = r cos $ + q sin $ ,

where

$

  ~ f P(t) dt .

Jo

Substituting

  the

 angular rate s gi ven in Equatio ns ( 4 ) ,   these expressions reduce

 to

q

  = e

r  = y/ co s

  d .

When the motion  is restricted  to small angular excursions

  ( d «

  l ) ,  Equations (39)

reduce

 t o

(38)

(39)

q  =

  0

(40)

Multiplying Equation  (36) by i and subtracting Equation  (37) from it, these equations

may

  be

 combined

  to

 form

 a

 single diffe rential equation

I(-r + iq) - iI

x

P(-r  + iq) =  iqo,Ad(C

m

 + i C

n

) .

Assuming small angular excursions

  and

 substituting

  the

 time derivatives

 of

 Equations

(38) and (40) into the  equation above yields

1 0

  +

 la) - iI

x

PC§ + lot)  =  iqa,Ad(C

m

 + i C

n

)

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 53/236

33

The complex angle of  attack may be  reduced to

v  + iw

S  =  ~   p + i a ,

V

c

w here i t i s a ss umed t h a t / 3 ~ v / V

c

  and 6c ~ w/V

c

  . S u b s t i t u t i n g t h e t im e d e r i v a t i v e s

of th i s complex angle in to the equat ion of mot ion ,

I < f - i I

x

P g - = iq^AdCC,,, + i C

n

) . (41 )

Assuming that first-order linear aerodynamics

  are

 adequate

  and

 that

  t he

 motion

 is

described  by oc  , /3 , cc   , /3

 ,

 P , q , a nd r , t h e  pitching-  and  yawing-raoment c o

efficients a r e  given  in th e  body coordinates  XYZ as

C

« =

 C

mo

 +

 V

  +

 C

mq

 g ©

  +

 c

ma

 W

  +

 C

m p

/ ^

c

n = c

n0

 + V ?  + c

nr

 ( ^   + c

n/

g (~J   +

 c

npa

a ( ^ J .

The terms  C

m 0

  and C

n 0

  were Include d  in this expansion  o f t h e coefficients t o  account

fo r th e  assumed slight asymmetry o f t h e  model*.  A s  outlined  by  Murphy"

1

,  th e  Magnus

coefficients,

  C

n

 • , C

  A ,

  C „

p

  , and C ,

 have

  a

 negligible effect

  on the

 motion;

therefore they were not  included.

Fo r

 a

 missi le with triagonal

  o r

 greater symmetryt.

C

n/3

C

n £

C

n r

-

=

=

ma

ma

mq

-

=

=

~

C

M a

-

C

M a

C

M q

C

np a

  C

»p/3  ~

  C

np a •

Substitute these relations into t h e  yawing-moment equation, then mult iply  t he  result

by

  i and add it to the

 pitchi ng-moment equation

 t o

 obtain

K C ,  + ic

n

)  =   i ( c

B 0

 + ic

n0

) + c

Ma

(/3 + ia ) +

+ (c

Mq

 +

 c

u 6

) 0 + id)

 — +

 c

Mpa

(/3

 +

 ia)p

 ,

 This approach was first used

 by

 Nicolaides

42

 in

 his development

 o f

 the "Tricyclic" theory,

t See References 38 and 41 for a discussion of  symmetry.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 54/236

34

where

P  =   Pd/2V

C

 .

Substituting

  the

 complex angle

 o f

 attack referenced

  to the

 body coordinates,

£ 2. fi +

 ia ,

into t he  above relation yields

1

<

C

.

  +

  i c

n>  = i ^ m o

 +

  i c

no )

 +

  C

Ma

<f

  +

_£d

2V„

+

  <

C

Mq

 +

  < W

  —

  +

 C

M p a

^ P

 .  (42)

It

 now

 becomes necessary

  to

 transform these coe fficie nts from

 the

 body coordinates

to t he nonrolling coordinates. Thi s transformation  is  given as

i(C

m

  + i C

n

) e

1 $

  = i ( C

m

 + i C

n

) .

The t r a ns f orm at i on for the complex ang le of a t t a ck i s g iven as

T h i s i s e a s i l y p ro v ed b y ex p an d in g t h i s r e l a t i o n an d eq u a t i n g r ea l and i mag i n ar y

p a r t s a s f o l l o w s

/v + iw \ v + iw

(co s $ + 1 s in $) =

\ \ J

v = v co s $ + w si n $

w = w co s $ - v si n $ .

T h e s e r e l a t i o n s a r e t h e n o n r o l l i n g v e l o c i t y c o m p o n e n t s

4 1

Murphy

41

  us ed t h e ab ov e t r an s f o r ma t i o n t o t ran s f o r m E q u a t i o n ( 4 2 ) t o t h e n o n r o l l i n g

co o r d i n a t e s . T he r e s u l t may b e w r i t t e n a s

i( C

m

  + C

n

) = i(C

m Q

  + i C

n 0

) e

1 $

  + C

M

J +

+

  (

C

M q

  +

  <W j f

  +

  U *

D

JP •

S u b s t i t u t i n g t h i s r e l a t i o n i n t o E q u a ti o n (4 1 ) r e s u l t s i n

| + (G + 1 H ) | + ( J + 1 K ) | = L e

i p t

  , (43)

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 55/236

35

where

^

M 2

  / x

G =

  -

 i n

  (c

»*

+

  ^

H = - P

QooAd

J

  = ~ —

C

M a

K - ^ C P

2 V . I

  M p a

L

  = i ~  <

C

mo

+ i C

no) •

3 . 2 . 1 . 3 . 2 S o l u t i o n f o r C o n s ta n t C o e f f i c i e n t s

Assuming constant coefficients, a  solution to  this sec ond-order linear diff erential

equation

  is

 given

 a s

~ (X

  + l<a,)t (X ,

 +

 ico

 )t iPt

<f  = Kje

  l 1

  + K

2

e

  2 2

  + K

3

e . (44)

where

K

3 = "

X..,

 + i w,

{(P -

  e o . ) ( P

  - co

2

) +   \ j \

2

  + i[Xj(P -

 o>

2

)

 + X

2

( P -

  c o . ) ] }

(G

 +

 iH)

 ±

 / [ G

2

 +

 2GHi

 - H

2

 - 4(J + IK)]

subscript

  j = 1 or 2 .

Using boundary conditions, t he  remaining constants are  evaluated as

I   ~ <

k

2 1

 + l a

V l ) ^ 0 -

R

3

)

K

1 ,2 X

l , 2

 -

k

2 .

 1

 +

  i K . 2 

W

2 .  1>

The solution given

 in

 Equation

  (44) is

 "Tricyclic"

 in

 that

  it is

 described

  by

 three

two-dimensional vectors

 or

 arms

  (Fig.35).  For

 mod els spinning

  at a

 constant rate,

 t h e

first two  rotating arms a re  damped,  and the  third  is a  constant a mplitude rotating

vector which results from the  forcing function given  in Equation (43). Thi s rotating

trim vector,

 d u e t o t h e

 asymmetry

 o f

 the

 model,

 causes

 t he

 axis

 o f

 symmetry

 of the

 model

to rotate o n an imaginary conical surface.  A s P   increases, the  magnitude of  this

rotating trim  is  decreased.  For a  statically stable model with sufficiently small

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 56/236

36

damping, the total angle of attack may increase as P approaches  co^ .  In this case,

the possibility of resonance exists only with the nutational frequency

  (co

x

)

 since the

precessional frequency

  (co

2

)

  car ries a sign opposite that of P  ( R e f . 3 8 ) .   This will

be shown later in the text.

The restrictions on the above solution are:

(i) Configurat ions with triagonal or greater symmetry having only slight configura-

tional asymmetries.

(ii) First-order linear aerodynamics.

(iii) P = constant.

(iv) Small oscillation amplitudes.

If the relations for the modal damping rates and frequencies given in Equation (44)

for j = 1 and 2, respectively, are first added together, then multiplied together,

the following exact relationships result"

1

:

k

*

 +

 K =

 "

G =

  l £ j

  ( C

  «

 +

 ° ^

x

x

co, + com

  = -H = — P

1 2

I

\A.

2

  -  co.co. =  J = — c

M a

aa,Ad

V

2

  +  K.CO. =  K = -  ^ —  C

M p a

P

For most configurations of interest

I ( - H

2

 -  4 J ) |   » |(G

2

 + 21GH - 41K)

Therefore the expression for the modal frequencies and damping rates is approximated by

v/{-(H

2

 + 4J)} +

, (G + iH) 1

X-4  + ico.  ~ ± -

J J o o

G

2

  + 2iGH - 4iK

2iv(H

2

 + 4J)

In order to derive the expression for the gyroscopic stability factor, only  p r e

dominant aerodynamic effects are considered in this relation, which reduces it to

Xj + l&)j ~ |[-i H ± i/{-(H

2

  + 4J)}] .

For an aerodynamically statically unstable model, J < 0 . It is obvious then, for

this case, that unless - (H

2

  + 4J) < 0 the motion will diverge, since Xj > 0 . If

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 57/236

37

H

2

  > - 4 J , t h en X , = 0 , t h e co n s t a n t - am p l i t u d e p e r i o d i c mo ti on r e s u l t s . T he g y r o

s c o p i c s t a b i l i t y f a c t o r i s d e f in e d a s

-H '

4J

n

x

V  P

2

4q

C0

Ad \ I / C

(45)

'MO

The stability condition  is  given as

1/S

g

  < 1 .

Static stability

  is

 insured

  for all

 aerodynamlcally statically stable models ( C

H a

 < 0)

and for  aerodynamically statically unstable models ( C

M a

 > 0)  when  S > 1 .

If

 we let

T

  = (i -

  i/ s

g

r*,

then  T < i f o r C

u

„ < 0 , and  T > 1 for C

u

„ > 0   when the  roll rate of the  model

Ma

Ma

is sufficiently high

 to

 insure static stability.

The expression  for the  modal damping rates and  f requencies  is  given a s

Xj

  + i^j - -

G  K r

- (1 + T )  ± _

2

  H

H

  f

1

  - 1 ±

2  V  T,

(46)

where

K

i ~

G

  KT

- (1 ±

 T)

  ±

  —

2  H

2V

m

I

<

C

Mq

  + C

M a > d ±

T

>

  ±

-

C

H

P 0

7

(47)

H

2

J

  I

1 1

; ;

  =

  n

p {

(48)

It

 is

 shown

  in

 Equation (47) that

 t he

 Magnus moment tends

 to

 increase

 the

 damping

of o ne  modal vector  and  decrease the  dampi ng of the other.  A  model  will, therefore,

diverge when

I^Mpa^xl

(C

Mq

+

 c

M&

)(i

  + r ) |

For a  spinning model, the  modal frequencies are  unequal, as  evidenced  in Equation

( 4 8 ) .

  The

 largest angular rate  (co^)

 is

 known

  as the

 nutation frequency

  and the

 smaller

angular rate

  (c o

2

)

  is the prec ess ion frequency.  The  nutation frequency

  ( c o j

 always

carries t he  same sign as the roll rate (P); therefore,  K j  rotates  in the  same direction

as

  K

3

 . For an

 aerodynamically statically stable model   ( r < \ ) ,

  th e

 frequencies

 are

unequal

  in

 sign

 and

 therefore cause

 t he

 modal vectors

  K

x

  and K

2

  to

 rotate

  in

 opposite

directions (Fig.

 3 5 ) .

  When  P = 0 , T = 0 ,  then ojj =  _o;

2

 ,  X., = X_ , and the  motion

is described  by  lines,  ellipses and  circl es (Pig. 3 6 ) .   A s P   increases ( T > 0) the

motion becomes flowerlike

  and

 finally,

  for

 large

  P

 ,

 the

 motion becomes like that

 of

a fast spinning gyroscopic pendulum (Pig.  3 7 ) .

  For an

 aerodynamically statically unstable

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 58/236

38

model  (r >  l ) , th e frequencies are  equal  in sign  and  therefore t he  modal vectors  K j

and

  K

2

  rotate

  in the

 same direction. Motions characteristics

  of a

 fast spinning

aerodynamically statically unstable model

  are

 given

  in

 Figure

 38.

In orde r

 to

 obtain

  the

 damping rates

 and

 frequencies

 of the

 modal vectors,

 t h e

usual approach

  is to fit the

 solution given

  in

 Equati on (44)

 to the

 observed motion,

using  a  least squares differential correcti on method.  For a  description of  this

method  and its  application,  see  References 41 and 42.

3 . 2 . 1 . 3 . 3 S o l u t i o n f o r V a ry in g R o l l R at e

In many cases

 of

 interest,

 the

 roll rate

  is not

 constant

  as

 assumed.

  If the

 region

of resonance  is avoided  and the  roll rate  is  slowly varying,  the solution given in

Equation (44) may be  used to fit the  data if it is  applied over intervals of the motion

where

  P is

 nearly constant.

For roll rates near resonance,

  P is

 usually small enough such that

  G » H and

J

 » K

 . Roll rates varying near resonance will therefore have

 a

 negligible effect

on

 th e

 homog eneous solution

  of

 Equation (43). This

 is not

 true

 of the

 particular

solution which undergoes drastic variations at  this co ndition; therefore Equation (44)

is no t valid  for  thi s condition.

In orde r to  investigate the  problem  of  roll rates varying near resonance,  we  will

rewrite Equation

  (43) as

1  + (G +

 i H ) |

 + (J +

 1 I ) |

  s

  L e

i $ ( t )

  , (49)

where

$(t )

  2 .  / P ( t ) dt

"o

G

  + iH =

  constant

J

  + IK =

  constant

The complementary function

  of the

 diff erential equation (49) will

 be the

 same

 as

that given

  in

 Equation (44).

  T he

 task

  is now to

 obtain

  a

 particul ar integral. This

will be  accomplis hed using the method of  variation of parameters,  as  Murphy  did in

Reference

 41.

Assume

 the

 particular solution

  is of the

 form

~ (X   +lo. )t  (X,+i<u)t

<f

p

  = Aje

  x J

  + A

2

e

  2 2

  . (50)

where th e  coefficients  Aj are  varia ble unknowns and X . and

  oo .

  are  known consta nts

(j

 = 1 or

  2).

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 59/236

39

A p p l y i n g t h e me t h o d o f v a r i a t i o n o f p a r ame t e r s r e s u l t s i n t h e f o l l o w i n g t w o s i mu l

t an eo u s eq u a t i o n s :

( X , * l « . ) t (X • lo> ) t

Aje

  x 1

  + A

2

e

  2 2

  = 0 (5 1)

. (X • « ) t (X + 1« )t i<P(t) ,- n s

A j ( X j + i o ; j ) e

  x J

  + A

2

(X

2

  + io;

2

)e

  2

  = Le

  ( 5 2 )

S o l v i n g E q u a t i o n s ( 5 1 ) an d ( 5 2 ) s i mu l t an eo u s l y r e s u l t s i n

- (X , + i<a ,) t + l $ ( t )

Le

  1 :

1

  (Xj - X

2

) + i (co. -c o

2

)

- (X, • ico ) t * i$( t )

Le

  2 2

A

2

( X

2

  - X j ) + 1 ( 0 J

2

  - CDj)

T h es e ex p r e s s i o n s a r e i n t eg r a t e d and s u b s t i t u t ed i n t o E q u a t i o n ( 5 0 ) . T he s o l u t i o n

to Equat ion (49) is then given as

- ( X , + l « j ) t ( X , + l « . ) t

£ = Kje

  x :

  + K

2

e

  2 2

  +

r -i i / n *

1 P ( t ) d t

r t | (Xj • l »

1

) ( t - t

1

) (X

2

  • l «

2

) ( t - t

2

) l

' o

e

^ 1 -

  x

2

  + K ^j - ^

2

)

In ord er to use t h i s so l u t io n , P must be known as a fun c t io n of t ime.

By a r b i t r a r i l y i n c l u d i n g t h e t er m e

  3

  in th e K

3

  v ec t o r , t h e s o l u t i o n g i v en a s

Equat ion (44) can be made to appro xim ate ly compensa te for the changes in th e ro l l in g

t r im angle* . Thi s so lu t io n then does no t r e qu i re knowing P as a func t ion of t and

is given as

- (X. * l » . ) t ( \ , * i c o ) t ( X . + i o O t

<f = Kje

  i 1

  + K

2

e

  2 2

  + K

3

e

  3 3

  (53)

where co

3

  = P .

I t s h o u ld be emp h asi zed t h a t t h e s o l u t i o n s o b t a i n ed t h u s f a r a r e f o r s l o w l y v a r y i n g

r o l l r a t e s . I f t h e r o l l r a t e i s l a r g e an d r a p i d l y v a r y i n g , t h e s e s o l u t i o n s a r e n o t

a p p l i c a b l e .

* This method was re la te d to Mr L.K.Ward in a p ri v a te communication with Pr ofe sso r Robert

S.Eikenberry of the Department of Aerospace Engineering, University of Notre Dame, Notre Dame,

Indiana.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 60/236

40

3 . 2 . 1 . 3 . 4 S o l u t i o n f o r V a r i a b l e C o e f f i c i e n t s

The effects o f  variable aerodynamic stiffness and  damping were discussed previously

in Section 3.2.1.2.

  In

 that section,

 the

 need

  for

 correcti ng

  the

 damping measurements

for

 t he

 effects

 o f

 variable aerodynamic stiffness

 was

 emphasized.

  It was

 shown th at,

for slowly varying coefficients and  small damping,  a  second-order nonlinear differe ntial

equation, like t h e  homogeneous portion of Equation (49), can be  reduced to a  linear

equation with variable coefficients and  retain the same f irst-order solution.

For the  nonlinear case  (J =  J(£,s,t), etc.), the  homogeneous portion of  Equation (49)

may be  written correct ly t o  first or der a s  fol lows:

£  +  [G(t) + iH(t)]£ +  [J(t) + l K ( t ) ] |  = 0 . (54)

Murphy"

1

  derived  a  correction to the  linear compl ementary function b y  assuming the

following solution to  Equati on (54):

i*j   i4 >

2

<f  = K je

  l

 + K

2

e

  2

  , (55)

where

  K, is a

 variable

 and

c p

s

( t )

  = j

  o)j(t) dt (j = 1 or 2) .

T h i s s o l u t i o n i s s i m i l a r i n form t o l i n ea r ep i cy c l i c co mp lemen ta ry f u n c t i o n s o b t a i n e d

f o r c o n s t a n t c o e f f i c i e n t s .

T he f o l l o w i n g s e t o f eq u a t i o n s was o b t a i n ed b y s u b s t i t u t i n g t h e f i r s t and s eco n d

t i me d e r i v a t i v e s o f t h e s o l u t i o n ( 5 5 ) i n t o E q u a t i o n ( 5 4 ) and s ep a r a t i n g r ea l an d imag i n a r y

p a r t s :

  [ K J / K J ]

  + [K j /K j ]

2

  - c o

2

  + G[k j/Kj] -H ojj + J = 0 (56)

cJj + 2[k

j

/K

j

] a )

J

  + H [k j/ K j] + Goij + K = 0 . (57)

S in ce co »

  KJ/KJ

  and Kj/Kj i s s lowly va ryi ng , Equa t ion (56) may be reduc ed and

m a n i p u l a t e d a l g e b r a i c a l l y t o y i e l d

. 2

H

C O ,  = ±

J

  2

H

+ J

2.'

(58)

This is essentially the  same as the frequency relation obtained  for  constant coeff icients.

Equation (57) ca n be  rearranged to  obtain

c o ,  H

K./K,  = X . (L + _ _ , ( 59)

2 <

%

  4aJ

J

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 61/236

where

41

. 1  (Geo.  + K)

2 (o)j + H /2)

J

Wj + H/2

This relation shows that variable aerodynamic stiffness and variable roll rate

both affect the convergence or divergence of the motion. If the linear theory were

applied directly to motion of this type, the complete right-hand side of Equation (59)

would be obtained as the damping rate.

Equation (59) is now integrated to obtai n

Kj(t) = Kj(0)

H ( 0 )

2

  + 4J(0)

11 J (Xj

  + H / 4 & J )

  dt

H ( t )

z

  + 4J(t)

Using Equations (58) and (59), and t he condition of slowly varying para meter s, the

equation above can be rewritten as

Kj(t) = Kj(0)

c o ^ O )  + H(0)/2

«.(t) + H(t)/2

X.t

where it is assumed that

V, » H/{4(^j + H/2)} .

Substituting th is into Equation (55), the compl ementary function become s

Kj(0)

ojj(O) + H (0)/ 2

c o

x

( t )  + H(t) /2

X.t +l*(t )

e +

+ K

2

(0)

O J . ( O )

  + H(0)/2

- i   '

c o

2

( t )  + H(t )/2

2

  X

2

t + l *

2

( t )

e

This solution may be applied over portions of the motion history where X. is

approximately c onstant If   c o . ( t )  and P(t ) are known.

3. 2 . 1 . 3 . 5 Graphic Data Red uct ion Method (Approximate)

A graphic data reduction method may b e used to determine the modal damping rates

(Xj) and f requencies (^j)- In order to apply thi s method, it is necessar y to convert

the tricyclic motion to epicyclic motion. This is accomplished using the roll rate

history as follows:

— ipt

f e

  = Be

l(a>j-P)t  l ( «

8

 - P ) t

  w

  _ i $

0

+ Ce

+ K

3

e

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 62/236

42

where

K

3

e

B

C

1»„

Kj6

Xjt

x,t

K

2

e

= constant

The motion

  is

 transformed

  t o

 body fixed coor dinates

  b y

 rotating each angle through

 Its

corresponding roll orientation  ( P i g . 3 9 ) .   This results i n epicycl ic mot ion about t h e

point K

3

e

1 $ 0

 .

At maxima o f t h e  epicyclic motio n,  B and C add, and at minima they subtract

( P i g . 4 0 ) .   Using th e maximum  a nd  minimum amplitude points a nd  their corresp onding

times,  t h e  variation  of B and C  with respect  t o  time  i s  obtained  (Fig. 4 1 ) .   Taking

the ratio

  o f t h e

 natural logarithms

 o f

 these expressions yiel ds

K. =

K

  =

t

2

  - tj

logo

 / r *

t

2

  - t j

log.

  •?

(60)

The modal frequencies a r e  obtained using F igure  40 as  fol lows:

2TT

  + y

co =

t

2

- t j

( 2 - n

  -

  22

t

a

  - t j

C

Ma

  < °

Combi ning Equatio ns (45), (46), and  (48) wit h t h e  above frequency relations, t h e

pitching-moment slope

  i s

 given

 a s

'MaE

4qooAd

• f ]  P

2

- K - C

2

)

Assuming  t h e roll rate  i s  suffici ently small that Magnus effect s c a n b e  neglected.

Equations (47) a nd (60) c a n b e  combined  t o  yield

F  1 2 Vq, i

LC

M q

  + C

M a

J

E

  A A

2

1

[c

  +

c •] = — ^

L

S l q

  + L

M a

J

E

  A A

2

A d ' Oa, ( 1 + r ) ( t

2

  - t j )

1 1

log.  I T *

A d ' q , ( 1 - r ) ( t

2

  - t j )

l o g

e

  ' - *

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 63/236

43

The effect of balance ta re damping on the total damping rates must be accounted for

before the aerodynamic coefficients are obtai ned.  The use of a spherical gas bearing

pivot eliminates this difficulty for almost all cases of practical interest, due to

its negligibly small tare damping.

3.2.1. 4 Forced Osc ill ati on

The motion

 of a

 model balance system which

 is

 rigidly suspended

 in an

 airstream

 and

forced

 to

 oscillate

 in one

 degree

 of

 freedom (pitch)

 as a

 sinusodial function

 of

 time

may be expressed as

1

Y

0 - (M^

a

 + Ug

t

)0 -  (M

ea

 +  H

e t

)0 =  M cos cot ,  (61)

where the subscript  a  refers to the aerodynamic values and the subscript  t  refers

to the tare contribution of the mode l balance system.

Simplifying

 the

 nomenclatur e

 by

 letting

<

M

e

a

 +

  M

9t )

  = c

  <

62

>

and

Equation (35) beco mes

- (

M

e« + "st)  =

  K

  .  (63)

I

Y

(9 +

 C0

 + K.0  = M cos

  cot .

  (64)

The complete solution

 of

 this equation consists

 of the sum of the

 complementary

 and

particular solutions.

  It can be

 shown tha t, when

  M = 0 , the

 compleme ntary solution

is Equation (19) for the case of the free-os cillati on system.

To solve for the particu lar solution which is necessar y for the steady-state case

after the decay of the initial transients, it is assumed that the solution is of the

form

0 = 0

Q

 cos  (cot - cp) ,

which may be expanded to yield

0

  =  #

0

( c o s

 cot

 cos

  cp

 +

 sin  cot

 sin

 cp) .

The velocity and acceleration are then found as

0 = d

0

co(-sia cot

 cos

 cp

 + cos cot sin

 cp)

d

  =

  -d

Q

co

2

 (cos cot

 cos

 <P

 + sin

 cot

 sin

 d) .

Substituting in Equat ion (64) and equating coefficients yields

*0

(K - I

y

oJ

2

) cos cp + Ceo sin cp

  (

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 64/236

44

tan cp

Ceo

(65)

(K - I X )

Equa t ion (65) shows th a t fo r con s ta n t - am pl i tud e mot ion , when th e forc ing f r equency i s

equal to th e na tu ra l f r equency of th e sys tem (cp = 90 deg ) , th e in e r t i a t e rm b a la nce s

th e r es tor ing-mo me nt t e rm and the damping moment i s p re c i se ly eq ual to the forc ing

t o r q u e ,

C 0

Q

co

  = M

(66)

Under these conditions, it is  only necessary to  measure the forcing moment  M  ,  t h e

angular frequency  co  and the system amplitude   d

Q

  t o  measure the damping parameter  C

It i s  not always necessary t o  operate at  resonance, since electronic resolvers can

be used

 t o

 separate the moment into comp onents in-phase and

 90

 deg out-of-phase with

the displacement. Application o f  resolvers i s  covered later in this section.

When operating at  resonance the displacement, torque, damping and frequency are

related by

C =

  M/0

o

co

  .

I n t r o d u c i n g t h e r e l a t i o n s fo r C an d K ( E q u a t i o n s (6 2 ) and ( 6 3 ) ) , t h e ae ro d y n ami c

damping moment and th e eq ua tio n for M ^ become

"0a

"0a

= (Mfl« + M fl

t

). - Olfe )

$t 'm

a

e t>v

(M„

B

  + M a

r

) . - O fe )

•0t 'w

et>\

(67)

(68)

where v and w in d ic a t e the vacuum and wind-on co nd i t i on s , r es pe c t iv e l y . In t e rms

of th e measured q u a n t i t i e s , moment, am pl i tude and f r equency

"0a

• M

o/w

.\r

The derivativ es when reduced

 t o a

 dimensionless form become

C

mq

 + C

m a = M ^ V a / q ^ A d

2

)

m a

= M f l a

/ a

-

A d

A further examination can b e  made o f  the forced oscillation system with viscou s

damping

 b y

 the use

 o f

 vector diagrams which are convenient for deriving the equations

used in a  system having resolvers t o  permit testing near a  resonance condition.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 65/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 66/236

46

The in-p ha se and ou t -o f -p ha se moments and an gle s , in d i ca te d by M

f

  and Mj and 0 .

and <9j , r e sp ec t i ve ly , in F ig ure 42 , a re r e la te d by

s i n cot = Mj/M , sin y = 0^ 0.

co s cot = M,./M , co s y = 0

T

/ 0

O

  •

(73)

Combining Equations  (72) and (73) leads to the following relationship  for the  damping

function:

co(0

2

  + 0 1 )

  •

Introducing

  the

 relationship

  for C ,

 Equation (72) becom es

.

  + M

,

t s

  «i*r -

 " A

co(0

2

  + 0f)

Since the structural damping moment parameter varies inversely with the frequency, the

equation

 for the

 aerodynamic damping. E quation

  (67) is

 given

 as

"0a

where v and w in d ic a t e vacuum and wind-on co nd i t i on s .

From t h e v ec t o r r e p r e s en t a t i o n show n i n F i g u r e 4 2 ( a ) , t h e eq u a t i o n f o r t h e s t a t i c

moment may be expressed as

M

t

9

r

  - M

T

9

1

co(0

2

  + 0 \ )

w

V r " "A

eo(0

2

T

  + 0

2

)

%

v

w

w

co s cp = co s (cot - y)

(K - I

Y

co

2

)0

c

(74)

and

lyco

2

  + — cos (cot - y )

Combining Equ at ion s (73) and (74) y ie ld s

K  = I

Y

a/ +

Mj.e'j.  + M

i

0

i

0\  +  0\

Using Equations  (73) and  (74), the  aerodynamic moment derivativ e become s

"0a

2

  +

  / "A

  *

  ^

• I ei • 0\ j

I

Y

O J '  +

In a  case where the  phase angle between  the  reference  and the  model displacement is

zero   ( y = 0, F igure

  4 2 ) ,

  the  resolution of the  forcing moment  is  somewhat simplified.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 67/236

47

From th e phase diagram in Fi gu re 4 2( a) , we have

C

A

  =  M s i n

  0

or

and

or

C = ( M /C j9

0

) s i n <p

Kd

Q

  = l

Y

c o

2

d

Q

  + M c o s <p

K = I

Y

O J

2

  + — co s cp .

T h e a e r o d y n a m i c d e r i v a t i v e s

  no w

  b e c o m e

0 a

and

s i n   <p

M

* a

  = |

]

M

cod.

 sin  cp

v

M

,

I

y

O )

2

  + —   C O S 0

2

  HI

I

Y

O J  + — c o s

  cp

T h e s e s t a t i c   a nd  d y n a m i c d e r i v a t i v e s   m a y b e  e x p r e s s e d   i n d i m e n s i o n l e s s f o r m a s

C

m q

  + C

m d =

  M^

a

(2V

00

/qa,Ad

2

)

C

m a   '  "Wl/Qa>Ad)

 .

3 . 2 . 1 . 5 E f f ec t ive and Loca l Va lues o f Co ef f i c ie n ts

M e t h o d s h a v e b e e n d e s c r i b e d   f o r  o b t a i n i n g v a l u e s  o f  a e r o d y n a m i c d a m p i n g   a nd  a e r o

d y n a m i c s t i f f n e s s f r o m m o d e l s   i n w i n d t u n n e l s .   In t h e s t r i c t s e n s e  o f  t h e w o r d ,  a l l

c o e f f i c i e n t s t h a t

  a r e

 o b t a i n e d f r o m t h e s e m e a s u r e m e n t s s h o u l d  b e  c l a s s i f i e d   a s  e f f e c t i v e

c o e f f i c i e n t s ( s u b s c r i p t E ) ; h o w e v e r ,   i f

 t h e

 o s c i l l a t i o n a m p l i t u d e  i s l o w

 ( 6 S t

 1  d e g ) ,

t h e c o e f f i c i e n t s   m a y

 b e

 t e r m e d   t h e i n s t a n t a n e o u s

 o r

 l o c a l v a l u e ( s u b s c r i p t L ) .

E f f e c t i v e v a l u e s  o f  t h e  c o e f f i c i e n t s   a r e o b t a i n e d   a s a   f u n c t i o n   o f  t h e  o s c i l l a t i o n

a m p l i t u d e

  9

  a s

 t h e

 m o d e l o s c i l l a t e s a b o u t

  i t s

 t r i m a t t i t u d e . L o c a l v a l u e s  a r e

o b t a i n e d

  a s a

  f u n c t i o n

  o f

 a n g l e

 o f

 a t t a c k

  a

  , and th e d a t a   a r e o b t a i n e d w i t h   t h e  m o d e l

o s c i l l a t i n g

  a t

 s m a l l a m p l i t u d e s ( u s u a l l y

  b y

 m e a n s

 o f a

  f o r c e d - o s c i l l a t i o n b a l a n c e

s y s t e m )

 a t

 v a r i o u s a n g l e s

 o f

 a t t a c k . T h e r e a p p e a r s , h o w e v e r ,

  t o b e

 s o m e q u e s t i o n

 a s

t o   t h e v a l i d i t y   o f  t h i s s o - c a l l e d l o c a l v a l u e t e c h n i q u e   f o r  o b t a i n i n g d a m p i n g d a t a  and,

a t t h i s w r i t i n g ,   t h e  q u e s t i o n   h a s n o t  b e e n s a t i s f a c t o r i l y r e s o l v e d .

R e d d

  e t

 a l .

 "

3

  h a v e d e v e l o p e d

  a

  m e t h o d w h i c h r e l a t e s   t h e d a m p i n g d e r i v a t i v e s m e a s u r e d

b y   t h e tw o m e t h o d s

  s o

 t h a t d e r i v a t i v e s   c a n

 b e

 e x p r e s s e d

  a s a

  f u n c t i o n

  o f

  i n s t a n t a n e o u s

a n g u l a r d i s p l a c e m e n t w h i c h

  i s

 t h e

  f o r m g e n e r a l l y u s e d

  i n

 t r a j e c t o r y p r o g r a m s .

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 68/236

48

If the local damping coefficient

  f ( 0 )

  can be expressed

1(9) =  A + A

2

£

2

 +

 A „ 0

4

 +  k

6

d

6

  + A

B

d

a

  + . . .

and

 the

 effective damping coefficient

  f ( d . )

  can be

 expressed

 as

t(d

0

) = c + c

2

0l

  +

  c

n

0 l

+

c

6

0

6

o +

c

e

0 l

  +

  ... .

the coefficients are related by

C

  = A

C

2 =

C

. =

C

6 =

C

8 =

;

  (1/4)A

2

:

  (1/8)A„

= (5/64)A

6

= (7/128)A

8

  .

From these equations,

 it can be

 shown t hat

 the

 effective damping-in-pitch coefficient

over one full cycle of oscilla tion designated as (C

m

„ + C •)„ is related to the co-

efficient at an instantaneous angular d isplacement  (C + C  • ) ,   by

2V

K

Q

  + C

mA = ~ T I (A + A/

2

  • A,* + Kf< • A

a

*« f ...)

q„,Ad

( c

B a   +

  c

n

j

>

  = 3 » (

A +

h e

2

o +

^ 0 i

  +

  ^ ^

+

 

A

i ^

  +

  . .

N

)  .

mq

  ma E ^ 2 ^ 4 ° 8 ° 64 ° 128 ° /

Therefore,

 if

 values

 of (C

mq

 + C

m 6 t

)

L

  have been determined

 in

 small amplitude

forced-oscillation tests,

 the

 amplitude time history

 can be

 determined

 by

 using

 the

logarithmic decrement relation

( 9 ) = (9 )

  e

<

C

mq

 + C

m a

)

(

(

l a

)

A d

2

/2Va

)

)(At/2I)

Additional details

 on the

 method

 and the

 derivation

 of the

 series coefficients

 are

given

 in

 Reference

 43.

3. 2. 1. 6 Transfer Equations

Aerodynamic analysis frequently requires

 the

 transfer

 of

 derivatives measured

 at

one axis location

 to

 another

 and may

 involve

 the

 transfer

 of

 deriv ative s along

 the Z

as well as the X

  axis.

  Although equations for transferring results along the X

axis are given in several texts and report s (Refs.4, 10, 44 and 4 5 ) , few references

include equations for the case involving a transfer of resul ts along the Z  axis as

well.  For

 this reason,

 the

 derivation

 of the

 transfer equations

 are

 pre sented next

to illustrate

 the

 procedure

 for the

 case

 of

 longitudinal stability de rivat ives.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 69/236

49

The quantities referred to the initial axes location do not have subscripts, and

the new axis locat ion is designated by the subsc ript 1.

X*-

(a)

Sketch (a) shows the position of axes XYZ and  X J Y J Z J  . The transfer dista nces x

and z are pos iti ve in the senses shown in the sketch.

The equations for transferring forces and mome nts from axes XYZ will be derived

by first writing the equations for the linear velocity components and the angular

velocities. Considering the linear velocity components of Oj . they become

U

= U + Qz

Vj = V - Pz + Rx

Wj = W - Qx •

(75)

Since the axes the data are being transferred to are parallel to the initial   axes,  the

angular velocities are

Pj = P

Qi = Q

R .

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 70/236

50

If

 we let the

 external forces

 and

 moments

 for the

 axes

  XYZ be

 designated

  as (P„F P )

/ \   A  y z

and   ( M

X

H L M

Z

) ,  respectively,  the  moments are  given as

M

X 1

  = M

x

 + F

Y

Z

M

Y 1

  = M

Y

 + F

z

x - F

x

z •

"Zi

M

z

  - P

Y

x

(76)

The angular velocities

  and

 velocity components

 of 0 and O j

  parallel

  to the

 axes

for disturbed motion are  given by

u

V

w

' l

-

=

=

=

U

0

  + u .

v .

W

0

  + w .

U

0 1

  + U

1 •

p

Q

R

P

:

=

=

=

=

P

0

  + P

Qo + q

R

0

  + r

p

o i

  + D

i

V

l = Vj

W

01

  +

  ' l

Q

:

  = V + Q,

Rj = R

0 1

  + rj

(77)

where

 the

 subscript

  0

 ,

 a s

 used

  for U

Q

  , V

Q

  , W

Q

 , P

0

  , 0 , . and R

Q

  ,

 designates

the velocity components

 o f th e

 center

 o f

 gravity

  and the

 angular velocities

  in a

reference steady-flight condition.

3 . 2 . 1 . 6 . 1 S t a b i l i t y D e r i v a t i v e s

The transformation equations

 are

 derived here

 by

 first expressing

  the

 force

 and

moment component derivatives

  in a

 Taylor serie s expansion

  and

 employing

  the

 relation

ships derived  for  linear  and  angular velocities   and  forces and  moments.  It is  con

venient here t o  introduce the  standard short form notation:

X,Y,Z, Components of the  external forces

parallel  to axes  X , Y , Z .

L.M.N, Mome nts about axes

Y  . Z

3 . 2 . 1 . 6 . 2 L o n g i t u d in a l S t a b i l i t y D e r i v a t i v e s

The general expansion of the  aerodynamic force c omponents along the  body  X Z  axes

and

 the

 pitchi ng moment

 may be

 expressed

  as

 follows:

X  = X

0

 + X

u

u + X^u + X

q

q + X

q

q + X,w + Xj,w +

Z

  = Z

Q

 + Z

u

u + Z-ii + Z

q

q + Z

q

q + Z,w + Z

;

w +

M

  = M

Q

 + M

u

u + M^u + M

q

q + M^ q + M,w + M; w +

(78)

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 71/236

51

T h e t e r m s   X

Q

 ,  Z

Q

 ,  M

Q

  a r e t h e f o r c e s a n d m o m e n t s f o r t h e r e f e r e n c e s t e a d y - f l i g h t

c o n d i t i o n .

A f t e r n e g l e c t i n g a l l d e r i v a t i v e s w i t h r e s p e c t  t o  a c c e l e r a t i o n e x c e p t   Z ^ a n d M ^

a n d n e g l e c t i n g t h e d e r i v a t i v e

  X ,

 E q u a t i o n ( 7 8 ) b e c o m e s

X   = X

0

 + X

u

u  +  X

w

w

Z   = Z

0

 + Z

u

u   + Z

q

q   + Z

w

w   + Z ^ w   [  (79)

M   = M „ + M

u

u  + M

q

q  + M „ w  + M

;

w  .

I f w e n e x t c o n s i d e r t h e e q u a t i o n f o r t h e f o r c e a l o n g t h e b o d y  X   a x i s , t h e d e

r i v a t i v e s w i t h r e s p e c t  t o   v e l o c i t i e s   u and w  f o r s t a t i o n   1 a r e

V

U   1

B X j B P

X 1

  B X J B U 3 X J BW

d u .

rtu

B u 3 u j B w B u j

S i nc e Xj = X ,

u   I

Bu Bw

X u

l ) u T

  +  X

* B u T

a n d , u s i n g E q u a t i o n s ( 7 5 ) a n d ( 7 7 ) ,

S i m i l a r l y ,

' u i

X

u

(80)

B X j  B F

X 1

  B X J  Bu BX j Bw

X

w i

  :

  •*_ ~ ~

  _

  ~ -

  +

~

Bwj

Bw,

and

;

^u

Bu BWj Bw Bwj

ciw

X w l X u

B w

1

+ X

« B W j

a n d , u s i n g E q u a t i o n s ( 7 5 ) a n d ( 7 7 ) ,

x

w l

  X

w

  .

B y f o l l o w i n g t h e s a m e p r o c e d u r e , it  c a n  b e  s h o w n t h a t , f o r t h e f o r c e d e r i v a t i v e s ,

Z

u i   =

 Z

u

Z

w 1

  = Z

w

^ l

  = Z

w

Z

q l   =

  Z

q

 +

 V "

 Z

u

z

 •

( 8 1 )

( 8 2 )

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 72/236

52

F o r t h e p i t ch in g - mo men t d e r i v a t i v e s , n eg l ec t i n g M w ,

BMj BM

X 1

  B M J B U B M J B W B M J  B q

M j .  . - • — + — — - • + - -

B u,  B U , B U B U , BW B U , B Q B U .

u B u j Bw Buj Bq Bu j

Us ing Equ at ion s (5 0) ,

"ui

BM Bu BZ Bu BX Bu

+ x - z ^ r — +

Bu Bu.

Bu Bu , Bu Bu ,

BM  Bw BZ Bw BX Bw

+ + X z +

Bw B u, Bw Bu , Bw B u,

A f t e r s i mp l i f y i n g ,

BM Bq BX Bq

+ - - + x-

Bq Buj Bq Buj

M

ui

Bu Bu

+ x Z

u T - -

z X

u

Bu

i

A

w

Bu

Bu~

Bw

  Bw Bw

+ M , — + x Z - z X

w

- — +

" Buj * Buj

  w

  Buj

Bq Bq

+ M

n

  + x Z

n

Q

B U j

  q

B U j

Us ing Equat ions (77) ,

U l

% + ^ Z

u

  "

  z X

u

(83)

By fo l low ing th e same proc edu re , i t can be shown th a t t he o t he r p i t ch ing-moment de r iv a

t i v e s t r a n s f e r e q u a t i o n s a r e

M

wl

M

w i

M

w

  + x Z

w " zX

w

M*

  + x Z

w "

  z X

w

M

q l

  = M

q

  +  x

<

Z

q

  +

  " * ) ~

  z M

u

  + x

\ "

  xz

<

X

w

  +

  *V

  + z

\ •

T he d i men s i o n a l f orm o f t h e d e r i v a t i v e s i n t h e t r a n s f e r e q u a t i o n s a r e

x

u = "CAPCOVA

* .

  =

  - C

A o t

^ V A / 2 j

(84)

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 73/236

53

Z

u

  =

  -C

N

PooVA

Z

w = -

C

N a ^ V A / 2

Z

w = -C

N 6 t

P » V A / 4

Z

q = - < W « , V A / 4

M

u

  = C ^ V A d

"w =

  C

m c A

V A d / 2

% = C

m q

Pa

)

V A d

2

/4

M

w   = C

m

^ a , V A d

2

/ 4

(85)

After the equations are nondimensionalized, Equations <80) through (84) for trans

ferring resu lts at one station (XZ) to another station (XZ) become

'A;

C

A a i

  C

A a

'Nl

'Nai ^Na

'Nai

  C

N a

X z

:

N Q I

  C

N q

  + 2

  ^

 C

N a ~

  2

  d °

N

J

m

 1

m

  d

  N

  d

  A

X Z

C

»a i

  C

» a "

 d

  C

N a

 +

  d

  C

A a

c

m d i =

  c

mo.

J

Na

'nql

X X z

C

m q "  Z

 C

N q

  + 2

  "1

 C

m a "

 4

  Z

 C

m "

- 2

x\

2

  XZ

5 J

  C

  a

 +

 »

7

XZ

C

A a

  + 4

 T J

 C

N "

  4

c

A

 •

(86)

Following the same procedure, transfer equations for lateral stability derivatives may

be derived.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 74/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 75/236

55

(

C

mq

  +

  C

md^ 2 " ^

C

m q

  C

ma'

 1

  2

7 7

  C

ma

C

Nq

  + C

N a

d  d

where

ma

\ d )  Vd,

'Na

d  d

r >   _ c

mai

  ma2

*i

  x

i

The subscripts  2 and 1 on the  damping derivatives refer t o t h e station where

the derivatives are  measured,  and the  terms  Xj and x

2

  refer t o t h e  dista nce between

moment centers.  T h e  constant  2 on the  static terms in the  equations  is  valid only when

the damping der ivatives  a r e  based on 2V

C

 .

3.2.2 Represe ntative Syste ms for  Tests o f  Complete Models

3 . 2 . 2 . 1 F r e e - O s c i l l a t i o n T ec hn iq ue

The free-osc illation testing technique, by  virtue o f i t s simplicity because complex

control systems are not required, provid es t h e  experimenter with a  wide la titude in the

approach

 to

 bala nce system design.

Although the  merits o f t h e  free-o scillat ion tec hnique are  simplicity  in construction

and use, which implies economy,  i t h a s  some basic deficie ncies. These consist of

(i ) th e  difficulty  in obtaining dat a under conditions o f  dynamic instability, since

the model will diverge and may  damage the  crossed flexures if  they are  amplitude limited

without mechanical stops, (ii) a reduction  in model angular displac ement d u e t o t h e

static restoring moment  in the  pitch o r y aw plane, and  (iii) the  inconvenience of re

ducing da ta influenced

 by

 nonlinear amplit ude

 and

 frequency effects.

Different techniques have been used  for  displaci ng mo dels mounted on a  free-oscillation

balance system. These generally consist of  some form of  (a) mechanical release from a

displaced position,

  (b)

 application

 of a

 mechanical impulse,

 and (c)

 excitation

 at

resonance and  interrupti on o f t h e forcing source. Methods  (a) and  (b) provide positive

control over t h e  initial amplitud e but  have t h e  disadvantage of  requiring large f orces

to obtain high initial amplitudes when the  elastic stiffness o f t h e flexure is  large.

Method (c) overcomes th is difficulty but  requires more complica ted equipment  to  force

the model

 to

 oscillate

 at

 resonance. Aside from using electrical excitation

  for re

sonance,

  excitation can be  provided by  using alternating  air  jets impinging on the

inside o f t he   model.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 76/236

56

Many free-oscillation dynamic stability balance systems have evolved in the United

States and in NATO countries to obtain information experimentally for support of vehicle

development and theoretical studies. To show the basic features of most of the systems

in current use, examples of some systems will be described which are designed with

crossed-flexure pivots, and gas bearing pivots.

To perform dynamic stability tests at Mach numbers from 18 to 21 in the AEDC-VKP

100 in. diameter hypervelocity tunnel (Tunnel   F ) ,  which has a useful run duration of

about msec, a high frequency, fre e-oscillat ion balance system is used. To obtain up

to about 15 cycl es of data during a run, high mo del frequencies, mi nimum inertia models ,

and high crossed -flexure stif fness are required. A flexure system which provid es a

model frequency o f 150 c/s at oscill ation amplitude s up to ± 3 degrees is shown in

Figure 43  (Ref.47).

To displac e the pivot to an initial am plitude a couple rathe r than a moment is used

to minimize a beat oscillation that would be imposed on the oscillation envelope and

reduce the total stress experienced by the pivot.

In operation, the model and pivot system is displaced to a desired amplitude by the

pneumatic operation of two displacement arms which apply a couple about the pivot  axis.

Once the desired amplitude is reached, two cams operated by the releasing piston make

contact with the displacement arms and instantaneously release the applied couple.

A low-frequency, free-oscillation, flexure pivot balance system also in use in the

AEDC-VKF is shown in Figure 44 to ill ustrate the sim plicity of the design and a method

for displacing the model. Two jets located 180 deg apart are mounted to the sting

just inside of the model base and are alternately supplied with high pressure air

through an oscillat ing servo valve.

Forces generated by impingment of the jets on the inside of the model cause the

model to oscillate. Amplitud e is controlled by the jet pressure, and frequency is

controlled by the servo valve. The model may be forced to oscillat e at its natural

frequency and when the required amplitude is achieved the air excitation is terminated

and the model is free to oscillate.

A free-oscillation flexure pivot system developed by ONE RA"

5

  is shown in Figure 45

to illustrate a mechanical system for displacing the mode l. For most flexure pivot

balance systems, strain gages are bonded to the cross flexures to provide a signal

output for recording the amplitude time history and model oscillation frequency.

Free-oscillation balance systems, having either ball bearings or gas bearings for

the pivot , may not have mechanical s tiffness to provide a restoring moment. For these

systems the model is displaced by a mechanical system and released. If the tunnel has

a model injection system, the model can be preset to the required amplitude, locked,

and then released af ter injection into the airstrea m. An example of an AED C-VKP free-

oscillat ion ba lance system used in this mo de is shown in Figure 46.

Most of the free-oscillation balance systems described thus far have been developed

for use in relatively small wind tunnels. A free-oscillation balance developed by

the AE DC-PWT (Ref.49) for tests in the 16 ft transonic and supersonic t unnels is shown

in Figure 49. The bala nce has a single vertical flexure in the center and two longi

tudinal flexures at the sides for a pivot. A hydraulic mechanism is provided for

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 77/236

57

initially displacing the flexure and model , and a hydraulic cylinder provides a means

for locking the system. Strain gages on the flexures are used to obtain a measure of

the amplitude decay history.

A free-oscillation dynamic balance system has been developed by the University of

California Institute of Engineering Research to measure dynamic stability derivatives

in a low density wind tunnel

50

. Figure 50 shows the components of the balance system.

The model is mounted on a transverse rod supported in the vertical p lane by bearings.

The bearings have an electrically vibrated inner bearing race to minimize the friction

and provide repeat able bearing tares. System restoring moment is provided by a quartz

fiber attached to the tip of the transverse rod support. A cross shaft is mounted on

the end of the transverse rod support to displace the model by the use of an electro

magnet and also interrupt a beam to a photoce ll. One arm casts a shadow on a screen

to provide direct oscillation angle measurements.

A small scale, free-oscillation, dynamic balance developed by the AEDC-VKF for tests

in a small low density tunnel is shown in Fig ure s 51 and 52. The com merci al flexure

pivot is 0.125 in. in diameter. The fixed portion of the pivot is supported by two

supports, and the movable center portion of the flexure is clamped in the balance

centerpiece. As the movab le member is rotated, the air gap between it and the E-core

changes to produce a change in signal level proportional to the angle.

Angular position histo ries for the g as bearing pi vots are recorded with the E-core

transducer described in Section 3.2.2.1. Aerodynamic damping from a free-oscil lation

system is obtained thro ugh an analysis of the record of motion recorded on magnetic

tape,

  film, or oscillo graph re cordings to obtain the logarithmic decrement. Reduct ion

of the data from a magnetic tape may be accomplished with a high speed computer to

curve fit the motion data, read the peak amplitudes, and finally curve fit data in the

form of log of the amplitude versus cycles of oscillation. If the data are recorded

on film or an oscillograph, many manual operations are involved which are tedious and

reduce the accuracy of the data reduction.

The ablation of a vehicle' s thermal protect ion system can result in motions which

have a significant effect on the vehicle performance. Study of these effects experi

mentally has been somewhat restricted because present capabilities of wind tunnel

facilities do not provid e a complete dupli cation of re-entry flow conditions. Ablation

affects dynamic stability primarily by changes in body shape, mass distribution, and

the mixing of gaseous produ cts of ablation with the boundary layer. At the present

time,

  study of the effects of ablation have proceeded along the lines of using low

temperature ab lators and poro us model blowing techniques. This is desirabl e in a

study of shape change and its effects on stability; however, the results have limited

application for important paramet ers such as material proper ties and phase angle.

Mass addition, on the other hand, offers possibilities for simulating many of the

important par amete rs and enables measurement and systematic v ariation of these parameters.

Some of these parameters include mass injection rate, distribution, phase, wave form,

gas propert ies, and frequency of osci llation.

LTV has pioneered the development o f techniques and equipment to investigate the

effects that mass addition, through porous models, has on dynamic stability. These

investigations have been conducted in the LTV hypervelocity wind tunnel, which is a

modified h otshot -type facility with relat ively long run tim es (250 millis econds at

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 78/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 79/236

59

disc which allow light to pass to a photocell.  The photocell triggers an electronic

counter (damping co unter) which giv es the total number of slot passa ges,  n , the

vector passes in going from the outer radius  r

:

  to the inner radiu s  r

2

 , which

contains  s  number of radial slots.

Denoting the time at which the spot enters the slots  tj and the time it leaves

ithmlc dec

(C/2I

y

)tj

by  t

2

 , the expression for the loarit hmic decrement  A can be derived:

r

i  =

  E

o

e

-(C/2I

Y

)t

r

2

  = E

0

e

and A =  T T C / I ^ O  = s/n log

e

  (rj/r

2

) .

The frequency of oscillation is measured with a second electronic counter by cou nting

the number of cycles of a crystal oscilla tor during the period in which the damping

counter is in operat ion from a preset number  n

x

  to another preset number  n

2

 . If

the frequency of the crystal oscillator is f

c

  and the reading of the counter  n

c

 ,

n, — n,

f  =  - 2 - ^ - 4 ( f

c

/n

c

) .

Different di scs having a range of radius ratios and number of slots are used to

obtain good resolutio n for A and f . As noted in Refere nce 53, the dampometer can

be used to obtain an accuracy of <  2% for logarithmic decrements smaller than 2;

for higher va lues

 of the

 decrement,

 the

 accuracy decreases.

3 .2 .2 .1 .2 Tra vel Summation Method  of

F r e e - O s c i l l a t i o n D a t a A n a l y s i s

There may be instances when performing wind tunnel dynamic stability studies where

very large amplitudes of oscilla tion will be of interest.  In such cases, where it

may be difficult to obtain an analog o utput of the displacement time history, a light

source on the oscillating model may be used to indicate model positio n. Orlik-Ru ckemann

presents a data analysis tec hnique

5

" to obtain instantaneous r eduction of free-oscillation

data from this type of experimental arrangement.

In

 the

 simplest form,

 the

 experimental setup c onsists

 of an

 oscillating light source

seen through a stati onary window (Pig .57) which is positioned such that the light source

can be seen only duri ng a portion of a cycle.  The total visible travel of the light

source

 in

 relation

 to the

 window

 is

 recorded

 by

 passing

 the

 light through

 a

 large

number of transverse narrow slots to a photomultiplier tube to record the numbe r of

pulses.

With the travel summation method, the logarithmic decrement can be expresse d as

A  =  (2/s)(l - b + b l o g

e

 b)

m

  (87)

where  s = 2/x

0

 S (

x

n

 ~

 x

m )  (

x

o

x

m

)

n= o

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 80/236

60

and  b is a constant with c onvenient va lue s arou nd 0.5, depending on the experimental

arrangement. Equation (86) thus shows that

 the

 logarithmic decrement

 is

 simply obtained

by dividing

 a

 constant

 by the

 dim ensionless

 sum of the

 travel segments.

  By

 proper

selection of b and a  slotted window, the total error, including the approximat ions

involved

 in

 retaining te rms

 in the

 derivation

 of

 Equation (87),

 can be

 kept under

  1%

for most cases.

An alternative method

 for

 obta ining

 the

 logarithmic decay involves

 the

 summation

 of

the time intervals

 for the

 consecutive cycles

 of

 oscill ation d uring which time

 the

 light

source

 is

 between

  x

0

  and x

m

 . This method

 is

 less accurate than

 the

 travel summation

method, because of approximations used in the derivation, but may be preferable since

it permits simpler experimental apparatus. These data reduction methods are described

in detail

 in

 Reference

 54.

3. 2. 2. 1. 3 Logarithmic Cir cui t

A recording oscillograph

 is

 frequently used

 to

 record

 the

 decayi ng signal

 of

 model

motion from a displacement pickup. These data which appear as a harmonic oscillati on

with damping must

 be

 replotted

 in

 terms

 of the

 logarithm

 of the

 amplitude versus

 a

time function

 or

 cycles

 in

 order

 to

 extract

 the

 damping constant from

 the

 results.

  A

method which effects

 a

 considerab le saving

 in

 time

 in the

 analysi s

 of the

 data traces

consists of employing a logarithmic distorting circu it

6

, which converts the exponential

envelope of oscil lation into a linear e nvelope which is proportional to the number of

cycles

 of

 oscillation.

  The

 damping constant

 is

 then deter mined from

 the

 slope

 of the

envelope.

3.2 .2. 1.4 In te gra ti on Method

Signals from displacement pic kups recorded

 on

 magnetic tape

 may be

 analyzed quickly

without

 the aid of a

 computer

 by

 making

 use of the

 integration meth od described

 in

 more

detail

 in

 Reference

 6. To

 employ

 the

 method,

 a

 series

 of

 complete cycles

 is

 selected

from the magnetic tape recording and the signal is rectified and fed into an analog

integrator which presents the integral as a reading  Rj on a d.c. voltmeter.  The

process

 is

 repeated

 for a

 second serie s

 of

 complete cycles

 to

 obtain

 the

 seco nd Integra l

represented

 by R

2

  and, if n is the

 number

 of

 cycle s between sam ple

  Rj and R

2

 .

the logarithmic decrement is given by

The integration method

 has the

 advantage

 of

 giving weight

 to

 every cycl e

 of

 oscillation

in the range covered, as opposed to measuring the number of cycles to damp to a given

amplitude ratio.  If noise exists on the displa cement signal the integration method

tends

 to

 reduce

 the

 effects

 it may

 have

 on the

 damping measurements.

3.2.2.1.5  Other Methods

A device called

 a

 damping trace reader

 has

 been d evelope d

 by

 L e a c h

55

 to

 measure

 the

logarithmic decrement from oscillograph traces with about the same accuracy as for

hand data reduction.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 81/236

61

3 . 2 . 2 . 2 F o r c e d - O s c i l l a t i o n T e ch n iq u e

Testing facilities have different requirements

 for

 dynamic stability balance systems.

This naturally

 h a s

 resulted

  in the

 development

 o f a

 variety

 o f

 different systems

 now

in

 use in the

 United States

 and in

 Europe an countries. Space will

 no t

 permit

  des

criptions

 of all

 systems

 and

 therefore only

  a few

 represe ntative ones will

 be

 discussed

to show important features

 and

 techniques.

3.2.2.2.1  AEDC-VKF

Forced-oscillation dynamic stability balance systems have been developed

  at the

AEDC-VKF

 for

 operation

  in

 three c ontinuous flow tunnels, which cover

 the

 Mach number

range from

  1.

 5

 to 12.

The dynamic balance system (Fig.58) consists

 o f a

 crosse d-flexure pi vot mounted

 on

a sting

 and

 connected through

  a

 torque mem ber

 and

 linkage

 to an

 electromagnetic shaker

housed

  in the

 enlarged

  aft

 section

 o f t h e

 sting. Detai ls

 o f t h e

 crossed flexures,

input moment linkage,

 and

 model locking device

 are

 shown

 in

 Figure 59.

  T h e

 sting

 and

shaker housing contain passages

 for

 water cooling which

  is

 necessary

  for

 tests

 at

hypersonic speed. Cooling

 o f t h e

 crossed flexures

 i s

 accomplished through

 t h e u s e o f

cool

 air

 sprays which

 are

 turned

 off

 while data

 are

 being recorded. Water-cooled

jackets which surrou nd

  t he

 crossed flexure

  are

 also used

  in

 some applications.

The

 VK F

 forced-o scillatio n balance

 i s

 equipped with

  an

 amplitude control system

which allows testing

 o f

 both dynamically stable

 and

 unstable model s. Testing

 i s

 normally

accomplished

  a t t h e

 resonant frequency

 o f t h e

 model balance system; however,

 t h e

 control

system does prov ide

  a

 means

 o f

 resolving

 t he

 in-phase

 and

 out-o f-pha se (with model

displacement) components

 o f t h e

 forcing torque. Because

 o f t h e l ow

 structural damping

level

 o f t h e

 balance

 and the

 aerodynamic damping levels present

  at

 supersonic

  and

 hyper

sonic speeds,

 t he

 balance system

  i s

 always operated

  at

 resonant

 or

 near-resonant

conditions.

It

 was

 shown

  in

 Section

  3.2.1.4

 that when

  a

 model

  is

 oscillated

  at a

 constant

amplitude

 and at the

 undamped natura l resonant frequency

 o f t h e

 system,

 t h e

 inertia

moment exactly balances

 t h e

 restoring moment

  and the

 forcing moment

  is

 equal

 t o t h e

damping m oment.

A block diagram

 o f t h e

 control

  and

 data acquisition system utilized

  at the VKF

system

  is

 given

 in

 Figu re 60.

  T h e

 control system

 can be

 operated

  in

 either

  an

 open-

look mode

 for

 testing dynamically stable configurations

 or in a

 closed-loop mode

 for

testing either dynamically stable

 o r

 unstable configurations.

  In

 either mode

 o f

 opera

tion

 the

 frequency

 o f

 oscillation

  is

 controlled

  by the

 frequency

  o f t h e

 reference

oscillator.

Open-loop operation

  is

 obtained

  by

 using

 the

 amplified refere nce oscillator signal

to drive

 t he

 electromagnetic shaker motor. Resista nce strain-gage bridge s located

 on

the input torque member

 and on a

 cross flexure (model displa ceme nt) provi de analog

signals

 o f t h e

 forcing torque

 t o t h e

 model

  and the

 model displace ment.

  T h e

 electrical

output

 o f t h e

 bridges

 is

 amplified

  by a

 carrier amplifier

 t o

 provide appropriate ampli

tudes

 o f t h e

 torque

 and

 displacement signals necessary

  for the

 dat a a cquisition system.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 82/236

62

The closed-loop mode of operation operates on the amplified error principle. The

refere nce signal and the displace ment s ignal, which is phase -shif ted approximately

90 degr ees, are compared in a differ ence amplifier. This difference or error signal

is amplified and used to drive the shaker motor. The error signal will remain in

phas e with the refer ence signal for all conditio ns requiring a positi ve app lication

of torque. If the model is aerodynamically unstable, the error signal will be 180

degree s out of phase with the reference signal and a negative to rque will be supplied

to the model.

Due to h igh frequency vib rati on in the wind

 tunnels,

 signal co nditioning is required

to remove the noise from the torque and displacement signals before recording on the

dat a acquisition system. Two bandpass filters tuned to the frequency of the reference

oscillator are provided. The filters and other frequency-sensitive circuits track with

the frequency selected by the reference oscillator. The output of the bandpass filters

is amplified to provide the current necessary for the recording instruments.

The data acquisition system consists of an oscillograph, resolvers, on-line data

system, analog magnetic tape system, and Beckman 210 analog-to-digital converter system.

The torque and displacement signals are applied to the inputs of all the recording

instruments and to an oscilloscope displaying a Lissajous pattern. The Lissajous

pattern provides an indication of the 90 degree phase angle relationship between these

two signals necessary to the condition of resonance of the model balance system.

Under cer tain tunnel condit ions, and for certain model configu rati ons, it is bene

ficial to operate at a frequency displace d from the resonant frequency. The resolver

system is utilized to determine the in-phase and quadrature components of the forcing

torque with respect to the model displacement.

The in-phase component is obtained by multiplying the torque and displacement signal

with an analog multiplier. The quadrature component is obtained by phase-shifting the

torque signal 90 degrees and then multiplying the phase-shifted signal with the

  dis

place ment signal. The output signals of the mult ipli ers contain a d.c. component and

a double frequency component. By filtering out the double frequency component, a d.c.

valu e is obtained which is prop orti onal to the in-phase and quadratu re torque components.

The In-phase torque component is zero at resonance, and the quadrature component is

a maximum value. A d.c. voltmete r is utilized to monitor the in-phase component and

serves as an indication of a reso nance condition. Both torque compo nents are recorded

on analog magnetic tape, the Beckman 210 converter, and the on-line data system.

Data recording systems utilized for forced-oscillation testing are the oscillograph,

analog magnetic ta pe, Beckman 210 converter, and on-line data system. The osci llogr aph

and analog magnetic tape p rovide permanent recordings of the dat a as obtained in the

wind tunnel. The Beckman 210 analog-to-dig ital converter provi des digital conversion

of the analog data and records the digital values on magnetic tape, which is then

processed by a high speed computer to obtain final data.

Reduced data are desirable, and in some cases necessary, while the test is in

progress.

  The on-line data handling system provides immediate examination of the

damping derivatives. Here the term on-line signifies that the test data are fed

directly from test instruments into a computer. Therefore, the on-line data system

includes obtaining analog representation of par ameters to be measured, conversion of

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 83/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 84/236

64

3.2.2.2.3 NASA-LRC

The forced-oscillation balance system used by NASA-LRC  is  shown  in a  exploded and

assembled view

  in

 Figure 65. Sketches

 of the

 balance system

  are

 presented

  in

 Figures

66

 a nd

 67. Sinusoidal, constant-amplitude motion about

  an

 oscilla tion axis

 is

 produced

by

 a

 mechanical Scotch yoke

  and

 crank which

  is

 driven

  by a

 variable-f requency electric

motor  in the  downstrean porti on o f t h e  sting.  The  stiff strai n-gaged beam located

between t he  model attachment bulkhead  and  pivot axis i s  used to  measure the  forcing

moment required

 t o

 oscillate

 t he

 model. Because

 of its

 location

 the

 signal output

 i s

not Influenced

  by the

 friction

 or

 mechanical play

  in th e

 system. Model displaceme nt

is measured with  a  strain-gaged cantilever beam mounted be tween the  fixed sting and

the oscillating model support. Springs of  different stiffnesses are  used  to  provide

a range

 of

 resonant frequencies.

Outputs from

 the

 displacement

  and

 forcing-moment strain gages pas s through coupl ed

sine-cosine resolvers which

  are

 geared

 to the

 drive shaft

  and

 thus rotate

 at the

 funda

mental drive frequency

  (Pig.66).

  Oscilla tion frequency

  i s

 measur ed with

 a

 signal genera

tor coupled  to the  drive shaft.  In operation t h e  resolvers transform  the  moment and

amplitude functions into orthogonal components which

 are

 measured with d.c. micro-

ammeters. From these components

 t he

 resultant applied moment, displacement,

  and

 phase

angle are  found and, with th e  oscil latio n frequency,  t h e aerodynamic static and  damping

moments are  computed.  A block diagram of the electro nic ci rcuit used to  measure t h e

applied moment

  is

 shown

  in

 Figure

 68 and a

 similar circuit

  is

 used

 to

 measure

 the

angular displacement.

Use is  made of  automatic digital equipment  to  acquire data quickly  and  eliminate

operator errors due to incorrect manual recordi ng or reading.  All of the system var i

ables

 are

 automatically digitized,

  and a

 high speed computer

  is

 used

 to

 perform

 the

data reduction

  and

 present results

 in

 coeffi cient form.

A complete description

 o f t h e

 system electrical relations

  and

 metho ds involved

 in

the operation

  and

 data reduction

 are

 found

  in

 References

 59 and 60.

3.2.2.2.4 RAE-Bedford

The forced-oscillation testing technique ha s  been employed  by the  RAE, Bedford, i n

the development of a  system  for  measuring stability de rivatives  and  damping derivatives

due

 to

 angular v elocity

  in

 roll

  and ya w on

 sting-mounted m od el s

62

. Derivatives

 can be

obtained

  for

 motion

  in

 vertical

 or

 horizontal tr anslation (heave

 or

 sideslip);  however,

it

 is

 noted

  in

 Reference

 62

 that

 t he

 apparatus

 was not

 designed

  for

 this purpose

 and

the accuracy

  of the

 measurements

  is

 less than that required

  for

 most tests. Emphasis

in t he  design h a s  been toward  a small s ize system that   can be  used for testing slender

wings

 o f

 fiber glass construction.

In some respects

 the

 balance system

  is

 similar

 to

 those described

  in

 Section

  3.2.2.1

in that  the  model  is  mounted  on a  sting by  means o f a  flexure pivot allowing one  degree

of freedom  in rotation. Continuous excitation  at or  near the resonant frequency of

the system

  is

 provided

  by a

 movi ng-coil per manent-magnet vibr ation generator mounted

on

 t h e

 sting

 and

 coupled

  to a

 driving

  rod

 passing through

  th e

 sting.

A schematic arrangement

  of

 various p arts

 of the

 balance

 for

 yaw-sideslip oscillation

is shown

  in

 Figur e 69.

  The

 balance

  is

 mounted

  on the end of a

 sting

 by

 means

 o f a

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 85/236

65

flexure pivot to allow rotation. A view of the flexure pivot and cylindrical section

of the balance which mounts inside of the model is shown in Figure 69, and photographs

are presented in Figure 70. Included in the flexure pivot as sembly is the drive linkage

to convert the longitudinal force in the driving rod into a couple acting between the

end of the sting and the model.

The balance for measuring oscillation in roll is illustrated schematically in Figure

69.

  The unit is of one-piece constructio n and is instrumented with ya w and roll

accelerometer s. The system has one degree of freedom, and excitation in roll is

 pro

vided by applying torque through the driving rod by means of linkage from the vibration

generator.

Although the flexure pivot i s located near the center of pressure of the wing models,

in order to avoid large deflections under steady aerodynamic

  loads,

  the flexibility of

the sting will allow some translation of the pivot axis which may be appreciable for

some cases. To allow for displacement of the pivot

  axis,

  for example, when measuring

pitching derivat ives, heaving derivati ves are measured by exciting a vertica l oscilla

tion (which will be accompanied by some angular movement) and measuring the changes

in natural frequency, excitation force, and angular movement.

The motion of the model on the balance system consists of a pitching component,

generated in part by the rotation of the model about the flexure pivot and in part by

the bending of the end of the sting. These two compo nents are present in different

proporti ons in the two natural mod es of the system. The pitching mode includes a

certain amount of heave motion of the pivot axis, and the heave mode includes an

appreciable amount of pitching motion and similarly for yaw and sideslip.

As was noted in Reference 62, it may not be ob vious ho w an exciting coupl e acting

between the model and the end of the sting can produ ce no deflection. The reason Is

that in the natural mode of oscillation in heave, for example, there is a certain

amount of rel ative angular movement between the model and the end of the sting (even

when there is no pitching component in the oscillation). It is thus possib le for the

excitation couple to feed energy into the system in this

 model.

The analysis of the system is simplified by treating the system as having two degrees

of freedom with two natural modes of vibration - one predominantly pitching and the

other predominantly heaving. The heaving derivatives appear as a by-product of the

analysis to obtain the damping-in-pitch derivati ves. Yawing deriva tives are measured

in the same manner, with sideslip derivatives appearing as a by-product.

The basic measurem ents made with the balance system include (i) the excitation

frequency which is measured by an electronic counter, (ii) the excitation force which

is measured in ter ms of the exciter current, and (iii) the bala nce displace ments which

could be obtained as measurements of strains or relative displacements; accelerometers

were selected for the design since they are not affected by steady loads and are com

paratively free from interactions.

The balance is designed (Fig.

 70)

 with strain gages mounted on sections for measuring

static forces and moments, except for rolling moment which is more conveniently measure d

with the flexure unit designed for roll oscillations.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 86/236

66

The automatic measuring  and  recordi ng equipment developed   by the RAE for experim ents

concerned with oscillatory der ivative  i s a  digital amplitude and  phase measuring system

(DAPHNE).  It was

 designed

 to use the

 wattmeter metho d

6

  to

 resolve

 the

 input signals

into in-phase

 and

 quadrature components,

  and

 accurate measurements

 of

 fr equency

 are

made with

  an

 electro nic counter.

3 . 2 . 2 . 2 . 5

  NASA-ARC

A method

  and a

 balance system

  is

 described

  in

 Reference

 63 for

 measuring

  th e

 lateral

and dynamic stability derivatives.   The  features o f t he  system include single- degr ee-

of-freedom osc illations which  are  used to  obtain comp onents o f  pitch, yaw, and roll by

varying

 the

 axis

 o f

 oscillation. Amplitude control

  i s

 achieved with

  a

 velocity feedback

loop.  T h e

 system

  is

 equipped with

 a

 system

 of

 strain gage data proc essing

  in

 which

electronic analog computer elements are  used  in measuring the  amplitude  and  phase

position. Moment derivatives which arise from angular motions can be  measured with

the balance system. These include

 t h e

 rotary damping derivativ es

  C , C + C • ,

and

  C

n r

 - C

n/

3 ; th e

 cross derivatives

  C a nd C j

r

 - Cji ; and the

 displacement

derivatives

  C

m a

 , C ^ and C

; / 3

  .

The forced-oscillation system  has two oscillation mechanisms - one for  pure pitching

or yawing motion  in which t he  oscillation axis is  perpendicular to the  longitudinal

axis

 of the

 sting,

  and one for

 combined rolling

  and

 pitching

 or

 rolling

  and

 yawing

 in

which

 the

 axis

 o f

 oscillation

  is

 inclined

  45

 degrees

 t o t h e

 longitudinal axis

 of the

sting.  T h e  electromagnetic shaker  is  housed  in an enlarged section o f t h e  sting down

stream o f the  model  and  connecte d to the  flexure pivo ts b y  push  rods.  Strain gages

were used

  to

 measure

 t h e

 oscillation amplitude

  and

 supply Inputs

 to the

 analog com puter.

The theory of the system ope ration, feedback control, analog compu ting system,, and

description

 of the

 apparatus

 is

 presented

  in

 Reference

 63.

3 . 2 . 2 . 2 . 6 U n i v e r s i t y o f M i ch ig a n

Results obtained  at  hypersonic  and  hypervelocity speeds have shown the  importance

of the  reduce d frequency  of  oscill ation. With the use of the  free-o scillat ion testi ng

technique,  the

 frequency

 of

 oscillation

  can be

 varied only

 by

 changing either

 the

moment

 of

 inertia

 or the

 flexure spring constant. Thus coverage

 o f a

 wide range

 of

frequencies requires several time-consuming changes

 in the

 test equipment.

The University

  of

 Michigan

 h a s

 developed

 an

 electromagnetic, forced-oscillation

method which enables a  range o f oscillation frequencies to be  investigated with e ase

6

".

The method utilizes

 the

 principle

 of the

 moving coil galvanometer.

  An

 alternating

current,

 passing through

  a

 coil embedded within

 th e

 test model, interacts with

 a

 static

magnetic field imposed

  by a

 coil system mo unted

  in one

 plane

 of the

 test section. This

causes

 the

 model

 to

 oscillate

 in a

 sinusoida l manner following

 the

 existing torque

 but

out o f  phase with it. From the  phase  lag of the motion relative to the  existing moment

and wind-on  and  wind-off result s, it is  possible to  determine the  aerody namic damping.

A schematic view o f t he  test setup showing t h e  external coil  is presented  in Figure

71.  A

 circular exciter coil

 wa s

 mounted coaxially within

 t he

 Plexlglas model which

 was

mounted on a cruciform flexure pivot shown in Figure 72.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 87/236

67

The methods have been used

 for

 measuring

  t he

 position

 o f t h e

 model.

  One of the

methods utilized

 t h e

 output

 of the

 strain gage bridge shown

 in

 Figure

 72 and the

 other

was based

 on the

 response

 of a

 second circula r coil within

 t he

 exciter coi l located

 in

the model.

  A s t h e

 model oscillates

  in the

 magnetic field,

  an

 electromotive force

 is

induced

  in the

 secondary coil

 and may be

 used

 for

 sensing

 the

 cone position. Although

this technique

 h a s

 been success ful,

  i t h a s t h e

 drawback that

 t h e

 data reduction pr o

cedure

 is

 very lengthy, which

 m ay

 prec lude on-line reduction.

  U s e o f

 strain g ages

 t o

measure

 the

 model position eliminates

 t h e

 difficulties associated with

 t h e

 two-coil

techniques.

The t echnique

 o f

 electrom agnetic excitation

 and

 using

 t h e

 phase angle

 to

 determine

the damping

 h a s

 limitati ons which

 may

 prohibit

  its use for

 some configurations. Although

the structural damping

 wa s

 small,

 t h e

 phase angle measurements

 at

 Mach number

  2.5 on a

25 degree half-angle cone were less than

 one

 degree, which makes accurate measurements

of aerodynamic damping

 at

 this

 and

 higher Mach numbers very difficult

 but not

 impossible.

Improvements

 in the

 accuracy

 o f t h e

 damping me asure ments will result

  i f t h e

 model size

is increased,

  t h e

 pivot axis

 is

 moved

  as far

 forward

 a s

 possible,

  and a gas

 bearing

 i s

used

 to

 eliminate amplitude re strictions

 and

 structural damping

 d u e t o t h e

 flexure.

In addition

 t h e g a s

 bearing would eliminate sting vibr atio ns that influence damping

measurements. Details

 on the

 instrumentation, data r eductio n procedu res,

 and

 sample

test results obtained with electromagnetic excitation

 a re

 presented

  in

 Reference

 64.

3 . 2 . 2 . 3 Magne t ic Model Suspens ion Sys tem

Systems

 for

 capti ve model a erodynamic testing require support

 o f t h e

 model

 by use

of

 a

 sting into

 t h e

 model base region,

  a

 side-mounted strut,

 or

 even thin wires. Each

of these techniques

 m a y

 introduce interference ef fects which

  can in

 some cases have

 a

significant influence

 on the

 results. Support interference effects must

 be

 studied

experimentally

  to

 gain some idea

 o f t h e

 magnitude

 o f t h e

 influence, since

 t h e

 problem

has

 no t

 been r educed

  to

 theoretical analysis.

Magnetic suspension

 o f

 wind tunnel mode ls pr ovide s

 one

 means

 for

 elim inating

 t h e

influence

 o f t h e

 support system.

  T he

 first successful suspension

 o f a

 wind tunnel

model that enabled

  the

 measurement

  of

 interference-free drag

 wa s

 accomplished

  at

 ONERA,

France,

  in 1957

 (Ref. 65).  Since that time, several labora tories

 in

 Prance, England,

and

 the

 United States have been engaged

  in the

 development

  of

 magnetic suspension

systems

 for

 different purpos es.

  T h e

 potential

  for

 magnetic suspension

  i s

 very great

when

 it is

 considered that

 no t

 only

  is it an

 interference-free support system,

  but it

is

 a

 balance system

  for

 static forces

 and

 moments

 and

 dynamic mea sureme nts, since model

motion

 can be

 controlled.

For example, control signals

 may be

 introduce d into

 a

 feedback control circuit

 to

produce model moti on without alteration

 o f t h e

 basic system.

  In

 principle, models

 can

be subjected

 to

 rigidly forced motion eithe r

  in

 sinusoidal

  or

 random mo des

 or

 rotational

motion with

 t h e

 translational degre es

 o f

 freedom fixed. With

 t h e

 latter mode

 of

 opera

tion, dynamic damping data

  in

 pitch

 o r y aw a r e

 obtained

  by

 either

 th e

 free-

 o r

 forced-

oscillation techniques. Roll damping measureme nts

 m a y b e

 made

 on

 axisymmetric

 and

finned bodies

 by

 using

 t h e

 spin decay technique.

The development

  of

 magnetic suspension syst ems

 h a s

 progressed very rapidly

 in the

past several years; however,

  it has not

 reached

  th e

 stage that

 t h e

 suspension systems

compete favorably with

 t h e

 more conventional techniques

 for

 obtaining static

 and

 dynamic

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 88/236

68

stability data. Magnetic suspension systems are, however, used routinely for wake

studies and some drag measurements- Although research to develop techniques for

making dynamic stab ility mea sure ments with a magnetic model suspension system is in

the formative stages, the status of the work accomplished to date is briefly summarized

to point out the major areas of development. Treatment of the equations of motion

and data reduction have been omitted, since each depends more or less on the specific

system; these topics are covered in the references.

The suspension system in use at the Gas Dynamics Laboratory at Princeton Univers ity

66

was developed to support models for experimental research on hypersonic wakes of axisym

metri c bodies. Since the configur ations of interest ranged from spheres to slender

bodies, a three-d egree- of-fre edom system and a one-point suspension was used (Fig.  7 3 ) .

The system is mounted vertically to use the gravity force to oppose drag, to help the

magnetic suspension. Models are made with ferrite spheres as the magnetic element to

be acted on by the magnetic field. A conical model with a ferrite sphere embedded in

the body is shown in Figu re 74. When only spheres are tested, the ferri te is used

without any other mater ial. Althou gh the Princeton system is not used for dynamic

stability measurements, such data can be obtained with the system and model shown in

Figure 74 by making use of the free-oscillation technique, provided position sensing

is incorporated in the system for model motion histories. Completely free rotational

model motion is also possible with the balance system developed by the University of

Virginia

67

, provided position sensing is incorporated.

The MIT magnetic model suspension system described in Reference 31 and shown in

Figure 75 has been used to obtain dynamic stability data from wind tunnel measurements

at supersonic speeds. The forced-oscillation technique was employed to measure damping-

in-pitch der ivati ves on a model u ndergoing a forced moti on by measur ing the change in

the phase of the motion. Use of this technique requires that the slope of the aero

dynamic moment curve,

  U$

  , be known and sinusoidal mo tion imposed by the forcing

function.

  Although no attempt was m a d e

3 1

 to measure damping due to plunging, a method

is described in the reference whereby such measurements could be obtained.

The RAE magnetic model suspension system in use at Mach 9 is shown in schematic

form in Figure 76, and a view of the system installed in the tunnel is shown in Figure

77.

  The system, now in the final stage s of develo pment, was designed to measur e static

forces and moments and dynamic stability. Additional deta ils on the system may be

found in References 68 and 69.

The magnetic suspension system at Southampton University

70 ,71

  makes use of three

horseshoe-shaped electromagnets and one hollow solenoid-like coil for control of the

model in six degr ees of freedom; t he model itself contains a permanent magnet. A

schematic arrangement of these magnets is shown in Figure 78. and a model subjected to

a forced oscillation in roll while suspended in the six-component balance is shown in

Figure 79. The system has been designed for the measurement of aerodynamic derivatives,

and emphasis has been placed on tests of winged models which requires proper control

over the model roll attitude. Although there are several different methods that have

been investigated for controlling model roll attitude, shaped cores within the model

have been investigated most extensively. The usual practice in magnetic suspension

systems is to have a magnetic core arranged to lie along the model  axis.  These cores

are generally circular in cross section and thus do not impart any resistance to

  dis

turbances in roll.  However, if the core is constructed with a noncircul ar cross section,

the core will adopt one or more preferred attitudes when suspended in the field of the

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 89/236

69

model supporting magnet

 B

 shown

  in

 Figure 78.

  A s

 pointed

  out in

 Reference 71,

 a

 model

containing

  a

 shaped core

 can be

 induced

 to run as a

 synchronous mo tor

 by

 varying curre nts

to

 t he

 lateral magnets; however,

 t h e

 model would have

 t o b e

 spun

 u p t o t h e

 synchronous

speed

 to

 allow lock on. Speed s grea ter than 1000

 r.p.m.

 have been produced

 on a 0.75

in.

  diameter body

  of

 revolution

  at the

 University

  o f

 Southampton. This technique could

be used

 for

 measuring roll derivatives.

Reference should

  be

 made

 to

 Reference

  29 for

 information

 on

 magnets, optics systems,

control circuits, operating techniques, equations

 of

 motion, data reduction,

  and

 problem

areas.

3.2.3 Repre sentative Systems

 for

 Tests

 of

 Control

 and

Lifting Surfaces

Methods

 for

 experimentally o btaining dynamic stability data

 o n

 models

 o f

 missiles

and aircraft

 may

 also

 be

 applied

 t o

 investigations

 o f t h e

 aerodynamic characteristics

of control surfaces, such

 as

 rudders, elevators,

 and

 ailerons. Although aerodynamic

theory

 h a s

 been developed

  to

 analyze control surface behavior , r ecourse

 t o

 experi

mental verification

  is

 necessary becau se

 o f

 nonlinear effects which

 may be a

 function

not only

 of

 amplitude

  and

 frequency

  but

 also

 of

 Reynolds number

 as

 associated with

flow separation ahead

 o f t h e

 control surface.

Experimental investigations

 to

 date have been designed primaril y

  to

 measure

 t h e

aerodynamic char acter istic s (hinge moment

  and

 damping)

 o f

 control surf aces o scillating

at transonic

  and low

 supersonic speeds where

 the

 theories show

 a

 strong influence

 of

oscillation frequency

  and

 Mach numb er

72

.

Since

 t h e

 specific details

 on the

 design

 o f t h e

 model control surface

 and

 dynamic

balance system will depend

 on the

 ingenuity

 o f t h e

 designer,

 no

 attempt will

 b e

 made

to treat detailed problems peculiar

 to a

 particul ar system. Reference will, however,

be made

 to

 typical systems

 t o

 describe

 t he

 general techniques that

 m a y b e

 used

 to

obtain control surface damping

  and

 hinge-moment data. Representative system s

 for

obtaining damping data

 o n

 lifting surface s

 are

 also presented.

3 .2 .3 . 1 F r e e - an d F o r c e d - O s c i l l a t i o n T e c hn i qu e s

The methods employed

  and the

 data reduction,

  in

 general,

 a r e t h e

 same

 as

 those  des

cribed

  in

 Section

  3.2.1 for the

 free-

 and

 forced-osc illation techniques applied

 to

control surfaces

 and

 half models. Applications

 of

 these techniques

 to a

 control surface

mounted

 on the

 trail ing edge

 o f a

 tri angula r wing (Fig. 80)

 a re

 presented

  in

 Reference

73.

  The

 control surface

 wa s

 attached

  to the

 wing

 by

 means

 of a

 flat spring running

the full length

 o f t h e

 control surface. Excitation

 wa s

 supplie d with

 a

 torque motor

mounted

  in the

 model,

 and

 control surface p osition

 wa s

 measured with strain g ages

mounted

 on

 cros s flexures. These were used

 to

 increase

 th e

 natural frequency

 o f t h e

system.

  T o

 operate

  in the

 forced-oscillation mode,

 the

 control surface

  wa s

 driven

 at

the resonant frequency

  of the

 system where

 t h e

 torque required

  to

 sustain

  a

 given

amplitude

 o f

 oscillation

  i s

 directly proportional

  t o t h e

 damping

 o f t h e

 control surface.

Thus

 t he

 damping could

  be

 calculated from

  a

 measurement

  o f t h e

 armature current

 o f t h e

torque motor.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 90/236

70

For the free-oscillation tests, the system was driven at the resonant frequency of

the system to a given amplitude. The armature circuit of the torque motor was then

opened and the ensuing decay in amplitude was measured to obtain the damping from the

log decrement.

Although oscillating at resonance to obtain the initial displacement has the advantage

that the torque to deflect the control surface is small, it has the disadvantage of

increasing the mass moment of inertia of the system. Initial amplit udes for free-

oscillation motion may be obtained with a static or impulsive deflection of the surface

to the desired amplitude, but this technique has the disadvantage that the localized

loading may lead to some distortion of the control surface.

Forced-oscillation systems used for damping measurem ents, or as a means to achieve

initial amplitudes, generally require considerably mo re space compared to the require

ments for the free-oscillation system with a static displacement mechanism and therefore

are restricted to large models. Orlik -Ruc kemann

7

" has applied the forced oscillation

technique to obtain initial amplitudes for free-oscillation tests on small aerodynamic

control su rfaces by developing an experimental a ppara tus for use with half models.

The ap paratus for elevator oscillation te sts on a half-airplane model is shown in

Figu res 81 and 82. In operati on, the control surface Is oscillat ed by a pair of driving

col ls to a desired amplitude and at the resonance frequency of the oscillati ng system

and then the circuit is interrupted to allow a free oscillation. For this design, the

control surfac e motion is measure d by strain gages located on the control su rface

hinges which are, in this case, cantilever beams. The signal from the strain gages,

which is propor tional to the angular displace ment of the control surface, was process ed

with a dampometer to obtain the characteris tics of t he oscillation, and thus the aero

dynamic data.

M a r t z

75

  has used the free-oscillation technique on rocket-powered free-flight models

to obtain hinge-moment characteristics for a full-span, tralling-edge control surface

on a delta wing. Thi s same technique can also be used in wind tunnel tests. The con

trol surface was mounted to the wing through a cantilever-type flexure hinge which

was instrumented with strain gage s to measur e the control surface deflection. Initial

displacement of the control surface was achieved by plucking periodically at the root

chord by means of a motor -driv en cam s hown in Figur e 83.

Orlik-Ruckemann and Laberge

25

  have used electromagnetic excitation for free-oscilla

tion dynamic t ests on a series of delt a wings. An example of the system is shown in

Figure 84. This sys tem

76

  has been developed to the stage that its operation is com

pletely automati c, that is, the output signal from the model suspension, which is a

strain-gaged cruciform elastic member, and the input signal to the electromagnetic

oscillator form a closed-loop circuit in which the frequency is automatically adjusted

to the natural frequency of the system. After the circuit is interrupted, t he model

oscillates freely; da ta are recorded on the dampometer, and the cycle is again repeated.

This automatic feature allows acquisition of a large amount of data within a short

period of ti me and is particul arly useful for blowdown tunnels which operate for very

short time perio ds where manual adjustment of i nstrumentation is not possible without

reducing the amount of data that may be acquired. A schematic block diagram of the

system control and da ta acquisition in shown in Figure 85.

A half-model, fixed-amplitude, der ivative measurement system used in the Aerodynamic

Research Laboratory of Hawker Siddeley Dynamics Ltd. i s shown in Figure 86. The system

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 91/236

71

is described

  in

 detail

  in

 Refe rence 23.

  The

 apparatus provid es measurements

 o f t h e

wing

 and

 control surface derivatives

 d u e t o

 mode ls performi ng sinusoidal mot ion

 in

pitch

 and

 verti cal translation.

  A

 nonresonant me thod

  is

 used

 to

 reduce

 t h e

 electronic

and mechanical system complexity.

The balance system

  is

 built

 on a

 nominally rigid platfo rm which

 is

 connecte d

 to

earth

 by

 three supports

 and

 force detecting transducers. Angular, simple harmonic

motion

  is

 achieved with

 a

 variant

 o f t h e

 well-known Scotch Yoke mechanism which converts

constant angular motion into linear harmonic motion. Thi s motion

 is

 then imparted

through linkage

 t o t h e

 model shaft.

  T h e

 model

 is

 driven

  by an

 electric motor through

a variable speed gear

  box so

 that

 t h e

 fre quency

 may be

 varied between

 5 and 25

 cycles

per second

  at

 amplitudes

 of 2

 degrees.

The oscillating system

  is

 inertia balanced

  so

 that

 t h e

 difference between

 th e

 wind-on

and wind-off transducer outputs

  in

 terms

 of

 amplitude

  and

 phas e relationship with respect

to model mot ion

 ar e

 measured

  for

 oscil lations about

  two

 model

  axes.

  In-phase

 and

quadrature c omponents

  are

 resolved from these meas urements

 to

 give

 t h e

 stiffness

 and

damping derivatives

 due to

 pitch

  and

 plunge.

3. 3 D Y N A M I C R O L L D E R IV A T IV E S

As

 a

 vehicle having aerodynamic l ifting

  and

 control surfaces rolls about

  i t s

 longi

tudinal axis with

  an

 angular velocity

  P ,

 points

 on the

 surfaces follow

  a

 helix path.

Variations

 in

 spa nwise local a ngle

 o f

 attack

 o f t h e

 vehicle aerodynamic surfaces alter

the local normal

  and

 drag force loading di stribut ion

  and

 inclination

  of the

 lift vector.

In

 t he

 case

 o f a

 winged vehic le having tail surfaces, rolling

  at

 various rates produc es

a change

 in

 symmetry

 o f t h e

 trailing vorte x sheet,

  and

 thus influences

 t h e

 aerodynamic

characteristics

 o f t h e

 tail surface. These factors have

 an

 influence

 on

 derivatives

du e

 t o

 rolling.

3. 3.1 The ory

3 . 3 . 1 . 1 F r e e R o t a t i o n

The damping-in-roll derivative,

  Cj , can be

 measured using

 the

 free-rotation

method where

 t h e

 model

  is

 free

 t o

 rotate under

 th e

 influence

 of an

 initial rolling

velocity,

  and the

 subsequent decay

  in the

 roll rate

 is

 measured. Another version

 of

the free-rotation technique consists

 o f

 forced co ntinuous rotation

 by a

 known m oment

imparted

  by

 deflecting

  a

 model

 fin.

Although some

 o f t h e

 equations describing free rotat ion

  are

 include d

  in

 Section

3.2.1.3,

 the

 derivation

  i s

 included here

 for

 completeness

 and in a

 different format.

For

 a

 freely spinning axisymmetric body,

 t h e

 differential equation

 o f t h e

 free-rolling

motion

 may be

 derived

  by

 equating

  th e

 rate

 of

 change

 o f t h e

 angular momentum

 t o t h e

applied damping mom ent:

I

X

P

  =

  M

X p

P

  , (88)

where

 th e

 roll-dam ping moment,

  M

x

 P

 , consists

 o f t h e

 contribution

 d u e t o

 aerodynamic

damping

  and the

 tare damping

  due to

 friction

  in the

 bearing system.

  It is

 assumed here

that these moments

 a r e

 linear functions

 o f

 angular velocity.

  T h e

 mechanical damping

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 92/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 93/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 94/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 95/236

75

3 .3 .2 . 2 F o r c e d Ro t a t i o n

An example o f a  system

80

  for  forced, continuous-ro tatio n, damping-in-roll test s is

shown

 in

 Figure 90.

  Th e

 balance

 h a s a n

 electric motor which drives

 t he

 model through

a planetary gear system.

  The

 stationary ring gear mounted

 in the

 gear system

 i s r e

strained from rotation by an instrumented cantilever beam. Torque to  overcome model

aerodynamic damping and  friction damping  in the  system  is  proportional  to the restraint

provided by the  ring gear. Test s in a  vacuum provide tare values for  correcting t h e

wind-on data.

A two-degree-of-freedom system,

  in

 which os cill ations

 in

 roll

 are

 forced,

 h a s

 been

used

 by

 NASA

 t o

 obtain rolling deri vatives

 and

 directi onal stability

  and

 dampi ng-in-

yaw data

77

.  T h e  system h a s  been used  f o r y aw amplitudes u p t o 2 degrees a nd  forced

at oscillation frequencies up to 20 c/s.  A  schematic  and  pictorial representation of

the system i s  shown in Figures 91 and 92 to  illustrate t he  modes o f  model motion.  By

use o f  flexures and  ball bearings, th e  model  is  allowed two  angular degre es o f  freedom -

rolling

 and

 yawing

 -

 rolling being

  a

 forced oscillation

 and

 yawing being free. Harm onic,

forced oscillation  in roll  is  produced by  means o f  rotary motion of an eccentric and

oscillatory motion

 o f t h e

 drive flexure indicated

  in

 Figu re 91. Variatio ns

 in the

amplitude

 o f t h e

 oscillatory rolling motion

 are

 provided

  by the

 amount

 o f

 eccentricity

in t h e  drive system.  It is  transmitte d t o t h e  torque tube , which is  supported a t t h e

front end by  roll flexures and the aft end by a  ball bearing. Thus t he  only contact

between th e  model and the  support structure is  through t he  roll flexure system. Thi s

was necessary because o f t h e  need to  avoid the  undesirable damping characteristics of

ball bearings.

Strain gages in the  system at  locations shown in Figure 92 are  used to  measure angular

roll and ya w positions o f t h e model, and the  roll input to rque applied to the  model to

maintain forced oscillations

 in

 roll

 at a

 constant amplitude.

  The

 amplitudes

 and

 phase

angles of the  strain gage outputs are  obtained  by  passing t he  signals through a  sine-

cosine resolver located at the  drive motor and  gear driven b y t h e  motor shaft.  T h e r e

solver outputs

 are

 directly proportional

 t o t h e

 in-phase

 and

 out-of-phase components

of

 the

 strain gage signals.

  By

 vectorial summation

 of

 these quantities, osci llatio n

amplitudes are  obtained a s  well  a s t h e relati onships necessa ry to  determine t he  forcing

torque and yaw  position pha se angles.  An electronic co unter operate d  by a  portion o f

the oscillating, roll position, strain gage signal  is  used to  measure oscillation

frequency.

With th e  model rigidly restrained against motion in yaw, measurements o f t h e  roll

position, torque required for  constant amplitude roll os cillations and the  roll-input-

torque phase angle

 are

 made

 at

 vario us frequencies

 by

 means

 o f t h e

 resolvers. These

data,

  obtained  for  both wind-on and  wind-off (near vacu um) conditions, pro vide

Cj  + a C ^ a t  zero angle o f  attack  and

  C

l / 3

  at  angles o f  attack.

With the  model unrestrained against yawing motion, t he  model  is  oscillated  in roll

at  t h e y aw natural frequency to  increase the  yawing amplitude. When the  desired ampli

tude is  attained, t he  drive motor  is  stopped abruptly  and the  time history o f t h e d e

caying yawing motion is  recorded. Wind-on and  wind-off data pr ovide  C

n r

 - C

n

^ and

C

n/3-

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 96/236

76

Although the system can be operated in two degree s of freedom to obtain cross de

rivatives C

J r

  - Cjo and C.g , the experience related in Refere nce 77 indicates that,

where the system was used in this mode, the results were unreliable.

The detailed derivations and data reduction equations used with this system for

measuri ng dynamic lateral stability deriv ative s are presented in Reference 77.

3. 4 M A G N U S E F F E C T

The "Magnus force and moment", "Magnus effect", and "Magnus characteristics" are

synonymous terms which are given to the aerodynamic forces and moments that result in

the plane perpendicular t o the flow when a body is spinning in the cross flow produced

at angles of attack. The name, Magnus, was given to the phenomenon in honor of the

Berlin physicist . Prof essor G.Magnus, who around 1850 prov ed with a series of experi

ments the existence of a Magnus force

81

. L u c h u k

82

 g ives a thorough historical account

of the Magnus effect.

Magnus force da ta have become m ore Important with the more general use of spin to

produce stabilization and to overcome manufacturing asymmetries of finned projectiles.

Dynamic instability may result on a spinning projectile if the Magnus moment becomes

too large

83

. Also, the usual assumption that Magnus effects may be neglected because

the spin rate is small is sometimes erroneous

8

".

3.4.1 Typ es of Magnus For ces

There are several different types of Magnus forces and moments produced by var ious

aerodynamic mechanisms. The different Magnus effects are usually classified as those

caused by the body, by canted

  fins,

  by driven

  fins,

  by base pressure, and by vorticity

from forward wing panel s acting on the tail surfaces. These different types of Magnus

effects will be discussed briefly and, where practical, illustrated sketches are given

(Fig.93).

The body Magnus effect at low angles of attack is caused by the shifting of the

thicker boundary layer on the leeward side in the direction of the s pi n

85

  (Pig.93(a)).

Thus the body shape is effectively altered and is asymmetric. At large angles of

attack where the leeward side flow Is separated, the spin shifts the separated portion

to an asymmetric shape   (Fig.93(b)).  The body Magnus force both at small and large

angles of attack is in the negative Y directio n for posit ive (clockwise looking

upstre am) spin rates. Generally, the force acts on the rear part of the body.

On positive-spinning canted fins (Fig.93(c)) at an angle of attack, each fin, as it

rotates through the leeward side, will lose part of its force because of the blanketing

of the fin by the leeward wake

86

. At small angles of attack there will be a net nega

tive side force which will tend back toward zero as the angle of attack is increased.

Also on canted  fins,  there is a Magnus moment, which ha s been pointed out by Bento n

87

,

caused by the axial component of fin normal force.

On driven fins at zero cant angle, each fin loses part of its lift distribution as

it rotates through the leeward wake

  (Fig.93(d)).

  Thus there is a net side force in

the positive Y direc tion

86

.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 97/236

77

A Magnus moment can be established on the

  fins,

  caused by unequal fin base press ures.

This moment is small and can only exist if the boundary layer on the fins is laminar.

Platou

8

" gives a thorough explanation of this fin base pressure effect.

Benton

88

  shows that wing-tall interference can cause large Magnus effects on a finned

missil e whose wings are deflected into an aileron setting. Basically, the side loads

are caused by the vortices from the wind interacting with the tail surfaces.

3.4.2 Test Proc edur e

Determining the Magnus effects by wind tunnel tests necessitates the measurement of

the loads on the model while it is sp inning at an angle of attack. It is a well-known

fact,

  as illustrated in Figure 94

  (Ref.89),

  that the Magnus effects are dependent on

the spin parameter

  (Pb/2V).

  Therefore, in addition to the usual parameters such as

Mach number, Re ynolds number, and model attitud e, the spin parameter (Pb/2V) must a lso

be monitored.

The spin paramete r for the ground te sts must be matched with the full-scale flight

tests.

  For most wind tunnel facili ties, and especially high Mach numbers , the model

size is small, and the velocity is much lower than flight velocity because enthalpy

is not simulated. There fore much higher roll rate s are required for the wind tunnel

model than for the full-scale vehicle to properly simulate the flight spin parameter.

These required high model roll rates, as will be noted later, often introduce special

problems in the experimental work.

Tests by Plato u

89

  at Mach 2 at angles of attack up to 5 degr ees showed that the

Magnus force increased with grit size

  (Fig.95).

  Other investiga tions

8

"'

90

 also have

shown that the Magnus effects are dependent on the nature of the boundary layer, i.e.

whether it is laminar, turbulent, or transitional. There fore, since it is usually

not possible to keep the Reynolds number of the ground te sts the same as the  full-

scale flight test because of tunnel limitations, additional consideration of the in

fluence of Reynolds number and boundary layer transition, to aid in the application

of ground test results to flight data, is required.

The test method employed usually depends on the drive system of the test unit. The

different test units will be discus sed in a later section. For a motor dr ive system,

the data can be recorded at the various angles of attack while holding the rotational

speed constant, or the speed range can be covered for each angle of attack. With a

turbine drive system, the data can be recorded continuously as the spin decays while

holding other test conditions constant. In the blowdown tunnels, where the data re

cording time is limited, d ata have been recorded while increasing the rotational speed

with the turbine

91

. When using the "power-up" technique, careful examination should

be made to ensure that the data are not influenced by the air exhaust from the turbine.

Problems arise because of gyroscopic effects when data are taken continuously while

varying the angle of attack with the model spinning. Although atte mpts have been made

to eliminate the gyroscopic forces present by corrective data reduction

82

, it is best

to avoid thi s test technique if possib le because of the uncertainty involved.

3.4.3 Repre sentative System s and Drive Units

Basically, the majority of the Magnus force test systems have the model mounting

on ball bearings whose inner races are fixed to an inner shell which mounts directly

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 98/236

78

or indirectly to a four-com ponent balance. A drive unit, either an electrical motor

or an air turbine, is used to spin the model and normally is an integral part of the

system enclosed by the model. Tachometer units, consisting of permanent magnets mounted

on the rotating unit and a wire-wound pole mounted on the stationary portion of the

assembly, are usually used to measure the model spin rates. As the model rotates, the

combination provides a signal which is proportional to the spin rate. Typical s ystems

for conducting Magnus force tests are shown in Figures 96 to 100.

Rotational speeds on the order of 100,000

 r.p.m.

 are som etimes required to simulate

the full-scale flight spin rate parameter  (Pb/2Vo,).  Such speeds are very difficult,

if not impossible, to achieve with a reasonable size electric motor. Motors which are

available, consistent with model size and power requirements, are very expensive and

require positiv e internal cooling. Cooling provi des added complications to the system

because of routing the coolant lines. If the motor is the connecting link between the

balance and model, extreme care must be taken to ensure that the coolant and power

lines are not stiff enough to take some load off the balance or to create small inter

ference side loads that would influence the accuracy of the data. Also, with large

motors some unbalance in the rotor may create vibration problems. However, for large

models with fins which have high damping characteristics, the variable frequency motors

are often the best system and frequently simplify the design.

A typical Magnus force test installation

92

, using an electric drive motor, is shown

in Figure 96. The electr ic motor and gear box is an integral part of the mode l and

is the connecting link between the stationary b alance and the rotating model t hrough

a flexible coupling at the upstream end. The inner shell mounted to the balance

supports the two ball bearings on which the model rotates.

High model spin rates, not generally available with electric drive motors, have

been obtained by NOL, BRL, and WADD through the use of an air turbine housed within

the model. The air turbines can be made smaller than commercially available electric

motors,

  and weights are a fraction of those for equivalent electric motors, thus

eliminating low resonant frequencies which can interfe re with strain gage measu rements.

Also, they are more versat ile for des igning in that there i s no direct l inkage required

as with an electric motor where there must be a direct drive between model and motor.

Procedures for design of small air turbines for Magnus force balances are given in

Refer ence 93.

Magnus force test systems utilizing air turbine drive units are shown in Figures 97

to 100. For the sy stems shown in Figur es 97 to 99, the model is mounted on ball bear ings

which transmit loading to a strain gage balance, whereas in the system shown in Figure

100 a gas bearing is used for model support. All of these have the air turbi ne near

the base of th e model, with the air exhausting out of the model base into the wake

region.

  Some designs have been developed where the turbine is forward of the balance

and a return loop is used for the air exhaust. The return loop system has the adv antage

that tests can be made while increasing speed with the turbine without fear of an effect

of the air exhaust on the Magnus measur ements. However, the turbine, when enclosed

for the return loop, is out of necessity smaller for a given size model, and therefore

will produce less torque. In addition, problems may arise when air is passed through

the center of the balance becaus e of the changing balance temperature, thus reducing

the accuracy of the data.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 99/236

79

The system shown

  in

 Figure

 98 is a

 design used

 by

 WADD

 and is

 similar

 to one

 deve

loped

 by

 BRL. Rotational speeds

 up to

 90,000

 r.p.m.

 have been obtained with this unit.

The rotating assembly, consisting

 o f t h e

 model shell, turbine assembly,

  and

 tachometer

permanent magnets, mounts

 on two

 ball bearings which support

 t h e

 model

 on a

 strain

gage balance. More detailed information

 on

 this system

 m a y b e

 found

  in

 Reference

 94.

The system shown

  in

 Figure

 99 is

 used

 in the

 AEDC-VKF supersonic

  and

 hypersonic

tunnels.  T h e

 model mounts

 o n

 ball bearings

 o n an

 inner shell which fi ts over

 t h e

balance.

  T h e

 turbine

 i s a t t h e

 rear

 o f t h e

 balance and, afte r

  it has

 powered

 t h e

model

 to the

 required spin rate,

  it can be

 disconnected from

 th e

 model

  by a

 sliding

clutch.  The  balance  is a  four-component moment t ype incorporated  in the  system  a s a

separate unit. Thus, different capacity balances

 c an

 easily

 b e

 used without changing

the other parts

 o f t h e

 system.

An

 air

 bearing

 h a s

 been used

  by NOL in the

 system shown

  in

 Figure

  100 to

 provide

either

 a

 Magnus force

 or

 roll-dampi ng test capability with

 t h e

 same balance equipment

without modifications.

  T he

 model

  is

 spun

 up

 with

 an air

 turbine drive,

 and

 when

 t h e

required spin rate

 h a s

 been achieved,

  th e

 turbine drive

 i s

 disconnected from

 th e

 model

by

  an

 air-operated clutch. Magnus measurements

  are

 made with

  a

 four-component balance

which

  is

 interchangeable

  to

 provide different load capabilities. This balance

 is

more complex than

 one

 normally used with

 a

 ball beari ng support, since supply

  air for

the

 g a s

 bearing

  and

 balance coolant must

 be

 routed through

  t he

 balance.

3.4.3.1  Be a r i n g s

A critical factor

  in the

 rotating mo del Magnus force mea suring system

  is the

 bearings,

since they must

  in

 some cases

 be

 capable

 of

 withstanding rotational speeds

 o f

 100,000

r.p.m. or

 more.

  It is a

 general p ract ice

 to

 mount

 t h e

 bearings

 so

 that they

  are

 sub

jected

  to a

 thrust load

 at all

 times.  Thi s preload confines

 t h e

 ball rotation

 to one

axis

 and

 prev ents brlnelling

  o f t h e

 race s that could occur from dynamic axial movement.

Temperature rises

 in

 bearings result from operation

  at

 high speeds

 and

 these should

be monitored

  to

 given

  an

 indication

  o f t h e

 bearing p erform ances.

Bearings used

  in the

 WADD M agnus force balance system

  are run at

 10,000

 and

 20,000

r.p.m.

 and

 temperatures

 are

 continuously monitored until

 t h e

 temperature levels

 off.

A plateau

  in

 temperature

  at the

 forward

  end of the

 support strut

  i s an

 Indicat ion that

the bearings

 are in

 good condition

  and

 that

 t h e

 balls have worn

 a

 track cycle.

Temperatures

  a re

 continually monitored during

  tests,  and

 excessive rises above about

150°P indicate that

 t h e

 bearings should

  be

 disassemb led, rinsed

  in

 solvent,

  and re-

greased. Experience indicates that bearing temper atures much above 150°F signal

 t h e

onset

 of

 freezing

 o f t h e

 bearing assembly.

As noted earlier,

  th e

 Magnus force system shown

  in

 Figure

 98 was

 designed

  by

 WADD

using much

 o f t h e

 experience from BRL.

  A

 series

 o f

 tests

 wa s

 made

 by

 WADD

 to

 extend

the

 u s e o f t h e BR L

 developed bearings

 to

 rotational speeds considerably above

 t h e

40,000

 t o

 50,000

 r.p.m.

  specified

  b y t h e

 manufactur er

  a s t h e

 upper limit.

Bearing failures were generally found

 t o

 occur when

 t h e

 inner race temperat ures

reached

  200 to

 250°P. Because

 o f t h e

 heat generated, carbon parti cles from

 the

 lubricant

and phenolic retainer were produced,

  and

 under some conditions

 t h e

 carbon particles

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 100/236

80

scored the

 races,

 produced additional heat, and  ultimately caused failure. This problem

was overcome by a   conditioning procedure devised by  WADD (Ref.94) which consisted of

bearing

  run in to

 seat

 the

 balls

 and

 also form

 a

 glazed surface

 on the

 phenolic retainer

at critical contact points.

Lubrication

 of

 bearings

 is

 dep endent

  for the

 most part

 on the

 type

 o f

 operation they

will be  subjected to.  Fo r intermittent service, where  the  bearings are  allowed to

coo'l, lubrication consists

 o f

 light applications

 o f

 Aircraft

  and

 Instrument Grease ,

MIL-G-25760

 and a few

 drops

 o f

 Instrument L ubrica ting Oil, MIL-L-6085A.

  N o

 grease

seals are  used, since a  portion o f th e grease remains o n the  bearings f or  intermittent

operations.

  Conditioning

 o f t h e

 bearing

  in

 this manner

 h a s

 resulted

  in a

 life span

of

  10 to 50

 runs with c leaning between every

  10 to 20

 spinups.

Continuous ope ration

 at

 high rotational speeds

 o f

 70,000

 to

 90,000

 r.p.m.

  requires

continuous bearing cooling to  prevent excessive h eating  and  bearing freeze up.  The

WADD system shown

  in

 Figure

 98 was

 designed with

 a

 bleed line from

 the

 main

 air

 supply

to provide cooling

 air to the

 bearings. Reduction

 o f th e

 front bearing temperature

was effectively achieved; however, c ooling of the  rear bearing wa s  ineffective.  The

bearing temperatures

 a re

 shown

  in

 Figure

  101 fo r

 various throttle value settings

 on

the

 air

 cooling

 air

 supply. Although this method

 of

 cooling

  is

 effective,

  it

 reduced

the number of  runs between lubrica tions because t h e  lubricant wa s  carried away with

the cooling air.  A final d evelop ment  in the  system included mist lubrication  by an

alemite system to maintain lu brica tion while cool ing

 t h e

 bearings. Details

 of the

lubrication system

  are

 shown

  in

 Figure

 102.

Bearings with phenolic retainers were used exclusively  in the  WADD Magnus force

s y s t e m

98

, since these were found

 to

 possess

 the

 best proper ties

 for

 rapid acceler ations

and high speeds. Radial-type ball bearings provided t he  best combinatio n with t h e

inner race spring-loaded.

  A

 preci sion bear ing with controlled minimum play

 wa s

 used

for

 the

 front bearing

 and a

 class

 3

 bearing

 for the

 rear bearing. Stainless steel

bearings were used at the  rear station bec ause  the  rear bearing ope rated  at  higher

temperatures

 a nd

 greater dissipation

 o f

 heat

 wa s

 achieved with st ainless steel bear ings.

3 . 4 . 3 . 2 M od el C o n s t r u c t i o n

Dynamic conditions c an exist  at  high rotational speeds which render Magnus force

data unreliable, increase bearing wear, cause fouling   in the air turbine dri ve system,

and also reduce turbine performance. These adverse conditions

 may be

 eliminated

 or

minimized by  dynamic balancing of the model.  T h e  balancing should be  done carefully

and  to a  high degree of  accuracy , since only a  very small unbalance can significantly

influence

 t h e

 accuracy

 o f t h e

 data.

The ideal model

 is one

 with

 lo w

 weight

 and

 high strength

 and

 designed

 to

 maintain

good fits regardless

 o f

 temperature gradients, normal loading,

 and

 spin  rates.

  A

material combination used frequently  i s  75ST alum inum  and  heat-treated stainless

steel. This combination h a s l o w weigh t  and  high strength,  and  good fits may be

maintained.

  It is

 particularly important that

 a

 minimum

 of

 parts

 be

 used

  and

 that

 all

mating parts

 be

 made

 to

 close tolerances,

 so

 that dynamic balancing will

 not be re

quired after each assembly.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 101/236

81

3 . 4 . 3 .3 S t r a i n G age Ba l a n ce

Four-component strain gage balances are  required to  record fo rces a nd  moments

generated  in the  pitch and yaw  planes by  model spin. Since Mag nus force s are at the

maximum

  1/10 to 1/20 of t he

 normal force

 and can be

 much smaller,

 t h e

 Magnus balance

must be  stiff enough t o  withstand l arge normal- forc e l oads while at the  same time

maintain t h e  sensitivity required to  accurately measure the  small side loads.  N O L

developed a  balance with eccentric side beam s so  that when th e  balance  is  subject to

yaw loads a  secondary bending moment  i s  induced in the  eccentric column which acts a s

a mechanical amplifier

79

.  An AEDC- VKF ba lance of  this type is  shown in Figure  103(b).

The AEDC-VKF balance h a s a  normal force t o  side force capacity ratio o f  10. Balances

have also been developed which have extremely small outrigger side be ams that  act as

pure tension members. Normal force t o  side force capacities up to 25 have been

obtained with this design  (Fig.103(a)).

Satisfactory results

 can be

 obtained with

 t h e

 forementioned meth ods utili zing co n

ventional wire strain gages. However,

  an

 attractive method

  for

 improveme nt

 o f

 Magnus

force measurements

 is to use

 semiconductor strain gages

 a s

 substitutes

 for

 wire-wound

gages.  Wire gages have

 a

 gage factor

 of

 2, wherea s semi conductor ga ge fa ctors

 are on

the order

 of 60 to

 200. Uti lizatio n

 o f

 semiconductor strain gages would produce

voltage outputs 30 to 100 times greater than t he  conventional wire ga ges, since t h e

voltage output  for a  given stress is  directly proportional t o t h e gage factor.

The feasibility of  using semiconductor strain gages for  Magnus force measurements

has been investigated  by  Platou o f  BR L

96

. Resu lts from these investigatio ns show that

the semiconductor strain gage is  very sensitive t o  temperature. These adverse effects

can be  diminished by  temperature compensation provided factory matched gages are  used

in each bridge.  In additio n, th e  usual precauti ons in mounting, bonding,  and  soldering

connections should

 be

 strictly adhered

 to for

 good performance.

  An

 example

 o f t h e

increased sensitivity obtained using semiconductor strain gages  is  shown in Figure 104.

3. 5 P R E S S U R E M E A S U R E M E N T S

Most o f t h e interest  in the  last  20 years o r  more h a s  been  in the  development of

instrumentation  for  measuring total forces a nd  moments o n a  model rather than local

values.

  However, some efforts have been directed toward measuring forces and  moments

on segmented wings at  supersonic s pe e ds

97

'

98

 t o  obtain s ection static aerodynamic

characteristics. Distributions o f  forces and  moments, as  well a s t h e  total loading,

are o f  considerable value, especially  to  validate theories. Detailed study of  aero

dynamic damping

 m a y b e

 enhanced

 by

 knowledge

 of

 local loading especiall y

  for the

 cases

of models having flow separations, boundary layer transition which varies with angle

of attack,

  and

 model s constructed with

 low

 temperature ablation simulators releasing

gas

 to the

 boundary layer.

Measurements o f  detailed pres sure distributions on an oscillating model and  integra

tion o f t h e  distributi ons provi de a  means to  obtain local loading relativ e t o t h e

motion o f t h e model  and  in-phase and  quadrature lift and  moment.

With

 the

 exception

 of

 some unreported tests

 at

 AEDC-VKP

 on an 8-degre e

 cone

 a t

 Mach

4

 and

 measurements

 o f

 pressure distributions

 on an

 oscillating wedge

 at

 Mach

  1.4 and

1.8  (Ref.99),  most

 o f t h e

 experimental wo r k

1 0 0 - 1 0 2

 h a s

 been conducted

  at low

 subsonic

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 102/236

82

and transonic speeds. The auth ors reporting on these tests have described the trans

ducer installations, test techniques, and data reduction in detail, and therefore their

work has been used liberally in preparing the following sections.

3.5.1 Tra nsduce r Instal lati on

The most important considerations in developing a system for measuring pressures on

an oscillating model are the transducer characteristics and installation.

Some of the desirable charact eristics for a transducer to measure time-varying

pressures on oscillating models, in addition to resolving power  a r e

1 0 3 , 1 0

":

(a) Transduce r outpu ts should be insensitive to the inertia loads imposed under

oscillatory conditions.

(b) Transducer outputs should be linear with applied pressure.

(c) The tra nsducer should be small to allo w installation of sever al units spaced

for adequate coverage and installation close to the measuring point to avoid

a lag in response.

(d) The resonant fr equencies of the transduce r com ponents should be well abo ve the

frequency range for pressure mea surements.

(e) The diameter of the pressure receiver should be smaller than the half wave

length of the press ure wave.

(f) The tra nsducer should be insensitive to environmental t emperat ure change.

In practice, there may not be one transducer with characteristics which embody all

of these requirements for a particular application, and therefore a practical design

must be developed with the sacrifice of some of the desirable features. In all cases,

however, the transducer should be selected giving major weight to both high resolving

power and high frequency response.

The next important consideration following selection of a transducer using these

guid elines is the installation. The method of installation is governed to a large

extent by the size and geometry of the model and the transducer response characteristics.

The transducer should be located near enough to the surface to accurately measure

rapidly varying pressures. Ideally, it is most desirable to have the transducer dia

phragm right at th e measuring point to have zero tube length and transducer volume.

This,  however, is not very feasible for most installations, and, therefore, the trans

ducer must be connected to the pressure orifice by a connecting tube. Transducers

used are usually the differe ntial-pressure type which require a reference pressure

system on one side of the transducer diaphragm.

Connecting tubing between the orifice and transducer must be selected with proper

regard to the important variables - namely frequency response and phase shift.

3.5.2 Pressu re System Response

In the range of typical tubing lengths ranging from 0.1 to 6 in., tubing diameters

ranging from 0.015 to 0.125 in. and transducer volumes from 0.01 to 0.1 cubic in.,

D a v i s

10

"

 notes that t he viscous and thermal effects predominate, with a dependency o n

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 103/236

83

the frequency o f oscillation.  An example of the  magnitude pre ssure response and  phase

angle variation with frequency from Reference

  104 is

 presented

  in

 Figure

  105 to

 illus

trate these effects.

A method

  is

 presented

  by

 D a v i s

10

"

 for

 calculating

  the

 dynamic response

 of a

 system

and phase angle  for a  sinusoidal pressure input.  The  assumptions used  in the  formu

lation, based on the  work of  Ref er ences 105.  106 and  107, include

(a) constant press ure over the tube cross section,

(b) constant press ure over the  gage volume,

(c) laminar flow throughout  the system,

(d) small pressu re perturbations.

The expression  for the  pressure  at the  transducer  or  gage  is  given by

p

m ^ 1

P i V

e

  l

2

co

2

  V

E

  8 p l

2

1

  1 - - * — 5 - +  i c o - Z  -

V

t

  c

2

  V

t

  p r

2

This equation should only be used  as a rough g uide, since the pressure system has

been represented  by a  differential equation with frequency-dependent coeff icients.

Exact character istics

 of a

 pressure system should

  be

 determined

  by

 calibration.

3.5.3 Cal ibr ati on Tec hnique

Calibration of a transducer t ubing syste m which  is to be  used  for unsteady pressure

measurements  is necessary because of the  numerous uncertainties which exist  in the

analytical treatment.

The dynamic response calibration o f a pressure transducer  and  tubing system is

characterized  by  frequency response curves such as  those  in Figure  105 showing magnitude

and phase angle. Specialized calibrat ion equipment  is necessary  for calib ratio ns which

must be  made over  a  wide range o f frequencies. Techniques for  calibrating microphones

are directly applic able to  calibration  of  pressure transducers and are used here to

outline general specifications for  pressur e transducer calibration equi pm ent

10

"'

1

  .

(i )

 Th e

 pressur e oscillation amplitude should

  be

 constant o ver long per iods

 and

at different frequencies and  easily variable over the  range of  interest.

(ii) The  fr equency of oscill ation shoul d  be continuously varia ble over  the frequency

range of  interest.

( H i ) Local conditions such  as  mean pres sure  and  temperature should be variable

over t he range of  interest and  known.

(iv) Th e wave form o f t h e pressur e o scillation should b e relatively free o f  harmonics.

(v) Th e  calibr ation equipment should ha ve a standard pickup near the  point of

measurement.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 104/236

84

For dynamic calibrations at  f requencies of 25 c/s and lower,  a  system of the type

shown

 in

 Figure

  106

 will provide

  a

 sinusoidal, oscillating pressure. Oscillation

 of

the pump plunger  by motion of the motor drive cam  pressurizes the  diaphragm  and  pro

duces a n oscillat ing pres sure input to the  transducer.  The  phase  lag  between the

pressure application

  and

 transducer response

  is

 determined from comp onents

 of the

transducer output  in phase  and in quadrature with the motion of the  plunger.  The  mean

pressure in the  calibration may be adjusted  for the  pressure range of  interest.

For frequencies between  10 and 100 c/s, a  piston-type calibrator may be used;

however,  at  higher frequencies up to  5000,  D a v i s

10

" recommends  a  cam-type pulsator of

the type shown  in Fig ure 107.  The  pulsator chamber  is  supplied with high pre ssure air

which exits through  an opening controlled  by the rotating cam.  The  space between the

cam

 and the

 exit

  is

 adjusted until

 the

 wave form

 i s

 sinusoidal. Reference pressure

gages and the  transducer  and  tube system to be calibrated  are  mounted  to sense the

pressure within the chamber of the pulsator.

R E F E R E N C E S

1. Lanchester ,  F.  W.

2.

  Bryan, G.H.

3. Dura nd,

  W.P.

 (Editor)

A e r o d o n e t i c s .  Constable, London, 1908.

S t a b i l i t y i n A v i a t i o n .

  MacMillan, 1911.

A erodynam i c Theo ry .

  Vol.V., Div.N, Springer, Berlin,

1934-1936.

4.  Valensi, J.

A Review of the Techniques of Measur ing O sc i l l a to ry

Aerodynamic Fo rce s and Moments on Models O sc i l la t i n g in

Wind Tunn els in Use on the Co nt i ne nt .

  AG  15/P6,  Papers

presented  at the  Fifth Meeting of the AGARD Wind Tunnel

and Model Testing Panel, Scheveningen, Netherlands, May

3-7, 1954.

5.

6.

7.

8.

Arnold, Lee

Bratt, J.B.

Dayman,

  B.

 ,  Jr

Ames Research

Center Staff

Dynamic Me asurem ents in Wind Tu nn els .

  AGARDograph 11,

August 1955.

Wind-Tunnel Techniques for the Measurement of O sc i l l a to ry

D e r i v a t i v e s .  ARC R & M  3319, ARC 22 146, A ugu st 1960.

Fr ee -F l ig h t Te s t in g in H igh-Speed Wind Tun nel s .  AGARDo

grap h 113. Mar ch 1966.

B al l i s t i c - R an g e T ech n o lo g y .  AGARDograph in preparation.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 105/236

85

9. Orlik-Ruckemann, K.

10.

  P e rk ins, C D .

Hage,

 R.P.

11. E tkin, B.

12.  Babister, A. W.

13. Eastman, P. S.

14.

  Eastman, P.S.

15.

  Young, W.E.

16.  Wittrick, W.H.

17.  O'Neill,   E. B.

Phillips, K. A.

18. Hodapp, A.E.

19.

  Regan, P.J.

Horanoff, E.

20.  Richardson, H. H.

21.  Welsh, C.J.

et al.

22.  Mechanical Technology,

Inc.,   (Edited by

N.P.Rieger)

23.  Hall, G. Q.

 .

Osborne, L.

 A.

Methods of Measurement of Aircraf t Dynamic Stabi l i ty

D e r i v a t i v e s .  National Research Council, Canada, LR-254,

July 1959.

A i r p l a n e P e rf o rm a n c e, S t a b i l i t y a nd C o n t r o l .

  John Wiley,

New York, 1949.

D y n a m i c s o f F l i g h t .  Joh n Wiley , New York, 1959.

A i r c r a f t S t a b i l i t y a nd C o n t r o l .  Pergamon Press, 1961.

Flex ure P iv o t s to Rep lace Kni fe Edges and Ba l l Be ar i ngs .

University of Washington Experimental Station Bulletin

No.86,  November 1935.

The Des ign o f F lexure P iv o t s .  Journal of the Aeronautical

Sciences, Vol.5.   No. l, Nove mber 1937, pp.16-21.

I n v e s t i g a t i o n o f t h e C r o s s - S p r i n g P i v o t .  Journal of

Applied Mechanics,

 Vol.XI.

  N o. 2, Ju ne 1944.

 pp.

 A113-A120.

The Theory o f Symmetr ica l Crossed F lexure P ivo ts .

  Council

for Scientific and Industrial R esearch , Divi sion of

Aer onaut ics Repo rt SM 108, Januar y 1948, ATI 37 720.

A Comparison o f Dam ping- in -P i tch Der iv a t i ve s Obta ined

t h r ou g h D i f f e r e n t E x p e r i m e n t a l T e c h n i q u e s .  David Taylor

Model Basin, May 1966, Privat e Communication.

Ev alu at i on of a Gas Be arin g Pi vo t fo r a High Ampli tude

D yn am ic S t a b i l i t y B a l a n c e .  AEDC -TDR -62-221, Decemb er

1962,

  AD 290 948.

Wind Tunnel Model Support Using a Gas Bearing.

  NOL

TR-65-14.

S ta t i c and Dynamic C ha ra c t e r i s t i c s o f Compensa ted Gas

B e a r i n g s .  ASME Transactions,   Vol.80,  October 1958,

pp.

 1503-1509.

Dynamic S ta b i l i ty Tes ts in Hyperson ic Tunne ls and a t

L a r g e M o d e l A m p l i t u d e s .  AED C-T R-59-24, Dece mber 1959,

AD 229516.

D e s i g n o f G a s B e a r i n g s .

  Vols.

 I and II, 1966.

D e s c r i p t i o n o f t h e H SD /Cov . H a lf -M o d e l O s c i l l a t i n g D e r i v a

t i v e M e a s u r e m e n t R i g .  Hawker Siddeley Dynamics, Coventry,

ARL Report  64/10.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 106/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 107/236

87

38.

 Nicolaides. J.D.

M i s s i l e F l i g h t a nd A s t r o d yn a m i c s .  US Bureau of Weapons,

Dep art ment of the Navy. TN-100A, 1959-61.

39.

  Cunningham, W.J. I n t r o d u c t i o n t o N o n l i n ea r A n a l y s i s .

York, 1958.

McGraw-Hill, New

40.  Winter, Aurel

41.  Murphy, C.H.

42.  Nicolaides, J.D.

43.

 Red d, B.

Oslen,

 D.

 M.

Barton.

 R.

 L.

The Schw arzian Der iv at iv e and the Approximation Method

o f B r i l l o u i n .  Quarterly of Applied Mathematics, Vol.XVI,

No.l,

  April 1958. pp. 82-86.

Free F l igh t Mot ion o f Symmetr ic Miss i le s .

1216,  July 1963.

BRL Report

Oi   th e F r e e F l i g h t M o ti on o f M i s s i l e s H av i ng S l i g h t

Co n f i g u r a t i o n a l A s y m m e t r i e s .  BRL Report 858, June 1953

and IAS Preprint 395. 1952, AD 26405.

Rela t ionsh ip Be tween the Aerodynamic Damping Der iva t ives

Measured as a Func t ion o f I n s tan tan eou s Angu la r Di s

placem ent and the Aerodynamic Damping D er iv at iv es Measured

a s a F u n c t i o n o f O s c i l l a t i o n A m p l i tu d e .

  NASA TN D-2855,

June 1965.

44.   Wehrend, W. R. J r

45.

  Meyer, R.C.

Seredinsky, V.

An Ex per im ent al E va lu at io n of Aerodynamic Damping Moments

o f Cones wi th Di f fe ren t Cen te rs o f R o ta t io n .  NASA TN

D-1768. March 1963.

L o n g i t u d i n a l A x i s T r a n s f e r Re l a t i o n s A p p l i c a b l e t o L a r g e

Angle -o f -At tack Dynamic Da ta .

  Grumman Report ADR

 01-07-

63.

 1.

46.

  Nicolaides, J.D.

Eikenberry, R.F.

47.  Ur ban, R.H.

48.  Vaucheret, Xavier

Broussaud, Pierre

49.  Dubose, H. C

50.  Maas,

  W.

 L.

51.  Stalmach, C.J. Jr

Moore,

  D.R.

Lindsey, J. L.

Dynamic Wind-Tunnel Test ing Techniques.

  AIAA Paper  66-752,

AIAA Aerodynamic Testing Conference, Los Angeles,

 Cali

fornia, September

  21-23,

  1966.

A D yn am ic S t a b i l i t y Ba l a n c e f o r H y p e r v e l o c i t y ( H o t s h o t )

T u n n e l s .  AED C-T R-65-222, Octo ber 1965, AD 472707.

D i s p o s i t i f d ' O s c i l l a t i o n s L i b r e s P ou r S o u f f l e r i e s a

R a f a l e s .  (Free-Oscillation Device for Intermittent Wind

Tunnels),  L a Recherche Aerospatiale

 No .107,

  Juillet-Aout,

1965, pp . 49-52.

S t a t i c a nd D ynam ic S t a b i l i t y o f B l u n t Bo d i e s .

  AGARD

Rep ort 347, April 1961.

Ex peri me ntal D eter mi nati on of Pi t ch in g Moment and Damping

C oe ff ic ie nt s of a Cone in Low D en si t y , Hyp ersonic Flow.

University of Califo rnia. Technical Report HE-150-190.

S t a b i l i t y I n v e s t i g a t i o n s D ur in g S i m u l a te d A b l a t i o n i n a

Hy perv e loc i ty Wind Tunne l - I n c lu d in g Phase Co n t r o l .

  LTV

Report 2-59740/5R-2192, April 1965.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 108/236

88

52.

  Moore,

 D.

 R.

Stalmach, C.J. Jr

Pope,

  T. C.

Dynamic S t a b i l i t y Wind-Tunnel Te s ts of a 10° Cone with

S i m u l a t e d A b l a t i o n a t

  Ms,  = 17 . AIAA Paper  66-757,

AIAA Aerodynamic Testing Conference, September   21-23,

1966.

53.  O lsson, C 0.

Orlik-Ruckemann, K.J.

An El ec t ro n i c Appara tus for Automat ic Record ing of the

Log ar i thmic Decrement and Frequency of O sc i l l a t i o n in

the Audio and Sub-Audio Frequency Range.

  The Aero

nautical Rese arch Institute of Sweden, FFA Report 52,

February 1954.

54.   Orlik-Ruckemann, K.J.

Travel Summation and Time Summation Methods of Free-

O s c i l l a t i o n D a t a A n a l y s i s .

  Technical Note, AIAA Journal,

Vol.1.  No .7, July 1963, pp. 1698-1700.

55.  Leach, R.N.

56.   Welsh. C.J.

Hance,

 Q.

 P.

Ward. L.K.

A S li d e Rule Type of Device to Measure Log ar i thm ic Decay

T imes a s P r e s en t ed by O s c i l l o g r a p h R eco r d s . S an d i a

Corporation SC-4418 (RR). March 1960.

A Fo rc ed -O sc i l l a t io n Balanc e System for the von Karman

G as D y namics F a c i l i t y 4 0 - by 4 0 - I n ch S u p e r s o n i c T u n n e l .

AEDC -TN-61-63, May 196 1. AD 257 38 0.

57.

  R id dl e. C D . A D e s c r i p t i o n o f a F o r c e d - O s c i l l a t i o n B a l a n c e .

TDR-62-68,

 Ma y 1962, AD 276105.

AEDC-

58.

  McKee,

 M.

 L.

59.

  Kilgore, R.A.

Averett, B.

 T.

A D es cr ip t io n of the Con t ro l and Readout Sys tem for a

F o r c e d - O s c i l l a t i o n B a l a n c e .

  AED C-T DR- 62-69, June 1962,

AD 277453.

A F o r ce d - O s c i l l a t i o n M eth od f o r D yn amic S t a b i l i t y T es t i n g .

Procee dings AIAA Aerodynamic Testing Conference, Washington,

DC, Ma rch 9-10. 1964, pp.59-62, (Journal o f Aircraf t,

Vol.1,   September-October 1964,  pp. 304-305).

60.   Braslow, A.L.

Wiley, H.G.

Lee,   C.

 Q.

A R i g i d l y F o r ced O s c i l l a t i o n S y s t em f o r M eas u ri n g Dy namic -

S t a b i l i t y P a r ame t e r s i n T r an s o n i c and S u p e r s o n i c W ind

T u n n e l s .

  NAS A TN D-1231, March 1962.

61.  Bielat, R.P.

Wiley, H.G.

D ynam ic L o n g i t u d i n a l a n d D i r e c t i o n a l S t a b i l i t y D e r i v a t i v e s

fo r a 45° Sweptback-Wing Ai rp lan e Model at Tra nso nic

S p e ed s. NASA TM X-3 9, A ugust 1959.

62 .

  Thompson, J. S.

Pa i l , R .A.

63.

  Beam, B.H.

O s c i l l a t o r y D e r i v a t i v e M eas ur emen ts o n S t i n g M o un ted

W i n d T u n n e l M o d e l s .

  RAE Report Aero  2668, Ju ly 1962.

A Wind Tunnel T est Tec hniqu e fo r M easurin g the Dynamic

R o t a r y S t a b i l i t y D e r i v a t i v e s a t S u bs o n ic a nd S u p e r s o n i c

S p e e d s .

  NAC A Repor t 1258, 1956.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 109/236

89

64.  Roos, F.W,

Kuethe, A.M.

65.  Tournier, M.

Laurenceau, P.

66.

  Zapata, R.  N.

Dukes,

  T.

 A.

A pp lic at io n of an Ele ctr om ag net ic Method to Dynamic

S t a b i l i t y M e a s u r e m e n t s .

  ARL  66-0135, July 1966. Summary

of A R L  Symposium on Magnetic Wind Tunnel Model Suspension

and Balance Systems, b y  P. L.Damn.

Suspens ion Magne tique d 'une Maque t te en So uf f l e r ie .

  La

Recher che Aeronautique, No.59, Juill et-Aou t, 1957, pp.21-26.

The P r i n c e t o n U n i v e r s i t y E l e c t r o m a g n e t i c S u s p e n s io n

System and I t s Use as a Forc e Bala nce .  ARL 66-0135, July

1966.  Summary

 o f A R L

 Symposium

 on

 Magnetic Wind Tunnel

Model Suspension

  and

 Balance Systems ,

 by

 F.L.Daum.

67.  Phillips. W.M.

The Measurement of Low De nsi ty Sphere Drag with a U ni ve rs i ty

o f Vi rg in ia Magne t ic Ba lance .  ARL 66-0135, July 1966.

Summary of ARL  Symposium on Magnetic Wind Tunnel Model

Suspension

  and

 Balance Systems ,

 by

 F.L.Daum.

68.  Wilson,

 A.

Luff, B.

The Development, Desig n and C on str uc t io n of a Magnetic

Sus pen sion System fo r the RAE 7 in .  x 7  in . (18 x18 cm)

Hy p e r s o n ic Wind T u n n e l .

  A RL  66-0135. Jul y 1966. Summary

of  ARL  Symposium on Magnetic Wind Tunnel Mod el Susp ension

and Balance Systems, b y  P.L.Daum.

69.

  Crane,

 J.F.W.

Pr el im in ar y Wind Tunnel T es ts of the RAE Magnetic Su s

pe nsi on System and a D isc us sio n of Some Drag Measurements

Ob taine d for a 20° Cone,

  ARL 66-0135, July 1966. Summary

of

 ARL

 Symposium

 on

 Magnetic Wind Tunnel Mo del Suspension

and Balance Systems,

 by

 P.L.Daum.

70.  Judd,

 M.

Goodyer,

 M.J.

Some Fa ct or s in the Design of Magnetic Susp ensio n Systems

f o r Dy n a m ic T e s t i n g .  AR L

 66-0135, July 1966. Sum mar y

 of

ARL Symposium

 on

 Magnetic Wind Tu nnel Model Suspension

and Balance S ystems,

 by

 F.L.Daum.

71.  Goodyer,

 M.J.

The Th eor e t i ca l and Exper im en ta l Pe r formance o f R o l l

Control Elements in the Six Component Magnetic Wind

T u n n e l B a l a n c e .  ARL

 66-0135, July 1966. Summar y

 of ARL

Symposium

  on

 Magnetic Wind Tunnel Model Suspension

 and

Balance Systems, by  F. L.Daum.

72.  Martin,

 D.J.

Thompson, R.F.

Martz,

 C W.

E x p l o r a t o r y I n v e s t i g a t i o n o f t h e M om ents on O s c i l l a t i n g

Cont ro l Sur faces a t T ranson ic Speeds .

  NACA RM L55E31b,

August

 1955.

73.  Reese,

 D.E. Jr

Carlson, W.

 C

74.  Orlik-Ruckemann, K.J.

An Exper im en ta l I nv es t i ga t i on o f the Hinge-Moment C hara c te r

i s t i c s o f a Co n s t a n t- Ch o r d Co n t r o l S u r f a c e O s c i l l a t i n g a t

H i g h F r e q u e n c y .  NACA RM  A55J24, December  1955.

Some Data on E le va t o r Damping and S t i f fn es s D er iv a t iv es

on a D el ta Wing A ir cr af t Model a t Sup erso nic S peed s.

National Research Council, Canada report, 1959.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 110/236

90

75.  Martz, C J .

76.

  Orlik-Ruckemann, K.J.

77.  Lessing, H . C

Fryer,

 T. B.

Mead, M.H.

78.  Regan, P.J.

79.

  Regan,

 F.J.

Horanoff, E.

80.

  Volluz.

 R.J.

81.  Magnus, Gustav

82.  Luchuk, W.

83.  Nicolaides, John D.

MacAllister, Leonard  C

84.  Platou, A. S.

85.  Martin, J.C.

86.  Platou, A. S.

87.  Benton,

 E.

 R.

88.  Benton,

  E.

 R.

E x p e r i men t a l H i n g e M oments on F r e e l y O s c i l l a t i n g F l ap -

T y p e C o n t r o l S u r f a c e s .

  NACA RM  L56G20, October  1956.

Measurement of Aerodynamic Damping and S t i f f n e ss De

r i v a t i v e s i n F r e e O s c i l l a t i n g w i t h A u t o m a t i c a l l y R e c y cl e d

F e e d b a c k E x c i t a t i o n .

  National Research Council, Canada,

Report LR-246, June 1959.

A S y s tem f o r M eas u r in g t h e D yn amic L a t e r a l S t a b i l i t y

D er iv a t iv es in H igh-Speed Wind Tun nel s .  NACA TN 3348,

December 1954.

R ol l Damping Moment Measurements fo r the Ba sic Fi nn er

a t Subson ic and Sup er son ic Spe eds .

  NAVORD Report

 6652,

March 1964.

Wind Tunnel Model Suppor t Using a Gas Bear ing.

  US Naval

Ordnance Laboratory, White Oak, Maryland,  NOL TR 65-14,

in publication.

Wind Tunnel I ns t ru m en ta t io n and Op era t io n .  Handbook of

Supersonic Aerodynamics, Sectio n 20, NAVORD Report 1488

(Vol.6).

Ueber die Abweichung der Geschosse.

Berliner Akademie, 1852.

Abhandlungen der

The Dependence of the Magnus Force and Moment on the

N o se S h ap e o f C y l i n d r i ca l B o d i e s o f F i n e n es s R a t i o 5 a t

a Mach Number  o f 1 . 7 5 .

  NAVORD Repor t 4425, April 1957.

A Review of A e ro b a l l i s t i c Range Rese arch on Winged and /or

F i n n e d M i s s i l e s .

  TN 5,  1954, Bureau o f  Ordnance, Dept.

of the Navy, Washington.  DC. AD 95 044.

M agnus C h a r a c t e r i s t i c s o f F i n n e d an d N o n fi nn e d P r o j e c t i l e s .

AIAA J ournal, Vol.3, No. l, Ja nuary 1965, pp.83-90.

Oi

  Magnus E ffe ct s Caused by the Boundary Layer D isp la ce

ment Thic kne ss on Bo die s of Re vo lut ion at Small Angles

o f A t t a c k .

  BR L

 Report 870, June

 1955.

The Magnus Force on a Finned Body.

March 1963.

BRL Report

 1193,

S u p e r s o n i c M ag nu s E f f ec t o n a F i n n ed M i s s i l e .

  AIAA

Journal,  Vol.2, N o. l, January 1964, pp.153-155.

W i n g -T a i l I n t e r f e r en ce a s a C aus e o f " M ag n u s " E f f ec t s

on  a  F i n ne d M i s s i l e .

  Journal of the  Aerospace Sciences,

Vol.29.

  No.11.  Nov emb er 1962, pp. 1358-1367.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 111/236

91

89.   Platou, A. S.

The Magnus Force on a Short Body at Supersonic Speeds.

BRL Repo rt 1062, Januar y 1959. AD 212 064.

90.   Nicolaides, J.D.

Brady, J.J.

Magnus Moments on Pure Cones in Su pe rso nic F li g h t.

  NAVORD

Repo rt 6183, January 1959.

91.  Greene, J.E.

A Summary o f Exper imen ta l Magnus C ha ra c t e r i s t i c s o f a 7

and 5-Caliber Body of Revolut ion a t Subsonic Through

S u p e r s o n i c S p e e d s .  NAVOR D Rep ort 6110, Augus t 1958.

92.  Uselton, J.C. I nv es t i ga t i on o f the Magnus Ef fec ts and the E f f ec t s o f

Unsymm etrical Leeward Vortex P at te rn s on a High Fine nes s

R at io M odel at Mach Numbers 3 and 5.  University of

Tennessee, Master of Science Thesis, August 1966.

93.

 Cornett, R.

94.  Parobek, D. M.

Design of a M ini atu re High-Speed Air Turbine for Spi nnin g

W i n d - T u n n e l M o d e l s .

  NAVORD Report  4206,  1956.

Development of Wind Tunnel Models , I ns tr um en ts , and

Technique s for Tr iso ni c Magnus Forc e Tes t in g a t High

Sp in R at es and fo r the Angle of At ta ck Range of 0 to 180

d e g .  WAD D TR- 60-213, Augu st 1960.

95.

  Curry, W. H.

Reed, J.P.

Measurement of Magnus E ff ec ts on a Soundin g Rocket Model

in a Su per son ic Wind Tunnel .

  AIAA Paper

 66-754,

 AIAA

Aerodynamic Testing Conference, Los Angeles, California,

September   21-23,  1966.

96.

  Platou, A. S.

Ricci,  H.A.

Wind Tunnel Tes ts o f So l i d S t a t e S t r a in G ages.

Septe mber 1964, privat e communication.

BRL,

97.  Pate, S.R.

Jones.   J.H.

98.  Wasson,

 H.

 R.

Mehus,   T. E.

I n v e s t i g a t i o n s o f t h e A i r L oad D i s t r i b u t i o n s on a S t a b i

li zi ng Fi n at Mach Numbers 1.5, 2.0 and 2 .5 .  AEDC-TN-61-

167,  De cem be r 1961, AD 268 858.

A Segmented Wing Test Technique f or O bta in ing Spanwise

Load D is t r ib u t io ns o f Wings .

  AIAA Paper

 66-768,

 AIAA

Aerody namic Testing Conference, Los Angeles, California,

September

  21-23,

  1966.

99.

  Martuccelli, J.R.

M e as ur em e n ts of P r e s s u r e D i s t r i b u t i o n s on a n O s c i l l a t i n g

Wedge in Supersonic Flow.

  MIT Aeroelastic and Structures

Resear ch Lab oratory, Technical Report 71-2, October 1958.

100.

 Rainey, A. G.

Measurement o f Aerodynamic Fo rce s fo r Va rious Mean Angle s

of A t tack on an A ir fo i l O sc i l la t i ng in P i t ch and on Two

Fin i te -S pa n Wings O sc i l la t i ng in Bend ing wi th Emphasis

on Damping in the S t a l l .  NACA Report 1305, 1957. (Super

sedes NACA-TN-3643) .

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 112/236

92

101.  Molyneux, W. G.

Ruddlesden, P.

A Technique for the Measurement of Pr es s ure D is t r ib u t i on s

on O s c i l l a t i n g A e r o f o i l s w i t h R e s u l t s f o r a R e c t a n g u l a r

Wing of Aspect Rat io 3.3.  CP 233, ARC 18. 018, June 1955.

102.

 Greldanus, J.H.

van de Vooren, A.I.

Bugh,

 H.

E x p e r i men t a l D e t e r mi n a t i o n o f t h e A e ro d yn amic C o e f f i c i en t s

of an O sc i l l a t i n g Wing in In com pres s ib le Two-Dimens ional

F low.

  National Luchtvaartlaboratorium, Amsterdam, Reports

101.  102, 103 and 104, 1952.

103. Li, Y.T.

H i g h - F req u en cy P r e s s u r e I n d i c a t o r s f o r A e ro d yn ami c

P r o b l ems .

  NACA TN 3042. November 1953.

104.

 Davis, E.L. Jr

The Measurement of Unsteady Pr es su re s in Wind Tu nn els .

AGARD Report 169, March 1958.

105.

  Mason, W.P.

E l ec t r o me ch an i ca l T r an s d u ce r s and Wave F i l t e r s .

No stra nd . New Y ork, 1942.

van

106. Delio, G.J.

Schwent,

 G. V.

Cesaro,

 R. S.

Trans ien t Behavior o f Lumped-Cons tan t Sys tems for Sens ing

G a s P r e s s u r e s .

  NACA TN 1988, December 1949.

107.

 Taback, I.

The Response of Pr es su re Measur ing Sys tems to O sc i l l a t i n g

P r e s s u r e s .

  NACA TN 1819, February 1949.

108.  Beranek, L.L.

Ac ou st ic Me asureme nts . John Wiley, New Y ork, 1949.

BIBLIOGRAPHY

I n s t r u m e n t a t i o n

1.

  Aig ra in , P .R .

Williams, E.M.

T he ory o f A m p l i t u d e - S t a b i l i z e d O s c i l l a t o r s . P r o c e e d i n g s

of the IRE, Vol .36, No. l , January 1948.

2. Bratt, J. B.

Wight,  K . C

Tilly, V.J.

The Ap pl i ca t io n of a "Wa t tmeter "H armo nic Ana lyser to

the Measurement of Aero-Dynamic Damping fo r P i t c h in g

O s c i l l a t i o n s .

  ARC R & M

  2063,

 May 1942, ATI 50985.

3. Llghtfoot, J. R.

White,  C E .

S p ec i a l A p p l i ca t i o n s o f S t r a i n - G ag e B a l an ces U s ed i n

the Su pe rso nic and Hy perso nic Wind Tunn els at the US

Naval Ordnance Labora tory .  AGARD Report 8, February

1956.

4.

 Queijo, M.J.

et al.

Pr el im in ar y Measurements of the Aerodynamic Yawing De

r iv a t i v e s of a Tr ia ng ul ar , a Swept , and an Unswept Wing

P e r f o r mi n g P u r e Y aw ing O s c i l l a t i o n s , w i t h a D e s c r i p t i o n

o f t h e I n s t r u men t a t i o n E mp l o y ed .

  NACA RM L55L14, April

1956.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 113/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 114/236

94

8. Lazan, B.J.

D ampin g P r o p e r t i e s o f M a t e r i a l s an d M a t e r i a l C o m p o s i te s .

Applied Mechanics Review, Vol.15, No .2, February 1962.

9. Lazan, B.J.

The D ampin g P r o p e r t i e s o f M a t e r i a l s and T h e i r R e l a t i o n s h i p

t o R e s on a n t F a t i g u e S t r e n g t h o f P a r t s .

  General Electric

Company, Report R55GL129, January 1955.

10.  Lazan, B.J.

et al.

Dynamic Te s t in g of M at er i a l s and S t ru c t ur es w i th a New

R e s o n a n c e - V i b r a t io n E x c i t e r a n d C o n t r o l l e r .

  WADC Technical

Report 52-252, December 1952.

11.  Maringer, R.  E.

D amp i n g C ap ac i t y o f M a t e r i a l s .

  Battelle Memorial Institute,

Columbu s, Ohio, December 30, 1965, RSIC Report 508

(Unclassified).

12. Podnieks,

 E .

 R.

Lazan,

 B.J.

Analy t i ca l Methods for Determin ing Spec i f i c Damping Energy

C o n s i d e r i n g S t r e s s D i s t r i b u t i o n .

  WADC TR

 56-44,

 June 1957,

AD  130 777.

13.

  Robertson, J.M.

Yorgladis, A. J.

I n t e r n a l F r i c t i o n i n E n g i n e e ri n g M a t e r i a l s .  Journal of

Applied Mechanics, Vol.13, No .3, September 1946, pp.A173-

A182.

14.

  Thorn,

 R.P.

B u i l t - i n - D a m p i n g .

December 9, 1965.

Machine Design, November 25,

 1965, and

15.

 Ting-Sul Ke Exp er ime nta l Evidence of the V iscous Behavior o f G ra in

B o u n d a r i e s  i n  M e t a l s .  Phy sics Review, Vol.71, 1947,

pp.533-546.

16.

  Ting-Sui Ke I n t e r n a l F r i c t i o n o f M e t a l s a t V ery H i gh T emp er a t u r e s .

Journal o f  Appl ied Ph ysi cs , Vol.21, 1950, pp.414-419.

17.  Tsobkallo, S.O.

Chelnokov,

 V.A.

New Method fo r the De ter m ina t io n of True Damping of

O s c i l l a t i o n s i n M e t a l s .  Zhurnal Tekhnickeskoi Fiziki,

Vol.24, No .3, Mar ch 1954, pp. 499-510.

18.  Ungar.

  E.

 E.

Hatch, D.K.

19.

  von Heydekampf, G. S.

H i g h - D amp i n g M a t e r i a l s .

1961,  p p . 4 2 - 5 6 .

Product Engineer ing , Apr i l 17 ,

Damping Ca pac i ty of Ma te r i a l s .

P a r t I I , 1 9 3 1, p p . 1 5 7 - 1 7 1 .

ASTM Proceedings, Vol.31,

20.  Walsh,

 D.P.

Jensen, J. W.

Rowland, J. A.

Vibra t ion Damping Capaci ty of Var ious Magnes ium Al loys .

US Department of the Interior, Bureau of  Mines, Rolla,

Misso uri, 1962, Report o f Investigation  6116 (Unclassified).

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 115/236

95

Derivatives

 Due to

 Pitch

 and

 Rate

 o f

 Pitch-Theory

1.

A G e n e r a l I n v e s t i g a t i o n o f H y p e r s on i c S t a b i l i t y a n d

Co nt ro l Under T rimmed F l ig h t Co nd i t ion s .

  Plight Sciences

Labora tory, Inc., Buffalo, New York, R-63-011-104, June

1964.

 A D 434 804.

2. Acum,

  W.

 E.A.

Note on the Effec t of Thickn ess and Aspect Rat io on the

Damping o f P i tch ing Osc i l la t ions o f Rec tangu la r Wings

Moving a t Supersonic Speeds.

  ARC CP 151, 1953.

3. Acum,

  W. E.

 A.

4. Alden,

 L.H.

Schindel,

 L.H.

The Comparison of Theory and Experiment for O sc i l la t i n g

Wings.  ARC CP

 681,

  1963.

The L i f t, R ol li ng Moment, and P it c h in g Moment on

 Wings

in Nonuniform Supersonic Flow.

  Journal of the Aeronautical

Sciences, Vol.19, No. l, January 1952,  p.7.

5. Allen,

 H.J.

Es tim ati on of the For ces and Moments Act ing on I nc l i ne d

Bodies o f Re vo lu t ion o f High F in ene ss R a t io .  NACA RM

A9126. November

 1949.

6. Allen,

 H.J.

Perkins,  E. W.

A Study o f E f fec ts o f V isc os i ty on F low Over S len der

I n c l i n e d Bo d i e s o f Re v o l u t i o n .  NACA Report 1048, 1951.

7.

  Allen,

 H.J.

M o ti on of a B a l l i s t i c M i s s i l e A n g u l a r l y M i s a l i n e d w i t h

the F l i g ht P ath Upon En ter ing the Atmosphere and I t s

Ef fe ct Upon Aerodynamic H ea tin g, Aerodynamic Loa ds, and

M i s s D i s t a n c e .

  NACA

 T N

 4048, Oc tob er

 1957.

8. Bobbitt,

 P.J.

Malvestuto,

 P.S. Jr

Es tim at io n of Force s and Moments Due to R ol l i ng fo r

S e v e r a l S l e n d e r - T a i l Co n f i g u r a t i o n s a t S u p e r s o n i c S p e e d s .

NACA

 T N

 2955. Jul y

 1953.

9. Bourcier, M.

A pp lic at io n de la Methode Asymptotique au Ca lcu l de s

De r ivees Aerodynamiques de S ta b i l i t e en Hyperson ique pour

u n C o n e C i r c u l a i r e .

  ONERA, Note Technique No.97,

 1966.

10.  Brown,

 C.E.

Adams.  M.

 C

Damping in P i t ch and R oll of Tri an gu lar Wings a t Super

s o n i c S p e e d s .

  NACA Report 892, 1948.

11.  Charwat,

 A.

 P.

The S ta b i l i t y o f Bod ies o f Revo lu t ion a t Very High Mach

Nu m b e r s .  Jet  Propulsion, Vol.27, No. 8, Part  1, August

1957, pp.866-871.

12.  Chester,

 W.

Sup erso nic Flow Pa st Wing-Body Com binations.

Quarterly,  Vol. IV, Aug ust 1953, p.  287.

Aeronautical

13.  Coakley,

 T.J.

Laitone,  E.  V.

Maas,

  W.

 L.

Fundamental Ana lys i s o f Var ious Dynamic S ta b i l i ty P roblems

f o r M i s s i l e s .  Institute o f  Engineering Research, Univer

sity

 o f

 Califor nia, Berkeley, C alifo rnia, Ser ies No.176,

Issue No .

 1,

  June 1961,

 AD 259 127.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 116/236

96

14.  Corning, G.

15.  Cunningham, H.J.

16.

  Pink, M.R.

Carroll, J.B.

17.  Dorrance,

 W.H.

18.

  Pink,

 M.R.

19.  Fink, M.R.

20.  Pink, M.R.

21.  Friedrich, H.R.

Dore,

 P.J.

22.  Garner,

  H.

 C

23.  Garner,

 H.

 C

Acum, W.

 E.

 A.

24.  Garner,

 H.

 C.

Acum, W.

 E.

 A.

Lehrian, D.E.

25.  Garrick, I.E.

Rubinow, S.I.

26.

  Gilmore, A.

Seredinsky, V.

MacKenzle,

 D.

The P i t ch-Y aw-R ol l C oupl ing Problem of Guided Mi ss i l e s

a t H igh Angles of P i t ch .  NAVWEPS  7383,  1961.

To ta l Li f t and P i t c h in g Moment on Thin Arrowhead

 Wings

O s c i l l a t i n g i n S u p e r so n i c P o t e n t i a l F lo w .

  NACA TN

 3433,

May 1955.

H y p er s o n i c S t a t i c an d D yn amic S t a b i l i t y o f W i n g -F u se lag e

C o n f i g u r a t i o n s .

  United Aircraft Corpor ation Research

Laboratory, C910188-17, January 1965.

Nons teady Sup er son ic F low About Poin ted Bodies of

R e v o l u t i o n .

  Journal

  of the

 Aeronautical Sciences,

No.8,

  August 1951, pp.505-511.

Vol.18,

H y p er s o n i c D yn amic S t a b i l i t y o f B i co n i c B o d i e s .

  United

Aircraft Co rporation, Research Laboratory, Co nn., UAR- E20,

March 21,  1965.

H y p er s o n i c D yn amic S t a b i l i t y o f S h a r p an d B l u n t S l en d e r

C o n e s .  United Aircraft Corporati on, Research Laboratory,

Conn.. UAR- C111, July 1964.

A Shock-Exp ans ion Method for Ca lc u l a t io n of Hy person ic

D y n a m i c S t a b i l i t y .  United Aircraft Corporat ion, Research

Laboratory, Conn., C-910188-4, March 1964.

The Dynamic Motion of a M is s i le D escen ding Through the

A t m o s p h e r e .

  Journal

 of the

 Aeronautical Sciences, Vol.22,

Septe mbe r 1955, pp.628-632.

Num er ica l Aspe c t s o f Uns teady L i f t i ng Sur fac e Theory a t

S u p e r s o n i c S p e e d s .

  ARC CP 398.

P r o p o s ed A p p l i c a t i o n o f L i n ea r i zed T h e o r e t i c a l F o rmu l ae

t o G en e r a l M ech an i zed C a l cu l a t i o n s f o r O s c i l l a t i n g W ings

a t S u p e r s o n i c S p e e d s .  NP L  Aero. Repor t 388, 1959.

C o m p a ra t iv e C a l c u l a t i o n s o f S u p e r s o n i c P i t c h i n g D e r i v a t i v e s

Over a Range of Frequ ency Pa ram ete r .

  ARC CP 591, 1962.

T h eo r e t i c a l S tu d y o f A i r F o r ce s on an O s c i l l a t i n g o r

St ea dy Th in Wing in a Su pe rso nic Main Stre am .  NACA Report

872, 1947.

I n v e s t i g a t i o n o f D yn am ic S t a b i l i t y D e r i v a t i v e s o f V e h i c l e s

Flying at Hypersonic Veloci ty .  Grumman Aircraft Engineer

ing Corporation, ASD-TDR-62-460, September 1963.

 AD 421

874.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 117/236

97

27.  Harmon,   S. M.

S t a b i l i t y D e r i v a t i v e s a t S u p e r s o n i c S p e e d s o f T h i n

Rectangular Wings with Diagonals Ahead of Tip Mach Lines.

NACA Report 925, 1949.

28.

  Harmon, S. M.

Jeffreys, I.

29.  Harris,   G. Z.

Th eo re t i ca l L if t and Damping I n Ro ll of Thin Wing with

A rb i t r a r y Sweep and Taper a t Superson ic Speeds , Sup erson ic

L e a d i n g a n d T r a i l i n g E d g e s .  NACA TN 2114, May 1950.

The Ca l c u l a t i o n o f G e n e r a l i s e d F o r c e s on O s c i l l a t i n g

Wings   in Supe rson ic F low by L i f t i ng Sur fa ce Theory .

Royal Aircraft Est ablishment, Technical Report

 65078,

1965.

30.  Henderson, A. Jr

P i t c h i n g - M o m e n t D e r i v a t i v e s

  C

m

  and

  C-*.

  a t Superson ic

° mq ma

  r

Speeds for a Slen der-D elta-W ing and Slende r-Bod y Com

b i na t io n and Approx imate So lu t ion s fo r Broad-Del ta-Wing

and Sle nd er- Bo dy Co m bin atio ns. NACA TN

  2553,

  December

1951.

31 .

  H j e l t e , P .

32.

  Jones, A.L.

Alksne, A.

M e t h o d s f o r C a l c u l a t i n g P r e s s u r e D i s t r i b u t i o n s o n O s c i l l a

t ing Wings of Delta Type a t Supersonic and Transonic

S p e e d s .

  KTH

 Aero

  TN 39 ,

  S to c k h o lm ,

  1956 .

The Damping  Due to  R o l l  o f  T r i a n g u l a r , T r a p e z o i d a l ,  a n d

R e l a t e d P l a n F o r m s

  i n

  Su pe rs on ic Flow . NACA

  TN 15 48 ,

March

  1948 .

33.  Jones, W.P.

A e r o f o i l O s c i l l a t i o n s a t H ig h M ean I n c i d e n c e s .  ARC R & M

2654,

 1948.

34.  Jones, W.P.

O sc i l la t i ng Wings in Compress ib le Subson ic F low.  ARC

R & M

  2855,

  October 1951, (ARC

  14.336).

35.  Jones, W.P.

Summary   o f

  F o r m u l a e

  a n d

  N o t a t i o n s U se d

  i n

  Two-Dimensiona i

D e r i v a t i v e T h e o r y .  ARC R & M 1958, August 1941.

36.  Jones. W.P.

Supersonic Theory for Osci l la t ing Wings of Any Planform.

ARC R & M

  2655,

 1948.

37.  Jones, W.P.

The Ca l c u l a t i o n o f A er od yn am i c D e r i v a t i v e Co e f f i c i e n t s

fo r Wings of Any Planf orm in Non-Uniform Mo tion.

  ARC

R & M   2655,  1948.

38.  Jones, W.P.

The In f luence o f Th ickness -Chord Ra t io on Superson ic

D e r i v a t i v e s f o r O s c i l l a t i n g A e r o f o i l s .

  ARC R & M  2679,

1947.

39.  Kelly. H.R.

The Es t im ati on of Norm al-Force, D rag, and Pitching-Moment

Co e f f i c i e n t s f o r B l u n t - Ba s e d Bo d i e s o f Re v o l u t i o n a t

L a r g e An g le s  o f  A t t a c k .

  Journal

 of the

 Aeronautical

Sciences, Vol.21.

  Augu st 1954, pp. 549-555.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 118/236

98

40.

  Kind, R.J.

Orl ik-Ruckemann, K.J .

41.

  Labru jere , H .E .

S t ab i l i t y D e r i v a t i v e s o f S h a r p C o n es i n V i s co u s H y p e r s o n i c

Flow. N at i on al Rese arch Co unc i l , Canada, Repor t LR-427,

1965;  a l so AIAA Jo ur na l . V ol .4 . No.8 , 1966, pp .14 69-14 71.

D e t e r m in a t io n o f th e S t a b i l i t y D e r i v a t i v e s o f an O s c i l l a t

ing Axisy mm etric Fu se la ge in Su pe rso nic Flo w. NLL TN W. 13,

Amsterdam, 1960.

42.

  Laitone.  E. V.

Effec t o f Acce lera t ion on the Longi tud ina l Dynamic

S t a b i l i t y o f a M i s s i l e .

  ARS

 Journal,

 Vol.29, February

1959, p.  137.

43.  Lawrence,

 H.R.

Flax,

 A.H.

44.

  Lawrence,

 H.R.

Gerger,  E. H.

45.  Lehrian, Doris E.

46.  Lehrian, Doris

 E.

Wing-Body I n te r f e r en ce a t Subsonic and Sup er son ic Speed s -

Surve y and New Dev elopm ents .

  Journal of the Aeronautical

Sciences, Vol.21, May  1954, pp .289-324.

The Aerodynamic Fo rce s on Low Aspect R at io Wings O s c i l la t

ing in an In com pres s ib le F low.

  Journal of the Aeronautical

Sciences, Vol.19, Novembe r 1952, pp.769-781.

C a l c u l a t i o n o f S t a b i l i t y D e r i v a t i v e s f o r O s c i l l a t i n g

Wings.  ARC R & M

 2922, Feb ruary 1953.

  (ARC  15,695).

C a l c u l a t i o n o f S t a b i l i t y D e r i v a t i v e s f o r T a pe re d Wings

o f H ex ago n a l P l an f o rm O s c i l l a t i n g i n a S u p e r s o n i c S t r eam.

ARC

 R & M

 3298.

 1963.

47.  Lehrian. Doris E.

Smart,

 G.

48.  Lighthlll,

 M.J.

49.  Malvestuto,

  P.

 S.

 Jr

Hoover, Dorothy M.

50. Malvestuto,

  P.

 S. Jr

Hoover, Dorothy M.

T h e o r e t i c a l S t a b i l i t y D e r i v a t i v e s f o r a S y m m e t r i c a ll y

Tapere d Wing at Low Su pe rso nic Sp eed s .

  ARC CP 736, 1965.

O s c i l l a t i n g A i r f o i l s a t H ig h M ach N umber.  Journal of the

Aeronautical Sciences, Vol.20, June 1953. pp.402-406.

L i f t an d P i t c h i n g D e r i v a t i v e s o f T h i n S w ept back T ap e r ed

Wings wit h Stream wise T ips and Sub sonic L eading Edges

a t S u p e r s o n i c S p e e d s .

  NACA

 TN

 2294, Feb ruary

 1951.

Su pe rso nic L if t and P i t c h in g Moment of Thin Sweptback

Tapered

  Wings

  P r o d u ced by C o n s t an t V e r t i c a l A c ce l e r a t i o n ,

Sub sonic Leading Edges and Sup er son ic Tr a i l i ng Edge s .

NACA

 T N

 2315, Mar ch

 1951.

51. Malvestuto,  P.  S. J r

Margolis,

 K.

52.

 Malvestuto,

  P.  S.  Jr

Margolis,

 K.

Ribner,

  H.

 S.

T h eo r e t i c a l S t a b i l i t y D e r i v a t i v e s o f T hi n S w ept back W ings

Tapered to a Po in t w i th Sweptback or Swept forward Tr a i l i ng

Edges fo r a L im i ted Range of Su per s onic Sp eeds .  NACA

Report 971, (Supersedes NACA TN  1761). 1950.

Th eo re t i c a l L i f t and Damping in Ro l l a t Supe r sonic Speeds

of Thin Sweptback Tapered Wings with Streamwise Tips ,

S u b s o n i c L ead i n g E d g es , and S u p e r s o n i c T r a i l i n g E d g es .

NACA Report 970,

 1950.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 119/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 120/236

100

66.   Morikawa, G.

67.

  Mueller. R.K.

68.

  Munch, J.

69.

  Platzer, M.F.

Hoffman,

 G.

 H.

70.

  Neumark, S.

71.

  Nielsen, J.N.

72.

 N ielsen, J.N.

Kaattari,

 G.

 E.

73.   Ohman, L.H.

74.

  Ohman, L.H.

75.   Orlik-Ruckemann, K.J.

76.   Orlik-Ruckemann, K.J.

77.   Orlik-Ruckemann, K.J.

Crowe, C.

78.

  Pitts, W. C

Nielsen, J.N.

Kaattari,

 G.

 E.

S u p e r s o n i c W i n g - B o d y - T a i l I n t e r f e r en ce .  Journal of the

Aeronautical Sciences, Vol.19, May 1952, pp.333-340.

The G r a p h i c a l S o l u t i o n o f S t a b i l i t y P r o b le m s .

  Journal

of the Aeronautical Sciences,

 Vol.4,

  June 1937, pp. 324-331.

An E xamp le f o r t h e P r a c t i c a l C a l cu l a t i o n o f S u p e r s o n i c

F lo w F i e l d s P as t O s c i l l a t i n g B o d ie s o f R ev o l u t i o n b y a

M e t h o d D u e t o S a u e r .

  AFOSR TN   58-881,  August 1958.

Q u as i - S l en d e r B o d y T h eo r y f o r S l o w l y O s c i l l a t i n g B o d i e s

o f R ev o l u t i o n i n S u p e r s o n i c F lo w .

  NASA TN D-3440, June

1966.

Two-Dimens ional Theory of Osc i l l a t ing Aerofo i l s w i th

A p p l i c a ti o n t o S t a b i l i t y D e r i v a t i v e s .

  RAE Report Aero

2449,

 ARC 14,889. 1951.

S u p e r s o n i c W i n g - B o d y I n t e r f e r en ce .

of Technology Thesis, 1951.

California Institute

The Ef fe c t s o f Vor tex and Shock-Expans ion F ie ld s on

P i t c h a nd Y aw I n s t a b i l i t i e s o f S u p e r s o n i c A i r p l a n e s .

Institute o f the Aeronautical Sciences, Preprint 743, 1957.

A S u r f a c e F lo w S o l u t i o n a nd S t a b i l i t y D e r i v a t i v e s f o r

Bodies of Re vo lu t io n in Complex Sup er so nic F low.  Part I:

T h eo ry an d Some R e p r e s en t a t i v e R es u l t s .  National Research

Council, Canada, Report

  LR-418,

  1964.

A S u r f a c e F lo w S o l u t i o n a nd S t a b i l i t y D e r i v a t i v e s f o r

Bodies o f Re vo lu t i on in Complex Sup er son ic F low.

  Part II;

Re su l t s fo r Two Fa m i l i e s o f Bodies of Re vo lu t io n for

1.

 1 < M < 5 . National Research Council, Canada, Report

LR-419,  1964.

Eff ec t o f Wave R ef le c t io ns on the Uns teady Hyperson ic

Flow Over a Wedge .

  AIAA Journal.   Vol.4, No.10,  1966.

Stab i l i ty Der iva t ives of Sharp Wedges in V iscous Hyper

s o n i c F l o w .

  National Research Council, Canada, Report

LR-431,

  1965; also (slightly extended) AIAA Journal,

Vol.4,  No .6, 1966, pp.1001-1007.

Compari son of Var ious Exp er ime nta l and Th eo re t i ca l R es u l t s

f o r S t a t i c a n d D yna mic L o n g i t u d i n a l S t a b i l i t y D e r i v a t i v e s

of Some Wing-Body Co nf ig ur at io ns at Su pe rson ic Spee ds .

NAE Laboratory Report (to be

 published) .

Li f t and Cen ter o f Pr es s ur e of W ing-Body-Tai l Combina t ions

a t S u b s o n i c , T r an s o n i c an d S u p e r s o n i c S p eed s .

  NACA

Rep ort 1307, 1957.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 121/236

101

79.

  Platzer. M.F.

A N o t e on t h e S o l u t i o n f o r t h e S l o w l y O s c i l l a t i n g Bo dy

o f R ev o l u t i o n i n S u p e r s o n i c F lo w .  George C.Marshall

Space Flight Center, M TP-A ERO- 63-28, April 23, 1963.

80.

  Quinn, B.P.

B la s t Wave Ef fec t s on the P i t c h i ng of B lunt Cones .

  Paper

37,   Vol.11,  Proce edings of the 13th Annual Air Force

Science and Engineering Sympo sium, Arnold Engineering

Development Center, Arnold Air Force Station, Tennessee,

September 1966.

81.   Ribner, H.S.

Malvestuto, F. S. Jr

82.   Richardson, J. R.

S t a b i l i t y D e r i v a t i v e s o f T r i a n g u l a r W ings a t S u p e r s o n i c

S p e e d s .  NAC A Repo rt 908. 1948.

A Method for Ca lcu la t ing the L i f t in g F orce s on Wings

( U n st ead y S u b s o n i c and S u p e r s o n i c L i f t i n g - S u r f ac e T h eo r y ) .

ARC R & M 3157, April 1955, ARC   18,622.

83.   Sacks, A.H.

A ero d yn amic F o r ce s , M o ments an d S t a b i l i t y D e r i v a t i v e s

f o r S l en d e r B o d i e s o f G en e r a l C r o s s S ec t i o n .

  NACA TN

3283,

 November 1954.

84.  Sa uerwein, H. A p p l i c a t i o n o f t h e P i s t o n A n a lo g y t o t h e C a l cu l a t i o n o f

S t a b i l i t y D e r i v a t i v e s f o r P o i n t e d A x i a l l y Sy m m etr ic

Bo die s a t H igh Mach Num bers.  AVCO Corporation, RAD-TM-

61-40.

 October 1961.

85.   Seredinsky, V.

D e r i v a t i o n an d A p p l i c a t i o n o f H y p e r s o n i c N ew to n ian I mp ac t

Theory to Wedges, Cones and Sl ab Wings I n cl u di n g the

E f f e c t s o f A n g le o f A t t ack , S h i e l d i n g an d B l u n t n es s .

Grumm an Aircraft Engineering Corp oration Report XAR-A -42,

April 1962.

86.

  Smith,

 H.

 B.

Beasley, J. A.

Stevens,  A.

C alc u l a t io ns of the L i f t S lope and Aerodynamic Cen ter o f

Cropped De l ta Wings a t Su per so nic Sp eeds .  RAE TN Aero

2697.  1960.

87.  Spahr , J .R.

C on tr ib ut io n of the Wing Pa ne ls to the Fo rce s and Moments

of Sup ers on ic Wing-Body Com binat ions at Combined An gle s .

NACA TN 41 46, Ja nu ar y 1958.

88.

  Stanbrook, A.

The L i f t -C urv e S lope and Aerodynamic Cen ter Po s i t io n of

Wings a t S upe r son ic and Subsonic Spee ds .

  RAE TN Aero

2328,

 1954.

89.  S t a t l e r , I . e .

Dynamic Stabi l i ty at High Speeds f rom Unsteady Flow Theory.

Journa l o f the Aeronaut i ca l Sc iences , Vol .17 , Apr i l 1950 ,

p p . 2 3 2 - 2 4 2 .

90.  Temple, G.

T he R e p r e s en t a t i o n o f A e ro d yn amic D e r i v a t i v e s .

2114,  March 1945.

ARC R & M

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 122/236

102

91.

  Thelander, J. A.

92.

  Thomas,

 H.

 H.B. M.

A i r c r a f t M o ti on A n a l y s i s .

Laboratory. PDL-TDR-64-70,

US Air Force Plight Dynamics

Mar ch 1965.

E s t i m a t i o n of S t a b i l i t y D e r i v a t i v e s ( S t a t e o f th e A r t ) .

RAE TN Aero

  2776.

  1961; also ARC C P 664, and AGARD Repor t

339.

93.  Thomas, H.H.B.M.

Ross,  A.J.

94.

  Thomas, H.H.B.M.

Spencer,

  B. P.

 R.

95.  Tobak, M.

96.  Tobak, M.

97.

  Tobak, M.

98.

  Tobak, M.

Allen, H.J.

99.

 Tobak, M.

Pearson, W. E.

100.

 Tobak, M.

Wehrend, W.R.

101.

  Treadgold. D.A.

102.

  van Dyke,

 M.

 D.

103.  van Dyke,

 M.

 D.

104.   W a t ki ns , C E .

The C a l c u l a t i o n of t h e R o t a r y L a t e r a l S t a b i l i t y D e r i v a t i v e s

o f a J e t - F l a p p e d W i ng .

  ARC R & M   3277, Januar y 1958.

The C al cu la t io ns of the D er iv a t iv es I nvolv ed in the Damping

o f t h e L o n g i t u d i n a l S h o r t P e r i o d O s c i l l a t i o n s o f an A i r

c r a f t and C o r r e l a t i o n w i t h E x p e r i men t .

  RAE Report Aero

2561,  1955.

Damping In Pi tch of Low-Aspect-Rat io Wings at Subsonic

a n d S u p e r s o n i c S p e e d s .

  NAC A RM A52L04a, April 1953.

Oi

  N o n l i n e a r L o n g i t u d i n a l D ynam ic S t a b i l i t y .

  Presented

to the AGARD Flight Mechanics Panel. Cambridge, England,

September  20-23, 1966.

Oi   the Use of the I n d ic ia l Fu nc t ion Concept in the A nal ys i s

of Unsteady Motions of Wings and Wing-Tai l Combinat ions .

NAC A Re por t 1188, 1954.

D yn amic S t a b i l i t y o f V eh i c l e s T r av e r s i n g A s cen d in g o r

Descending Pa ths Through the Atmosphere .  NACA TN

 4275,

July 1958.

A S t u d y o f N o n l i n ea r L o n g i t u d i n a l D yn amic S t a b i l i t y .

NAS A TR R-209. Septem ber, 1964.

S t a b i l i t y D e r i v a t i v e s o f C o n e s a t S u p e r s o n i c S p e e d s .

NACA TN   3788,  September 1956.

A R evi ew o f M e th o ds o f E s t i m a t i o n o f A i r c r a f t L o n g i t u d i n a l

S t a b i l i t y D e r i v a t i v e s a t S u p e r s o n i c S p e e d s .

  RAE TN Aero

2415,  1955.

Oi

  S eco n d - O rd e r S u p e r s o n i c F lo w P a s t a S l o w ly O s c i l l a t i n g

A i r f o i l .

  Readers' Forum, Journal of the Aeronautical

Sciences,

  Vol.20,

 J anuary 1953, p. 61.

S u p e r s o n i c Flo w P a s t O s c i l l a t i n g A i r f o i l s I n c l u d i n g Non

l i n e a r T h i c k n e s s E f f e c t s .

  NACA TN 2982, July 1953.

Air F orc es and Moments on Tr ia ng ul ar and R el at ed Wings

w i t h S u b s o n i c L ead in g E d ges O s c i l l a t i n g i n S u p e r s o n i c

P o t e n t i a l F l ow .

  NACA TN  2457,  September 1951.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 123/236

103

105.  Watkins, C.E.

Ef fe ct of Aspect R at io on the Ai r Fo rce s and Moments of

Harm onica l ly O sc i l la t i ng Th in Rec tang u la r Wings in Super

s o n i c P o t e n t i a l F l ow .  NACA TN

  2064,

  April 1950.

106.  W a tk ins, C E .

Ef fe ct of. Aspe ct Ra ti o on the Air Fo rc es and Moments of

Harm onica l ly O sc i l la t i ng Th in Rec tang u la r Wings in Super

s o n i c P o t e n t i a l F l o w .  NAC A Repo rt 1028. 1951.

107.  Watkins, C.E.

Ef fec t o f Aspec t Ra t io on Undamped Tors iona l O sc i l la t i on s

of a Thin R ec ta ng ul ar Wing in Su pe rs on ic Flow. NACA TN

1895.

  June 1949.

108.

  Watkins, C.E.

Herman, J.H.

Ai r For ce s and Moments on T ri an gu la r and R el at ed Wings

wi th Subson ic Lead ing Edges Osc i l la t ing in Superson ic

P o t e n t ia l Flow. NACA Rep ort 1099, 1952.

109. Watts, P.E.

N o t e s on t h e E s t i m a t i o n o f A i r c r a f t L a t e r a l S t a b i l i t y

D e r i v a t i v e s a t S u p e r s o n i c S p e e d s .  RAE TN Aero 2414, 1955.

110.  Wood. R.M.

Murphy, C.H.

111.  Wylly, A.

Aerodynamic Derivat ives for Both Steady and Non-Steady

M o t i o n o f S l e n d e r B o d i e s .  BRL MR 880, April 1955.

A Second-Order So lu t ion fo r an O sc i l la t i ng , Two-Dimens iona l,

S u p e r s o n i c A i r f o i l .  RAND Corpor ation Report, 1951.

Derivatives D ue to Pitch and Rate of Pitch-Experiment

1. Akat nov,

  N.

 I.

Sabaltls,   lu. I.

Measurement   o f P i tch ing-Moment Der iva t ives by a  Self-

E x c i t e d O s c i l l a t i o n M e t h o d .

  Zhurnal Tekhnickeskoi Piziki,

Vol.26,

  No .9, 1956. Tra nslated in "Soviet Phys ics".

Vol.1,

  No.

 9,

  1957, pp .1986-1993.

2.

 Bablneaux, T.L.

et al.

The I nf lu en ce of Shape on Aerodynamic Damping of O s c il la

tory Motion During Mars Atmosphere Entry and Measurement

o f P i tch Damping a t Large Osc i l la t ion Ampl i tudes .  TR-32-

380, F ebru ary 28. 1963.

3. Beam, B.H.

A Wind-Tunnel Test Technique f or Me asuring the Dynamic

R o t a ry S t a b i l i t y D e r i v a t i v e s I n c l u d i n g t h e C r o ss D e

r i v a t i v e s a t High Mach Numbers .  NACA TN

 3347,

 January

1955.

4. Beam, B.H.

7?ie

 E f fec ts o f Os c i l l a t io n Ampl i tude and F requency on

the Experi me ntal Damping in P i t c h of a Tria ng ula r Wing

Having an Aspect Ra tio of 4 .  NACA RM A52G07, September

1952.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 124/236

104

5. Bird,

 K D.

6. Bratt, J.B.

7. Bratt, J.B.

Chinneck,

 A.

8. Bratt, J.B.

9. Bratt, J.B.

Scruton,  C

Dynamic S ta b i l i t y T es t i ng in a Hype rsonic Shock Tunnel .

July

  16-17, 1963.

A Note on De r iv a t iv e A ppara tus f or the NPL 9) . In ch H igh

S p e e d T u n n e l .

  ARC CP

 269, Januar y

 1956.

In form at io n Repo r t on Measurements of Mid-Chord P i t ch in g

Moment Der iva t ives a t H igh Speeds .

  ARC  10,710,  July 1947,

ATI

  105 207.

77ie  M easu remen t o f O s c i l l a t o r y A e r od y namic F o r ce s .  AGARD

Wind Tunnel Panel, September

 1953.

Measurements of P i t ch in g Moment D er iv a t iv es f or an Aero

f o i l O s c i l l a t i n g A b ou t t h e H a l f - C h o r d A x i s .

  ARC R & M 1921,

November 1938.

10.  Bratt.

 J.B.

Wight, K . C

11.  Bratt,

 J.B.

Wight, K.C.

Chinneck,

 A.

12.  Broil, C.

13. Clay,

 J.T.

Walchner,

 0.

The E f f ec t o f M ean I n c i d e n ce , A m p l it u d e of O s c i l l a t i o n ,

P r o f i l e an d A s p ec t R a t i o o n P i t ch i n g Moment D e r i v a t i v e s .

ARC R & M  2064.  June 1945.

F r ee O s c i l l a t i o n s o f an A e r o f o i l A bo ut t h e H a l f - C h o r d

A x i s a t H i g h I n c i d en ces , and P i t ch i n g Moment D e r i v a t i v e s

f o r D e ca y in g O s c i l l a t i o n .  ARC R & M

 2214, September

 1940,

ARC

 4711.

E s s a i s e n R eg im e I n s t a t i o n n a i r e E f f e c t u e s a u C e n t r e

d ' E s s a i s d e M o d an e- A v ri eux .

  (Unsteady Flow Testing at

the ONERA Test Centre

 at

 Modane).

  La

 R ech erc he Ae'ro-

spatiale, No.100, 1964.

N ose B l u n t n e s s E f f e c t s on th e S t a b i l i t y D e r i v a t i v e s o f

Cones in Hy pers onic Flow.  Vol.1,  Paper 8, Transactions

of

 t he

 Second Technical Workshop

 on

 Dynamic Stability

Testing. Held at the  Arnold Engineering Develop ment

Center, Arnold Air  Force Station, Tennessee, April  20-22,

1965.

14.

  Clunies,

 D.A.

Stiles,

 H.W. Jr

15.  Colosimo, D.

 D.

16. Dat, R.

Destuynder, R.

An I n v es t i g a t i o n o f t h e F e a s i b i l i t y o f a M e th od o f O b t a i n

i n g D a t a f ro m W hich t h e S t a b i l i t y D e r i v a t i v e s C and

C can b e S ep a r a t ed .

  BSc Thesis, Aeronautical Engineer

ing Department, Massachus etts Institute o f  Technology,

May 1957.

T he E f f ec t s o f M as s - T r an s f e r o n t h e D yn amic S t a b i l i t y o f

S l e n d e r C o n e s .  CAL  Rep ort 141, May 1965.

D e t e r m i n a t i o n d e s C o e f f i c i e n t s A e ro dy na m iq ue s I n s t a t i o n -

n a i r es sur une A i le De l t a de Mach 1 .35 .

  ONERA NT 52,

1959.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 125/236

105

17.

  Daughaday,

 H.

Duwaldt,

 P.

Statler,

 I.

Measurement of Dynamic S t a b i l i t y D er iv at iv es in the Wind

T u n n e l, P a r t I I , E v a l u a t i o n o f T e s t i n g T e c h n iq u e s .

  WADC

TR 57-274.

 May 1957.

18.

  Pink,

 M.R.

Carroll. J.B.

Hyperson ic S ta t i c and Dynamic S ta b i l i ty o f Wing-Fuselage

Co n f i g u r a t i o n s . U n i t e d A i r c r a f t Co r p o r a t i o n Re s ea r ch

Laboratory, C910188-17, January 1965.

19 Fink, M.R.

Hyperson ic Dynamic S tab i l i ty o f Bicon ic Bod ies .  United

Aircra ft Corpor ation, Report UAR -E20, March 12,  1966.

20.  Fink. M.R.

21.  Fink,

 M.R.

Hyperson ic Dynamic S ta b i l i t y o f Sharp and Blun t S lende r

C o n e s .

  United Aircraft Corporation Research Laboratory,

Conn.,

 UAR-C111, July

  1964.

A Shock-Expans ion Method fo r Ca lcu la t ion o f H yperson ic

D y n a m i c S t a b i l i t y .

  United Aircraft Corpor ation, Conn.,

C-910188-4, March 1964, AD 436 694.

22.  Pink,

 M.R.

Carroll,

 J.B.

Ca l c u l a t i o n s o f H y p e r s o n ic Dynam ic S t a b i l i t y .

  United

Aircraft Corporation, Conn., C-910188-8, June

  1964,

AD

 442 280.

23.  Fischer.

 L.R.

Exper im en ta l De te rmin a t ion o f the E f fec ts o f F requency

a nd A m p l it u de o f O s c i l l a t i o n on t h e Ro l l - S t a b i l i t y

D er iva t iv es fo r a 60° De l ta -Wing Airp lane Model .  NASA

TN D-232, March

 1960.

24.  Poster, D.J.

Haynes,

 G.

 W.

R o t a r y S t a b i l i t y D e r i v a t i v e s f ro m D i s t o r t e d M o de ls .

Journal of the  Royal Aeronautical Society, Vol.60,

Sep tem ber 1956, pp. 623-624.

25.  Gilmore,

 A.

Seredinsky,

 V.

Mackenzie,

 D.

I n v e s t i g a t i o n of D ynam ic S t a b i l i t y D e r i v a t i v e s of V e h i c l e s

F l y i n g a t H y p e r s o ni c V e l o c i t y .

  Grumman Aircraft Engineer

ing Corp orat ion. ASD -TD R-62-460, Sept embe r 1963,

 A D

421  874.

26.  Grimes,

 J.H. Jr

Casey, J.  J.

Dynamic S ta b i l i t y Tes t ing w i th Ab la t io n a t Mach 14 in a

Long Duration Wind Tunnel.

  Proceedings, AIAA Aerodynamic

Testing Conference, Washington,

 DC,

 March 9-10,

 1964.

27.  Hall, G.Q.

Osborne,  L.  A.

A Co n t r o l S u r f a c e O s c i l l a t i n g D e r i v a t i v e M e as ur em en t R i g

fo r Use wit h Half Wing Models Having Swept Hinge Li ne s.

Hawker-Siddeley Dynamics, Coventry,

 ARL TN 205.

28.  Hall, G.Q.

Osborne,

  L.

 A.

Superson ic Der iva t ive Measurements on the P lan fo rms o f

the MoA.

  Flutter and  Vibration Committee' s  First Research

Programme. Hawker-Siddeley Dynamics, Coventry, A R L

Report 63/10.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 126/236

106

29. Hall,

 G.

 W.

Osborne,

 L.

 A.

Tran sonic and Sup er son ic De r iv a t iv e Measurements on the

Pla nfo rm s of the MoA.  Flutter and Vibration Committee's

First Research Programme. Hawker-Siddeley Dynamics,

Coventry,  ARL  Report 64/9.

30.  Hoop,

 H.H.

31. Holway, H.P.

Herrera, J. G.

Dayman,

 B.

A Summary of Exper im enta l P i t c h Damping Co ef f i c ien t s fo r

the Per sh ing Re-Ent ry Body.  AOMC RG-TM-61-49, December

19,

 1961.

A Pneum at ic Model Launcher for F re e- F l ig h t Te s t in g in a

Co nv en t ion al Wind Tunn el .

  TM  33-177,  July 30, 1964.

32.

  Jaffe,

 P.

Prislin.

 R.H.

E f f ec t o f B o u nd a ry L ay e r T r an s i t i o n o n D yn amic S t a b i l i t y

O v e r L a r g e A mp l i t u d es o f O s c i l l a t i o n .

  TR  32-841,  March

7,

  1966.   AIAA Paper 64-427, Vol.3, No. l, June 1964.

Spacecraft Journal, January

 1966.

33.  LaBerge,

 J. G.

Dynamic Tests on a Cone in Hypersonic Helium Flow.

  NAE

Laboratory Memorandum (unpublished), March

 1963.

34.  LaBerge, J. G.

Ef fec t of F la re on the Dynamic and S t a t i c Moment Cha rac ter

i s t i c s o f a H e m i s p h er e -C y l in d e r O s c i l l a t i n g i n P i t c h a t

Mach Numbers from 0 .3 to 2. 0 .

  National Research Council,

Canada, Report LR-295,  1961.

35.

  Maloy, H.E. Jr

36.

  Molyneux, W. G.

A Method for Me asur ing Damping- in -P i t c h of Models in

S u p e r s o n i c F l o w .  BR L

 Rep ort 1078, July

 1959.

Measurement of the Aerodynamic Fo rces on Os c i l l a t in g

A e r o f o i l s .

  Aircraft Engineering, Vol.28, No. 323, January

1956, pp. 2-10.

37.  Moore, J. A.

Exp er ime nta l De term ina t i on of Damping in P i t ch of Swept

and D el ta Wings at Su pe rso nic Mach Numbers .

  NACA RM

L57G10a,

 September

 1957.

38.  O'Neill, E.  B.

39.  Orlik-Ruckemann, K.J.

A F re e- F l ig h t Method fo r S tudyin g the Dynamic Behavior

o f M i s s i l e s a t T r an s o n i c S p eed s .  Proceedings of Seventh

Navy Symposium on Aeroballistics, 7-9 June 1966.

A Method fo r Ob tain ing the Damping in Pi tc h and Yaw in

a Sup er so nic Wind Tunnel , e t c .

  KTH Fl 134, Stockholm,

1952.

40.  Orlik-Ruckemann, K.J.

41.  Orlik-Ruckemann, K.J.

A Method for Ob ta in ing the Damping in P i t ch D er iv a t iv es

of Wings a t Super sonic Speeds f rom Free Osc i l l a t ion Tes t s

w i t h H a l f M o d e l s .

  PPA Ae 273, Sto ckhol m, 1952.

Measurement of Aerodynamic Damping and S t i f f n e ss De r iv a

t i v e s i n F r e e O s c i l l a t i o n w i t h A u t o m a t i c a l l y R e c y cl e d

F e e d b a c k E x c i t a t i o n .

  National Research Council, Canada,

LR-246, June

 1959.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 127/236

107

42.  Orlik-Ruckemann,

 K.J.

Qu adra t ic E f fe c ts o f F requency on Aerodynamic D er iv a t i ve s .

AIAA J our nal, Vol.2, No.8, 1964. pp.1507-1509.

43.  Orlik-Ruckemann,

 K.J.

44.  Orlik-Ruckemann, K.J.

Crowe,  C

Some

  A p p l i c a t i o n s of t h e F r e e - O s c i l l a t i o n T e c h n i qu e s f o r

M e a s u r i n g S t a b i l i t y D e r i v a t i v e s .

  Seminar on Wind-Tunnel

Techniques

 and

 Aerodynamics,

 KTH,

 Stockholm,

 1954.

Comparison of Various Experimental and Theoret ical

Re s u l t s f o r S t a t i c a n d D ynam ic L o n g i t u d i n a l S t a b i l i t y

D er iv at iv es of Some Wing-Body C on fig ura t io ns a t Sup erso nic

S p e e d s .

  National Research Council, Canada, Laboratory

Report  (to be   published).

45.

  Orlik-Ruckemann, K.J.

LaBerge,

 J.

 G.

O sc il la to ry E xperim ents in a Helium Hyp ersonic Wind

T u n n e l .

  National Research Cou ncil, Canada,, Report LR-335,

1962;  also "Advances

 in

 Hyperve locity Techniques", Pl enum

Press,

 N ew

 York, 1962, pp.187-210.

46.  Orlik-Ruckemann,

 K.J.

LaBerge,

 J.G.

S t a t i c a nd D ynam ic L o n g i t u d i n al S t a b i l i t y C h a r a c t e r i s t i c s

of a S er ie s of D el ta and Sweptback

  Wings

  a t Supers on ic

S p e e d s .

  National Research Council, Canada, LR-396,

January

 1966.

47.  Platzer, M.F.

Hoffman.  G.H.

Quas i -S lender Body Theory fo r S lowly Osc i l la t ing Bod ies

o f Revo lu t ion in Superson ic F low.  NASA TN D-3440, June

1966.

48.  Pope,

 T.C.

Stalmach,

 C.J. Jr

P r e l i m i n a r y I n v e s t i g a t i o n o f t he E f f e c t s o f M a s s - I n j e c t i o n

o n D yn am ic S t a b i l i t y

  a t

  M = 17 .

  Ling-Temco-Vought,

 LTV

Report 2-59740-/3R-479, October

 1963.

49.  Pugh,

 P.G.

Woodgate,

 L.

Measurements of Pi tc hi ng Moment D er iv at iv es fo r B lunt

Nosed Ae rof o i l s O sc i l la t i ng in Two-Dimens ional Superso n ic

Flo w.  A R C R & M

 3315,

 1963.

50.  Scherer, M.

Mesure des Derivees Aerodynamiques en Ecoulement Trans

son ique e t Superson ique .  Communication presente'e au

I Verne Co ngre s Ae'ronautlque Eur opeen  a  Cologne. ONERA

publication No.104, Septembre 1960.

51.

  Scruton,

 C.

Woodgate,

 L.

Lapworth,  K.  C.

Measurement o f P i tc h i ng Moment D er iva t iv es fo r Ae rof o i l s

O sc i l la t i ng in Two-Dimensiona l Supe rson ic F low.

  ARC

R & M 3234,

  1962.

52.  Scruton, C.

Woodgate, L.

Maybrey, J.F.

53.  Scruton,

  C

et

 al.

Measurement of the Pi tc hi ng Moment D er iv at iv es fo r R ig id

Tapered Wings of Hexagonal Planform Oscil la t ing in Super

son ic F low.  ARC R & M

  3294,

 1962.

Measurements o f the P i tc h i ng Moment D er iv a t i ve s fo r Ri g id

Wings of Rectangular Planform Oscil la t ing About the Wing-

Chord Axis in Supersonic Flow.  ARC CP 594, 1962.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 128/236

108

54.

  Seredinsky, V.

55.

  Shantz, I.

D e r i v a t i o n and A p p l i c a t i o n o f H y p e r s o n i c N ew to n ian I mp ac t

Theory t o Wedges, Cones and Sl ab Wings I nc lu di ng the

E f f ec t s o f A n g le o f A t t a ck , S h i e l d i n g an d B l u n t n e s s .

Grumman Aircraft Engineering Corporation, Report XAR-A-42,

Apr il 1962.

7?ie  Mea surem ents of Damping- in -P it c h in the NOL Wind

T u n n e l s .

  Presented at the Fourth Navy Symposium on Aero-

ballistics,

 Naval Proving Ground, Dahlgren, Virginia,

1957.

56.   Shantz, I.

Groves, R.

 T.

D yn amic an d S t a t i c S t a b i l i t y M eas ur emen ts o f t h e B as i c

F i n n e r a t S u p e r s o n i c S p eed s .  NAVORD Report 4516, January

1960.

57.

  Sibley, G.O.

58.

  Smith, T. L.

59.   Stalmach, C.J. Jr

Cooksey, J.M.

60.  Stalmach, C.J. Jr

Moore,

 D.

 R.

Lindsey, J. L.

61.  Thompson, J.S.

Fail,   R.A.

62.

  Thompson, J. S.

Fail,

  R.A.

63.   Thompson, J.S.

Pail,

  R.A.

64.

  Tobak, M.

65.   Tobak, M.

Reese, D.E. Jr

Mean,

 B.H.

Dynamic S t a b i l i t y Te s ts of AGARD Models HB-1 and HB-2

in a Blowdown Tunn el a t Mach

 5.4. VKI PR

 65-141,

 June

1965.

D y n ami c S t ab i l i t y M eas u r emen t s .  BRL M 1352, June 1961.

S i m u l a t i o n o f R o ck e t P ow er E f f ec t o n V eh i c l e S t a b i l i t y

and Measurements of Aerodynamic Damping in a H yp erv elo ci t y

W i n d T u n n e l .

  IAS Paper   62-24,  presented at the 30th

Annual IAS Meeting, New York, January 1962. Also pub

lished in Aerospace Engineering,   Vol.21, N o. 3, 1962.

S t a b i l i t y I n v e s t i g a t i o n D u r in g S i m u l a t e d A b l a t i o n i n a

H y p e r v e l o c i t y W ind T u n n e l , I n c l u d i n g P h as e C o n t r o l .

  Sing-

Temco-Vought, LTV Report 2-59740/5R-2192, April 1965.

O s c i l l a t o r y D e r i v a t i v e M eas u r emen t s o n S t i n g - M o u n t ed

Wind-Tunnel Mo dels : Method of Tes t and R es u l ts fo r P i t ch

and Yaw on a Cam bered Ogee Wing a t Mach Numbers up to

2 . 6 .

  RAE Report Aero

  2668,

  1962; also ARC R & M

  3355.

Measurements of O sc i l l a to ry De r iv a t iv es a t Mach Numbers

up to 2.6 on a Model of a Su pe rso nic Tra nsp or t Design

S t u d y ( B r i s t o l T ype 1 9 8 ) .

  RAE Technical Report 64,048.

1964;   also A RC CP 815.

O s c i l l a t o r y D e r i v a t i v e M eas u r emen t s o n S t i n g - M o u n t ed

Wind Tunne l M odels at RAE Be dfo rd.  RAE Technical Report

66,197,  1966.

Damping in P i t c h of Low-A spect-R at io Wings at S ubso nic

a n d S u p e r s o n i c S p e e d s .

  NAC A RM A52L04a, April 1953.

Exp er im enta l Damping in P i t c h of

  45°

  Tr ia ng ula r Wings.

NA CA RM A50J26, 1950.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 129/236

109

66.

  van de Vooren, A.I.

67.

  Vaucheret, X.

68.   Vaucheret. X.

69.

  Vaucheret, X.

Measurements

  o f Aerodynamic Forces on Osc i l la t ing Aero

f o i l s .  NLL Report MP 100. May 1954. Presented at the

5th Meeting of the AGARD Wind Tunnel and Model Testing

Panel,   Scheveningen, Nethe rlands, May 1954.

D e p o u i ll e m e n t d 'O s c i l l a t i o n s L i b r e s d ' u n Co rp s d e Re n t r e e

P r e s e n t a n t u n Cy c le L i m i t e .  (Processing the Free Oscilla

tions of a Re-Entry Body Presenting a Limit-Cycle .) La

Recherche Aerospatiale,

 No .104,

  1965.

M e th od e P r a t i q u e de D e p o u i l l e m e n t s d ' O s c i l l a t i o n s L i b r e s

a un Degre de L ib er ie , en Pre sen ce d 'u ne For ce de Rappel

D i s c o n t i n u e .  (Practical Process ing Method for One-Degree -

of-Preedom Free-Oscillations with a Discontinuous  Res

training Force .) La Recherche Aerospatiale,

  No.89,

 1962.

S t a b i l i t e Dynamique sur Maq uettes d 'Avions par la Methode

d e s O s c i l l a t i o n s L i b r e s .  Presented at AGARD Fluid

Mechanics Panel, Cambridge, September 1966.

70.   Walchner, 0.

Sawyer, P.M.

Koob,   S.J.

71.   Walker, H.J.

Ballantyne, Mary B.

72.

  Wehrend. W.R. Jr

Dynamic S t a b i l i t y Te st in g in a Mach 14 Blowdown Wind

T u n n e l .  Journal of Spacecraft and Rockets,

 Vol.1,

 No.4,

1964.

 p p. 437-439.

Pr ess u r e D is t r ib u t io n and Damping in S teady P i tc h a t

Su pe rso nic Mach Numbers of Fl a t Sw ept-Back Wings Having

A l l E d g e s S u b s o n i c .  NA CA TN 2197, Oct ober 1950.

An Ex per im ent al E va lu at io n of Aerodynamic Damping Moments

o f Cones wi th Di f fe ren t Cen te rs o f R o t a t i on .  NASA TN

D-1768, March 1963.

73.

  Welsh. C.J.

Clemens,  P.L.

74.  Wiley, H.G.

75.   Woodgate, L.

Maybrey.

 J.P.M.

Scruton, C

76.   Wright, B.R.

Kilgore, R.A.

A Sm al l -S ca le F or ce d- O sc i l l a t i on Dynamic Ba lance Sys tem.

AEDC-TN-58-12.  Ju ne 1958. AD 157 143.

The Si gn if ic an ce of No nlin ear Damping Trends Determined

f o r C u r r e n t A i r c r a f t C o n f i g u r a t i o n s .  Presented at the

AGARD Plight Mechanics Panel, Cambridge, England, September

20-23,

  1966.

Measurements of the Pi tc hi ng Moment D er iv at iv es fo r R ig id

Tapered Wings of Hexagonal Planform O sc il la t i n g in Sup er

s o n i c F l o w .  ARC R & M

  3294,

 1963.

Aerodynamic Damping and O sc i l l a t o r y S ta b i l i ty in P i tc h

and Yaw of Gemini C on fi gu ra ti on s at Mach Numbers from

0 . 5 0 t o 4 . 6 3 .  NAS A TN D-3334. March 1966.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 130/236

110

Derivatives Due to Yaw and Rate of Yaw

1. Fishe r, L. R.

Fletcher, H.S.

2.

 Fisher, L.R.

Wolhart, W. D.

3. Malvestuto, P.S. Jr

4.

 Margolis , K.

Bobitt,

  P.J.

5. Margolis, K.

Elliott,

 M. H.

6. Margolis, K.

Sherman, W. L.

Hannah, M.E.

7.

  Martin, J.C.

Malvestuto, P.S. Jr

8. Purser, P.E.

9. Queijo, M.J.

et al.

10.

  Robinson, A.

Hunter-Tod, J.H.

E f f ec t o f L ag o f S i d ew as h o n t h e V e r t i c a l - T a i l C o n t r i b u t i o n

to Os c i l l a to ry Damping in Yaw of Ai rp la ne M odel s.

  NACA

TN   3356. January 1955.

Some   E ff ec ts of Ampli tude and Frequ ency on the Aerodynamic

Damping of a Model O sc i l l a t i n g C ont inu ous ly in Yaw.

 NACA

TN   2766,  September 1952.

Th eo re t i c a l Sup er son ic Force and Moment Co ef f i c ien t s on

a S i d e s l i p p i n g V e r t i c a l - a n d H o r i z o n t a l - T a i l C o m b in a ti on

wi th Subso nic Leading Edges and Sup er son ic T ra i l i ng

E d g e s .

  NAC A TN 3071, Marc h 1954.

T h e o r e t i c a l C a l c u l a t i o n s of th e P r e s s u r e s , F o r c e s , a n d

Moments at Supersonic Speeds Due to Var ious Lateral

M o t io n s A c t i n g on T h in I s o l a t e d V e r t i c a l T a i l s .  NACA

Rep ort 1268, 1956.

T h e o r e t i c a l C a l c u l a t i o n s o f th e P r e s s u r e s , F o r c e s , a nd

Moments Due to V ar ious L a te ra l Motions Ac t ing on Tapered

Sweptback V er t i c a l T a i l s w i th Sup er son ic Leading and

T r a i l i n g E d g e s .

  NAS A TN D-383, August 1960.

T h e o r e t i c a l C a l c u l a t i o n o f t h e P r e s s u r e D i s t r i b u t i o n ,

Span Loa ding , and R o l l i ng Moment Due to S id e s l ip at

Su pe rso nic S peeds for Thin Sweptback Tapered Wings with

Sup er son ic T ra i l in g Edges and Wing T ips P a ra l l e l to the

A x i s o f W in g S y m m e t ry .

  NACA TN

  2898,

  February 1953.

Th eo re t i ca l Fo rces and Moments Due to S id es l i p of a

Number of V er t i c a l Ta i l Co nf ig ura t ion s a t Sup er son ic

S p e e d s .

  NAC A TN 2412, Sep temb er 1951.

An App roxim at ion to the Eff ec t of Geom etr ic Di he dra l

on the R o l l in g Moment Due to S id e s l i p fo r Wings at Tran

s o n i c a n d S u p e r s o n i c S p e e d s .

  NAC A RM L52B01, April 1952.

Pr el im in ar y Measurements of the Aerodynamic Yawing De

r i v a t i v e s of a Tr ian gu lar , a Swept , and an Unswept

  Wing

P er f o r mi n g P u r e Y aw ing O s c i l l a t i o n s , w i t h a D e s c r i p t i o n

o f t h e I n s t r u men t a t i o n E mp l o y ed .

  NACA RM L55L14,  April

1956.

T he A ero d yn amic D e r i v a t i v e s w i t h R es p ec t t o S i d e s l i p f o r

a De l ta Wing wi th Smal l D ih edra l a t Zero In c ide nce a t

S u p e r s o n i c S p e e d s .

  ARC R & M 2410, December 1947, ARC

11,322.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 131/236

I l l

11.  Sherman, W. L.

Margolis, K.

T h e o r e t i c a l C a l c u l a t i o n s o f th e E f f e c t s o f F i n i t e S i d e

sl ip a t Supersonic Speeds on the Span Loading and Roll ing

Moment for Families of Thin Sweptback Tapered Wings at an

A n g l e o f A t t a c k .  NACA TN 3046.  November 1953.

Magnetic Suspension for Aerodynamic Testing

1.

Ma gnetic Susp en sio n of Wind Tunnel Mod els.  The Engineer,

Vol.210.

 N o. 5463, O cto ber 7, 1960, pp .607-608.

Magnetic Suspension Replaces Mechanical Support of Wind

T u n n e l M o d e l s .  Electronic Design

 News,

  Vol.6, No.7,

July 1961,  pp. 13-15.

3. Baron,

 L.

 A.

77ie  Des ign and Co ns t r uc t io n o f an Automat ic C on t ro l

System fo r a Wind-Tunnel Mag netic Su spe nsi on System .

MIT Thesis, Mas sachusetts Institute of Technology, Cam

bridge,

  Mass.,

 J une 1960.

4.

 Clemens,

 P.

 L.

Cortner, A. H.

5. Chr isinger, J.E.

B ib lio gr ap hy : The Magnetic Suspen sion of Wind Tunnel

M o d e l s .  AED C-T DR- 63-20, Febr uary 1963. AD296400.

An I nv es t i ga t i on o f the Eng in ee r ing Aspec ts o f a Wind

Tunnel Magnetic Suspension System.  MIT Thesis, MIT

TR 460, Ma y 1959, AD 221294.

6. Chrisinger, J.E.

et al.

Magn etic Susp ensi on and Balan ce System for Wind Tunnel

A p p l i c a t i o n .  Journal of the Royal Aeronautical Society,

Vol.67,

 No .635, Nov emb er 1963, pp. 717-724.

7.

 Copeland, A. B.

Covert,

 E.E.

Stephens, T.

Rec ent Advances in the Development of a Ma gnetic Su spe nsi on

and Ba lance System fo r Wind Tunne ls (Pa r t I I I ) .  ARL-65-114,

June 1965.

8. Copeland, A. B.

Tilton, E.L. Ill

The Design of Magnetic Models for Use in a Magnetic

Sus pen sion and Balanc e System fo r Wind Tun nels .  ARL-65-

113.

 June 1965.

9. Covert, E.E.

et al.

Rec ent Advances in the Development of a Ma gnetic Sus pen sio n

and Bala nce System fo r Wind Tunnels (Pa rt I I ) .

  ARL-64-36,

Marc h 1964.

10. Covert. E.E.

Tilton, E.L. Ill

11. Covert, E.E.

Tilton,

  E.L. Ill

C al ib ra t i on o f a Magne t ic Ba lance System fo r Drag , L i f t ,

a n d P i t c h i n g M o m en t.  Massachusetts Institute of Technology,

Aerophysics Laboratory, Cambridge,

 Mass.,

  May 1963.

Fu r th e r E va l ua t ion o f a Magne t ic Suspens ion and Ba lance

System for A pp lic at io n t o Wind Tun nels .  ARL-63-226,

Dec emb er 1963, AD 427 810.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 132/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 133/236

113

20.  Laurenceau,

 P.

Desmet, E.

Ad apt at io n de la Susp ension Magnetique des Ma quettes aux

Souff le r ies S.19 e t S .8 .  (Adaptation of the Magnetic

Suspension

 o f

 Models

 t o

 Wind Tunnels

 S.19 and S.8.)

ONERA

 N T  7/1579

 AP, Office National d'Etudes

  et de

Recherches Aeronautiques, Chatillon-sous-Bagneux

  (Seine),

Paris,  Prance, Janvier

 1957.

21.  Matheson, L.  R. Some   Co n s i d e r a t i o n s f o r D e s i gn a nd U t i l i z a t i o n o f M a g ne ti c

S u s p e n s i o n .

  Aerod ynamics Fundamental Memo No. 84,  General

Electric Missile and  Space Vehicle Department, Phila

delphia, Pennsylvania,  May 1959.

22.  Mirande, J.

Mesure de la R es is t an ce d 'un Corps de Re vo lut ion , a

M

Q

 =  2. 4 ,   au Moyen de la Sus pe ns io n M agne tique ONERA.

(Measurement  o f t h e  Drag of a  Body of  Revolution, at

M = 2.4 , by  Means of the  ONERA Magnetic Suspension

System.)

  No.70,

  Office National

  d'

 Etudes

 et de

 Recherches

Aeronautiques, Mai-Juin 1959, p. 24.

23. Nelson,

 W.

Trachtenberg,  A.

Grundy, A. Jr

An Ap par atu s fo r the Stud y of High Speed Air Flow Over a

F r e e l y S u s p e n d e d Ro t a t i n g Cy l i n d e r .  WADC TR 57-338,

AD 142127, December 1957.

24.  Parker, H.M.

May,

 J.E.

Nurre, G.S.

An Ele ctr om agn eti c Suspe nsion System for the Measurement

o f A e r o d y n a m i c C h a r a c t e r i s t i c s .  OSR-2294, AST-4443-106-

62U, University of  Virginia, Charlot tesvil le, Virginia,

March 1962.

25.  Scott,

 J.E. Jr

May, J.E.

Labo ra to ry In ve s t ig a t io n o f the Bas ic Na tu re of Low

D ens ity Gas Flow at High Spee ds, Annual Repo rt fo r the

P er io d 1 Ja nu ary 1960 to 31 December 1960.

  University

of Virginia, Charlottesville, Virginia, January

 1960,

AST-4435-109-61U.

26.

  Stephens, T.

Methods of Control l ing the Roll Degree of Freedom in a

Wind Tunnel Magnetic Ba lanc e, P ar t I : P rod uc tio n of

R o l l i n g M o m e n t s .

  ARL

 65-242,

  December 1965.

27.  Tilton,  E. L.

et

 al.

The

  Des ign and I n i t i a l Op era t ion o f a Magne t ic Mode l

Sus pen sion and Force Measurement System.

  ARL-63-16,

August

 1962.

28.  Tilton,  E. L.

Schwartz, S.

Sta t ic Tes ts on the Magne t ic Suspens ion Sys tem.

  MIT AR

Memo 399, Massachusetts Institute

 of

 Technology, Naval

Supersonic Laboratory, Cambridge,   Mass.,  July

 1959.

29.

  Tournier, M.

Dleulesaint,

 E.

Laurenceau,

 P.

Etude , R ea l i sa t i on e t Mise au Po i n t d 'une Suspens ion de

Maquette Aerodynamique par Action Magnetique pour une

P e t i t e S o u f f l e r i e .

  (Design, Construction  and  Operation

of a  Magnetic Suspension System  for  Aerodynamic Models

in a  Small Wind Tunnel.) ONERA N T  1/1579 AP, Office

National

  d'

 Etudes et de  Recherches Aeronautiques, Chatil

lon-sous-Bagneux

  (Seine),

 P aris, Prance.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 134/236

114

30.  Tournier, M.

Laurenceau, P.

Per fec t io nne me nts a l a Susp ens ion Magnet ique des Ma quet t es .

(Improvements  in the  Magnetic Suspension  of  Models.) ONERA

NT 5/1579 AP, O ffice National d'Etudes Reche rche s Ae'ro-

nautiques, Chatillon-sous-Bagneux

  (Seine),

  Paris, France,

Decembre

 1956.

31.  Tournier, M.

Laurenceau,  P.

Dubois,

 6.

La Suspension Magnet ique ONERA.

  (The ONERA Magnetic

Suspension Syst em.) Conference on Premier Symposium

International  sur  1'Aerodynamique  et  1'Aerot hermique des

Gas Rarefies, Nice , Prance, 2-5 Juil let 1958. Off ice

National d'Etudes

  et de

 Rec her che s Ae'ronautiques, Chati l

lon-sous-Bagneux  (Seine),  Paris, Prance, Pergamon Press,

London.

32.  Zapata, R.N.

Dukes, T.

An E l ec t r o ma g n e t i c S u s p en s i o n S y s tem f o r S p h e r i ca l M o d e ls

in a Hy pe rson ic Wind Tun nel .  Report 682, Gas Dynamics

Laboratory, Princeton University, Princeton,

  New

 Jersey,

July 1964.

Derivatives Due to Rate of  Roll

1. Al lwork , P.H.

Continuous Rotat ion Balance for Measurement of Yawing

and R o l l in g Moments in a Sp in.

  ARC R & M 1579, November

1933.

2.  Bennett , C. V.

Johnson, J.L.

Exp er im enta l De term ina t ion of the Damping in Ro l l and

Ai ler on Ro l l in g Ef fec t iv en es s of Three Wings Having 2° ,

42°,  a n d 6 2 °  S weepback .  NACA T N  1278. Ma y 1947.

3.  Boat r igh t , W.B.

Wind-Tunnel Measurements of the Dynamic Cross Der ivat ive

C

l r -

Cja .   (R ol li ng Moment Due to Yawing V el oc ity a nd

t o A c ce l e r a t i o n i n S i d e s l i p ) o f t h e D o u g la s D - 5 5 8 - I I

Ai rp lane and i t s Components a t Super sonic Speeds Inc lud ing

D es c r i p t i o n o f t h e T ech n i q u e .  NACA RM L55H16, November

1955.

4.

  Bobbitt.

 P.J.

L i n e a r i z e d L i f t i n g - S u r f a c e a nd L i f t i n g - L i n e E v a l u a t i o n s

of S idewash Behind Ro l l in g Tr i an gu lar Wings a t S upe r son ic

S p e e d s .  NAC A Repo rt 1301,  1957.

5. Bobbitt,

 P.J.

Malvestuto,

  P.S. Jr

6. Brown, C.E.

Adams,

 M.C.

Es t im at i on of Forc es and Moments Due to R ol l in g fo r

S e v e r a l S l e n d e r - T a i l C o n f i g u r a t i o n s a t S u p e r s o n i c S p e e d s .

NACA TN 2955, Jul y 1953.

Damping in P i t c h and R ol l of Tr ia ng ul ar Wings at Sup er

s o n i c S p eed s .

  NACA Report 892, 1948.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 135/236

115

7.

 Brown, C.E .

Heinke, H.

 S. Jr

Pre l iminary Wind-Tunne l Tes ts o f T r iangu la r and Rec tangu la r

Wings in St ea dy Ro ll a t Mach Numbers of 1 .62 and 1.92 .

NACA TN

  3740,

  June 1956.

8. Conlin, L.J.

Orlik-Ruckemann, K.J.

9. Da rl ing , J .

Comparison of Some Exp erim enta l and Th eo re t ic al D ata on

Damping- In -Rol l o f a De l ta-Wing-Body Conf ig ura t io n a t

Super son ic Speeds . Na t iona l Resea rch Counc i l , Canada ,

LR-266, December 1959.

Roll Damping of the Spinner Finner Model at Mach 2.49.

NAVORD R epo rt 4502 , 1958.

10.

 Evans, J.M.

Pink, P.T.

S t a b i l i t y D e r i v a t i v e s - D e t e r m i n a t io n o f I

O s c i l l a t i o n s .

ACA-34.

  April 1947

by Free

Australian Council for Aeronautics, Report

11.

 Evans, J.M.

Pink, P.T.

S t a b i l i t y D e r i v a t i v e s - D e t e r m i n a t i o n o f I by F r e e

R o l l i n g .  Australian Council for Aeronautics, Report

ACA-35,

 May 1947.

12. Franks. R.W. The Ap pl i ca t ion o f a S im pl i f ie d L i f t in g -S ur f ace Theory

t o th e P r e d i c t i o n o f t he Ro l l i n g E f f e c t i v e n e s s o f P l a i n

S p o i l e r A i l e r o n s a t S u b s o n i c S p e e d s .  NACA RM A54H26a,

December 1954.

13.

 Goodman, A.

Adair.   G.H.

Es ti m at io n of th e Damping in R ol l of Wings Through the

Normal F l ig h t Range o f L i f t C oe f f i c ie n t .

  NACA TN 1924,

July 1949.

14. Goodman, A.

Fisher, L. R.

15.

 Greene, J.E.

16.

 Hannah, M.E.

Margolis,

 K.

17.

  Harmon. S. M.

Martin, J.C.

18. Harmo n,

  S.

 M.

Jeffreys,

 I.

I nv es t i ga t i on a t Low Speeds o f the E f fec t o f Aspec t Ra t io

a nd S weep on Ro l l i n g S t a b i l i t y D e r i v a t i v e s o f U n t a pe r ed

W in g s .  NAC A Repor t 968, 1950.

An I nv es t i ga t i on o f the R o l l in g Mot ion o f C ruc i fo rm-F in

C o n f i g u r a t i o n s .  NAVORD

  6262.

  1958.

Span   Load D is t r ib u t io ns R es u l t in g from Cons tan t Angle o f

A t t a c k , S t e a d y Ro l l i n g V e l o c i t y , S t e a d y P i t c h i n g V e l o c i t y ,

and Cons tan t Ve r t i ca l Acc e le ra t ion fo r Tapered Sweptback

Wings with Streamwise Tips, Subsonic Leading Edges and

S u p e r s o n i c T r a i l i n g E d g e s .

  NAC A TN 2831, Dece mber 1952.

T h e o r e t i c a l Ca l c u l a t i o n s o f t h e L a t e r a l F o r c e a nd Y a wing

Moment Due to R ol li ng at Su pe rso nic Speed s for Sweptback

Tapered Wings with Streamwise T ips , Su per son ic Leading

E d g e s .  NAC A TN 2156, July 1950.

Th eo re t i ca l Li f t and Damping in R ol l of Thin Wings w ith

Ar b i t ra ry Sweep and Taper a t Supe rson ic Speeds , Supe rson ic

L e a d i n g an d T r a i l i n g E d g e s .  NA CA TN 2114, May 1950.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 136/236

116

19 .

  Jo ne s, A. L.

Alksne, A.

The Damping Due to Ro l l o f Tr ian gu lar , T ra pe zo ida l , and

R e la te d Pla n Forms in Su pe rs on ic Flow. NACA TN 1548,

March 1948.

20 .

  Lockwood, V.E.

21.  Lomax, H.

H ea sl et , M. A.

D amp i n g - I n - R o l l C h a r ac t e r i s t i c s o f a 4 2 . 7 S w ept back Wing

as Determined from a Wind-Tunnel In v es t i ga t i o n of a

Tw is te d Se m isp an Wing. NACA RM L9P1 5. A ugust 1949.

Damping- In-Rol l Calcu la t ions for S lender Sweptback Wings

and S le n d e r Wing-Body Co m bi na tio ns . NACA TN 1950,

September 1949.

22.

  MacLachlan, R.

Letko. W.

C or re la t io n of Two Exp er im enta l Methods of Determ in ing

the R o l l i ng C h a ra c te r i s t ic s o f Unswept Wings. NACA TN

1309,

  May 1947.

23.

 Margol is, K.

T h eo r e t i c a l C a l cu l a t i o n s o f t h e L a t e r a l F o r ce and Y awing

Moment Due to R o l l in g a t Sup ers on ic Speeds for Sweptback

Tapered Wings with Stream wise T ips , Subs onic L eading

E d g e s .

  NAC A TN 2122, June 1950.

24.

  Martin, J.C.

Gerber, N.

Oi

  the Effe ct of Thic kne ss on the Damping in Ro l l of

A i r f o i l s a t S u p e r s o n i c S p e e d s .  BRL Report 843, January

1953.

25.  Martina, A. P.

26.

 McDearmon, R.W.

Method fo r C al cu la t i n g the Ro l l in g and Yawing Moments

Due to R o ll in g fo r Unswept Wings With or W ithout Fl a p s

o r A i l e r o n s b y U se of N o n l i n ea r S e c t i o n L i f t D a t a .

  NACA

TN

  2937.

  May 1953.

Wind-Tunnel In ve s t ig a t io n of the Damping in Ro l l o f the

Douglas D-5 58 - I I Rese arch Ai rp la ne and I t s Components a t

S u p e r s o n i c S p e e d s .

  NAC A RM L56F07. Septe mber 1956.

27.   McDearmon, R. W.

Jones, R. A.

Wind-Tunnel In ve s t ig a t io n of Damping in Ro l l a t S upe r son ic

Speeds of Tr iangular Wings a t Angles of At tack .

  NACA RM

L56P13a, September 1956.

28.

  Michael, W. H. Jr

A n a l y s i s o f t h e E f f e c t s o f W ing I n t e r f e r e n c e o n t h e T a i l

C o n t r i b u t i o n s t o t h e R o l l i n g D e r i v a t i v e s .  NACA Report

1086.

 1952.

29. Pinsker, W.J.G.

A S emi - E m p i r i ca l M eth od f o r E s t i m a t i n g t h e R o t a r y R o l l i n g

Moment D er iv a t iv es of Swept and S le nd er

  Wings. ARC CP

524,

  1959.

30.   Polha mu s, E. C.

A Simple Method of Es t im at in g the Sub sonic L if t and Damping

in R o ll of Sw eptb ack Wings. NACA TN 1862, A p ri l 1949.

31.  Queijo, M.J.

J a q u e t ,

  B.

 M.

Ca lcu la t ed Ef fe c t s o f Geomet r i c D ih edr a l on the Low-Speed

R o ll in g D er iv at iv es of Swept Wings . NACA TN 1732, O ctober

1948.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 137/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 138/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 139/236

119

19. Purser,

 P.E.

Stevens, J.E.

E x p l o r a t o r y Ro c ke t F l i g h t T e s t s t o I n v e s t i g a t e t h e U se

of a F r ee ly Sp inn ing Monoplane Ta i l fo r S t ab i l iz in g a

Body.

  NACA

 R M

 L52I05a, Oct obe r

 1952.

20.  Regan,

 P.J.

Horanoff.  E. V.

21.  Sieron,

 T.  R.

Wind Tunnel Magnus Me asurem ents at th e Na val Ordna nce

L a b o r a t o r y .

  AIAA Paper 66-753, AIAA Aerodynamic Testing

Conference, September 21-23,

  1966.

Oi   th e "Magnu s E f f e c t s " o f a n I n c l i n e d S p i n n i n g S h e l l a t

Subson ic and Transon ic Speeds .  WADD Technical Report

60-212,

 1960.

22.  Sieron,

 T. R.

The Magnus C h a ra ct e r i s t ic s of the 20 mm and 30 mm Pro

j e c t i l e s i n t h e T r i s o n i c Sp e ed Ra ng e.  WADC Technical

Note 59-520, October 1959.

23.  Stone,

 G.

 W.

77ie

 Magnus In s t a b i l i t y o f a Sound ing Rocke t .

  AIAA Paper

No.66-62,

  AIAA

 3r d

 Aerospace Sciences Meeting,

 New

 York,

January 24-26,

 1966.

24.

  Thorman,

 H . C

Boundary Layer Measurements on an Axisymmetric Body with

S p i n  an d Yaw.

  Guggenheim Aeronautical Laboratory, Cali

fornia Institute

 o f

 Technology, Report

 o n

 Army Contract

DA-04-495-ORD-481, November

 1957.

25.

  Wolff, E.B.

Koning,  C

Tes ts fo r De te rmin ing the E f fec t o f a Ro ta t i ng C y l inde r

F i t t e d in to th e Leading Edge of an Ai rpla ne Wing.  NACA

TM 354, March

 1926.

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 140/236

120

Methods of Measurement

of Dynamic Stability

Derivatives

Model Free to Move

in All Basic Degrees

of Freedom

Model Restricted in

Several Degrees of

Freedom

Free-Flight Model

Tests

Model Moving in the

Test Section

Measurement

of Forces

and Moments

Forced

Oscillation

Forced

Rotation

Measurement

of Model

Motion

Free

Oscillation

Free

Rotation

Cross

Oscillation

Pig.

 1  Methods of measuring dynamic stability derivatives

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 141/236

121

POSITIVE SENSE OF AXES,

VEL OC ITIES , AND ANGLES

I S INDICATE D BY ARROWS.

c

N

(-c

z

)

Z W . Z T

C n , w O

NOTE:

1 .  POSITIVE VALUES OF FORCES,

MOMENTS, AND ANGLES ARE

INDICATED BY ARROWS.

2 .

  ORIGINS OF WIND AND STABILITY

AXES HAVE BEEN DISPLACED

FROM CENTER OF G RAVI TY , FOR

C L A R I TY .

C

L

Pig . 2 Axes system s

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 142/236

122

Note:

M o d e l O r i en t a t i on R e f e r en c e d t o

t h e S y m m e t r i c F l i g h t C on d i t i o n

N o t e:

  Quantiti es given in

p a r en t h e s i s a r e v e c t o r s .

Pig. 3  Orientation of coordinate systems

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 143/236

S o u r c e AEDC-VKF

A E D C

1 5 5 6 4 - 6 6

Pig.4 Multlpiece crossed flexures

'ci

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 144/236

Cross-Flexure Pivot

Model-Pivot

Adapter

(Magnesium)

Torque Tube Pivot

Cruciform Pivot

Source AEDC-VKF

A E D C

44920-64

Pig.5 Cross-flexure, cruciform and torque tube pivots

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 145/236

125

Canti lever Support

Al l dimensions are in inches.

Moving

0.125 Diam

J

0.045

0.20

Fixed

Moving

Double End Support

Canti lever Support

Fig. 6 Small scale instrument flexure pivot

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 146/236

126

So ur ce DTMB, Ref . 17

Pig .7 Knife edge pivot

Source DTMB, Ref. 17

Typical Model

Sting.

Pig .8 Cone pivot   -  three degrees  of  freedom

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 147/236

Fig . 9 Bal l bear in g p iv o t

3

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 148/236

Model Mounting Bulkhead

Flexure

S

" I "

  B e a m Se c t i on

O s c i l l a t i n g S h a f t

Source AEDC-VKF

(S ha de d E l em e n t s) 0 1 2 3

S c a l e i n I n c h e s

Pig.10 High amplitude forced osc il l at io n balance with bal l bearing pivot

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 149/236

129

" 0 "

  Ring Seal

0.032-diam

Orifice, 8 Holes

Equally Spaced

0.00095—

Outer Ring

Shield

Shim

End Plate

2.965

Diam

Mounting Pads

Source AEDC-VKF, Ref. 19

All dimensions are in inches.

Transducer Housing

T

3.75

k

U —

'• Q B E

Eccentric Ring

•Outer Ring

^ S ^ - C o i l

1.87

\ - n c i

E" Core

Pig .11 Gas bearing pivo t

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 150/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 151/236

131

.-10.0

• a

i n

-5.0

X

. CD

•1 . 0

0.1

1— I I I I I

o

D

0

Q

e

p

Radial

 Load,

  lb

- 24

a 124

s 224

s 324

• ±11 .5 deg

~ 300 psig

0.5 1.0

Frequency, cps

J

  i i I i i

5.0

10.0

Source

  AEDC-VKF, Ref. 18

o

CD

T 3

ro

I

X

CD

150 200 250

Radial

  Load, lb

Pig. 13 Damping charac teris tics

 of

 AEDC-VKP

 g a s

 bearing

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 152/236

132

Source AEOC-VKF

-Th ru st Gas Bearing

Fig.14  G as  bearing  for  roll-dampi ng system

_i-

PPtch

 T '

  Core

(Tw 180* Apart*

Pltch-Y»w Eccentric

Model Mounting Surface

Bearing Pads

Y w

  " t "

 Cora

(Tm 180° Apart)

Source AEDC-YKF

Plenum

-Bearing Housing

-Bearing Core

P i g . 1 5 S p h e r i ca l g a s b ea r i n g

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 153/236

T e s t S e c t i o n

2

2

Z2gaZ^222£SSSSSSSSSSSSSfZ5

I p - X « K \ \ \ \ \ \ \ \ \ ^ f < H

Permanent Field Magnet

Oscillating Colls

Cruciform Spring

Source NAE

P i g . 1 6 T w o -d i me n si o na l o s c i l l a t o r y a p p a r a t u s

CO

'mm

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 154/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 155/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 156/236

136

-0.8

-0.4

Vd

od/2V

00

^ 0.75 0.010 to 0.015

0 1.50

0 2.25

D

  3.00

Source AEDC-VKF, Ref. 28

Conical Flow

Theory

- a

E

o

E

O

-4.0

-2.0

• • . I

0.6 0.8 1.0

8

1.0

0.8

0.6 -

0.4 -

0.2

2.0

_ L

Firs t- and Second-

Order Potential Flow

Theory

l I

4.0 6.0 8.0 10

20

Re

t

  x 10"

6

-«q  T —

m

L - Laminar Flow at Base

T - Tu rb u lent Flow at Base

Solid symbols represent conditions

for which photographs are shown.

0.6 0,8 1.0

Re.x 10

I

(a ) M^ =

 2.

 5 , d_/d = 0.4 , a = ± 2 deg

Fig.19 Support interference effects

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 157/236

137

Source AEDC-VKF,

  Ref. 28

-0.8

  -

-0.4

V

d

ud/2V

03

XI

0

0

D

0.75

1.50

2.25

3.00

0.010 to 0.015

Conical Flow

Theory

e °  -4.0

E

o

-2.0

I I I I

0.6 0.8 1.0

0.6 0.8 1.0

Firs t- and Second-

Order Potential

Flow Theory

2.0

4.0 6.0 8.0 10

Re^xlO

6

20

Solid symbols represent conditions

for which photographs

 are

 s hown.

L

 -

  Laminar Flow

 at

 Base

T -  Turbulent Flow at Base

Re.x

 10

(b) M = 2.5 , d„/d =0.8 , a = ±1.5 deg

Fig.19 Support Interference effects

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 158/236

138

CD

E

-0.8

-0.4

i

s

/d ud^Vo)

^ 0.75 0.010 to 0.013

0 1.50

0 2.25

a 3.00

_a_

S ^ P

5

-

Source AEDC-VKF, Ref. 28

Conical Flow

Theory

.o -4.0 -

E

o

+

E "

U

  -2.0

I I I I

0.6 0.8 1.0

8

•9 -

J I

J I 1_L

First- and Second-

Order Potential Flow

Theory

2.0 4.0 6.0 8.0 10

Re^ x

 10 '

6

Solid symbols represent conditions

for which photographs are shown.

0.6 0.8 1.0

6.0 8.0 10

R e ,

  x

  1(

(a ) M^ = 3 . d

s

/ d = 0 . 4 , a = ± 2 d eg

F i g . 2 0 S u p po rt i n t e r f e r e n c e e f f e c t s

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 159/236

139

-0.8

-0.4

L i d ud/2V

co

^ 0.75 0.010 to 0.013

0 1.50

0 2.25

o 3.00

Source AEDC-VKF, Ref. 28

- & ~ ~ ^ = Z -

 Conical Flow

Theory

fe

o -4.0

+

c

E

o

-2.0

I I I I

0.6 0.8 1.0

First- and Second-

Order Potential

Flow Theory

J L J i L -L

2.0

R e, x 10'

4,0 6.0 8.0 10

Solid symbols represent conditions

for which photographs are shown.

L -Laminar Flow at Base

T - Turbulent Flow at Base

0.6 0.8 1.0

6.0 8.0 10

Re.x 10

(b) M

ro

  = 3 , d

s

/d = 0 .8 .  CC  = ±1.5 deg

P i g .2 0 S u p p o rt i n t e r f e r e n c e e f f e c t s

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 160/236

140

V

d

od/2V,

O

Source AEDC-VKF, Ref. 28

-0.8 -

-0.4 L

xi 0.75  0.009 to 0.010

0 1.50

0 2.25

o 3.00

o Free Flight

tf Free Flight with Boundary-Layer Trip

• Conical Flow

Theory

a ^ r j First- and Second-

'^"-•g Order Potential Flow

Theory

I I I I I I J. J

0.4 0.6 0.8 1.0

2.0

Re^

  x  10

6

4.0 6.0 8.0 10

Solid symbols represent conditions

for which photographs are s hown.

L - Laminar Flow at Base

T - Turbulent Flow at Base

0.4  0.6 0.8 1.0

6.0  8.0 10

Re.x 10

(a ) M ^ = 4 , d

s

/d = 0.4 . a = ± 2 deg

Pig.21 Support interference effects

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 161/236

Source AEDC-VKF. Ref. 28

E

-0.8

-0.4 L

XI

0

0

a

0

£

s

/d UOVZVQJ

0.75 0.009 to 0.010

1.50

2.25

3.00

Free F light

or Free Flight with Boundary-Layer Trip

Conical Flow

Theory

141

e

-4.0 -

8

1-4 r

1.2

1.0

0.8

0.6

0.4

0.?

-0.2

0.4

First- and Second-

Order Potential

Flow Theory

| ' | i I

0.8 1.0 8.0 10

R e ^ x l O "

6

Solid symbols represent conditions

(or which photographs are shown.

L - Laminar Flow at Base

T - Tu rbu lent Flow at Base

1

0.6

i

  i

0.8

1

1.0

1

2.0

Rej  x  10 "

6

4.0

  6.0 8.0 10

(b) Mo,

 = 4 , d

g

/d = 0.8

 ,

 a =

 ±1.5

 deg

Pig.21 Support interference effect s

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 162/236

142

M

m

  =

 2.5

' C O

R e

i

x

-6

Moo-3.0

Re.

  x 10"

o

A

1.0

6.0

D

0

1.5

6.0

Source AEDC-VKF, Ref. 28

Re^  x 10"

6

^J 2.8

0 5.4

& Free Flight

rf Free Flight with

Boundary-Layer Trip

Conical Flow Theory

E

7

•? 9

First- and Second-

Order Potential

Flow Theory

. . . i

8

a .

u .  u

0.4

0.2

n

_ o

A

i

o

o

A

A

. 1 1

M  * 3

j .

0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0

d

s

/d

Fig.22 Variation

 of

 static

 and

 dynamic stability coefficient

  and

 base pressure ratio

with sting diameter

  for Z

g

/d = 3

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 163/236

143

Pig.23 Model bala nce and support assembly for Hotsho t (AEDC-VKF tunnel P) tunnel

Fig. 24 Free oscil latio n balance system

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 164/236

Source AEDC-VKF

Pig.25 Transverse rod and yoke system installed in test section tank

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 165/236

145

1 0

T r a n s v e r s e Rod D i a m e t e r - 1 .1 0 i n .

P i v o t A x i s - 0 . 6 0 i n .

O T r a n s v e r s e R od D a t a

A F r e e O s c i l l a t i o n S t i n g D a ta

— . _ T h e or y

Source AEDC-VKF

- 4 i -

- 2

0

- 1

- 2

• e

E

U 0

= 0 . 9 1 x 1 0

R e . - 0 . 6 9 x 1 0

cod  _ T

-ryrj-  « 1 . 0 4 X 1 0

- - ^ r * * * * * *

C T - 4

- 2

1.16 x 10

6

0

- 4

- 2 -

= 1.4 4 x 10

— i t t f r C

Re^  = 1 .8 3 x 1 0

6

% * - = 1 .7 0 x 1 0 "

3

1 1 1 1

R e

d

  = 1 .8 3 x 1 0

6

'y^- = 1 .8 2 x 1 0 "

1 1 1

4 8 12 16 20 24 28

A m p l i t u d e o f O s c i l l a t i o n , ± 6 , d eg

F i g .2 6 D ynam ic s t a b i l i t y d e r i v a t i v e s v e r s u s a m p l i t u d e o f o s c i l l a t i o n , Mach 10

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 166/236

146

2.125 in.

0.30

 in

Source AEDC-VKF.

  Ref. 21

Pitch Axis,

41-percent

Body Length

-12

*   -

8

8 -

+

o

E

-4

  -

t

•12

•o

  -8

e

Straight Afterbody

Conf igurat ion

Flared Afterbody

Conf igurat ion

&

0

8

9

o

D

a

Re

d

  ~  3.9 x10

s

,  f = 21  cps

Cy lindrica l Rod (with Roughnes s)

Double Wedge Rod (with Rou ghness)

Cylindrical Rod (No Roughness)

0.125 0.250

Rod Diameter

 or

 Thickness,

  in.

Flared Afterbody Configu ration

0.375

0.560

Re

d

  = 3 . 9 x 10

5

,

  f~

  20 cps

o Cylindrical

 Rod

O Doub le Wedge Rod

I

- L

e

i

9

-L

0.125

0.375.250

Rod Diameter or  Thickness,  in.

Straight Afterbody Configuration (with Nose Roughness)

0.500

Pig.27  D a m p ing d e r i v a t i v e s

 for the

 flared

 and

 straight afterbody configurat ions

m e a s u r e d in conjunction with a s e r i e s of simulated transverse rod

configurations,   forced oscilla tion

 tests,

  amplitude 1.5 de g , M a c h 5

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 167/236

147

Pig.28 Magnetic suspension system,

  end

 view

Suspension Electromagnets

y Model

Light Sou rce and Photocell

Drag Solenoid

Pig.29 Basic

 "V"

 configuration m agnetic suspension system

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 168/236

148

Source AEDC-VKF

15.5°

43

100

60

40

c

g 20

J 10

a 6

S 4

Cross -Flexure Pivot

Tare Damping

IKBalance Structural)

_ i _

6 8

Mach Number

10

Gas

Bearing

Piyot

V

^ A e r o

dynamic

Damping

Tare

Damping

« 1 %

10

20

F i g . 30 C o n t r i b u t i o n o f a e r o dy n ami c , s t i l l - a i r , and s t r u c t u r a l d amp in g t o

to ta l damping

Source AEDC-VKF

Tank in Closed Position

Pig.

 31 Sket ch

 of the

 vacuum system used

 to

 evaluate still-air damping

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 169/236

149

1.6

0.4

©  - 71.1

 rad/sec

Source AEDC-VKF

6

  8 10

Pressure,

  psia

Mechanical

and  Material

. 1

12

14 16

Fig. 32 Variat ion

 o f

 structural damping with static pressure

200

*-.

c

i .

 loo

• a

  so

E

s

i 20

e

fe   10

<

-I 5h

E

s

Zn

1

I I

Source AEDC-VKF

0 1

5  6 7

Mach  Number

8 9 10 11

F ig .33 Va r ia t i on o f the r a t i o o f model s t i l l - a i r damping to mode l ae rodynamic

damping with Mach number

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 170/236

150

u

16

12 -

8 -

4 -

o Armco 17-4

D  Ni-span-C —

A  Bery llium Copper

0 Nickel

o Aluminum (2024-T4)

v Magnesium

A 7

*4%J04f2m ^ m T m m r t & ^ ' f ' ' L

8 12 16 20 24 28 32 36 40 44

M

ft-lb

9- rad

Pig .34 Va r ia t io n of the ang ular v i scous -damping-moment param eter w i th ang ular

r e s t o r i n g - mo men t p a r ame t e r

P i g . 3 5 T r i c y c l i c p i t ch i n g and y awi ng

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 171/236

151

S o u r c e  R e f .  41

P i g .  36 Typica l free flight epic yclic pitc hing and yawing moti ons of a nonrolling

statically stable symmetrical missile

S o u r c e

 R e f .  41

Pig.37 Typic al free flight epicyclic pitching and yawing moti ons of a rolling

statically stable symmetrical missile

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 172/236

152

Source Ref. 41

P i g . 3 8 T y p i c a l f r e e f l i g h t p i t c h i n g a nd y aw in g m o ti on o f r a p i d l y r o l l i n g s t a t i c a l l y

u n s t ab l e s y mmet r i ca l m i s s i l e

0.040

2 0.016

0.032

F i g . 3 9 M o tio n t r an s f o r m a t i o n

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 173/236

153

-1

B(t-t

2

»

  /

T \

\

\ /

cft • t

2

>  y

******mmj \

( C +

  B

i f l

3

— - y - ^ ^ ^ — T '

  Btt -t i»

y f

\ / C ( t - t j )

i

/

* = »

^ - ( C -  B)

Fig .40 Complex ang ular motion

B - K , e

X

l

 

X

?

t

C - K 2 6

  l

C+ B

Time, t

F ig .41 Expon en t ia l decay o f th e modal ve c to rs

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 174/236

154

Reference

Plane

pfo

Reference

Plane

i

M:

1

M

r

r

• "7

/

/ > "

^

e

r

M

3

^

\

v .

B

i

Forced Oscillation Off of Resonance

Reference

Plane -Cuft

Forced Vibration at Resonance

Fi g .4 2 Phase d iagram

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 175/236

155

Pressure Supply Tubes-

-Strain-Gage Bridge

-•—Cross-Flexure Pivot

S o u r c e

 A E D C - V K F , R ef . 47

P i g .

 43 High frequency free oscil lati on balance

 for

 Hotshot tunnel test s

Displacement Arms

Flexures

Releasing Pressure

Inlet

Displacing Pistons

Displacing Pressure Inlet

1 2 3

-Set Screw

_ i _

Scale, in.

Pig.43 Continued

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 176/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 177/236

A c t u a t i o n

S y s t e m

D i s p l a c e m e n t L e v e r

S o u r c e O NE RA , R e f . 4 7

Fig. 45 Free o sc il la ti o n balance and displacement mechanism

3

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 178/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 179/236

159

P i g . 4 7 F r e e - o s c i l l a t i o n t r a n s v e r s e r o d b a l an c e

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 180/236

o

A E D C

7 6 4 3 - 6 6

A E D C

7 6 4 4 - 6 6

Sou rce AEDC-VKF

Item No.

1

2

3

4

5

Description

Gas Bearing

Transverse Rod

"E "

  Core

"E "  Core Mo u nting Bracket

Eccentric

Item No.

6

7

8

9

10

Description

Gear Rack

Air Actuated Piston

Lock Housing for Air Piston

Lock Actuating Air Line

Model Mounting Pad

Pig.48 Photographs

 of the

 free-oscil lation (+35 deg) t ransverse

  rod

 balance

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 181/236

Vertical

Flexure

Forward

Support

Block

Tongue and V-Block

\Braking Mechanism

Hydraulic Motor

'/

Cam and Follower

Actuating Mechanism

Hydraulic Cylinder

%M*4

^•v*" 4« ^kfe

A x i a l F l e x u r e - ^

^ —H o u s in g \

A f t S u p p o r t B lo c k - ^

^ S t i n g

A d a p t e r

Source AEDC-PWT,

Ref . 49

Fig.49 Free-o scillatio n balance

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 182/236

162

Photo Cell

m m /

Light Beam

Quartz Fiber

Electromagnet

Transverse

Rod Su pport

Bearing (Electrically

Vibrated Inner Race

Source U

 of C,

 Ref.

 50

Fig. 50 Tra nsverse   rod  balance  for low density hyper sonic flow tunnel

A E D C

4 3 8 5 2 - 6 6

4 3 8 5 1 - 6 6

S ource A E D C -V K F

Fig.51 Photograph

  o f t h e

 assembled balance

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 183/236

163

j jSF

1

  Source AEDC-VKF

Pig. 52 Small scale free-oscillati on balance

PERFORATED BULKHEAD-

PRESSURE TRANSDUCER-

DYNAMIC BALANCE-

INNER SKIN

OUTER SKIN

(POROUS)

INNER SKIN

DIVIDING PARTITION

LOWER PLENUM

OUTER (POROUS) SKIN

GAS SUPPLY HOLE

RTITI ON-

CROSS SECTION

  AT

 BALANCE  ^

TRANSDUCER

UPPER PLENUM

GAS SUPPLY LINE

BALANCE FLEXURE

S o u r c e

  LTV,  Ref. 51

Fig.53 Basic mass in jection balance and porous model

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 184/236

S o u r c e L T V, R e f . 5 2

VZZZZm7Z7

A

Air Passages

Air Passages

J

0.01-in. Wall

Wall

0.0i-in^?2^0

:

09

izzzzz^J.

Crucifo rm Design Rectangular Design

Designs of Dynamic Balance Pivot Cross Section

£

Pig.54 Dynamic stability balance suitable

 f o r g a s

 injection

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 185/236

165

Pig. 55 Oltronix dampometer

Source Oltronix, Ref. 53

High Damping

Pig.56 Typic al calibrated slotted disks  and  principle o f  dampometer operati on

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 186/236

166

Light Source

Travel Summation Method

A

  • I

  ( 1 - b + b l n b )

s

?

  m

s  - f  E ( x

n

- x

m

) - ( x

0

- x

m

)

x

o

  o

Narrow Slots

Source NAE, Ref.

 54

Pig.57 Pree-oscil lation data reduction

S h a k e r M o t o r -

m

o  I

' - L o c k i n g D e v i c e

P u s h Rod

S o l e n o i d

  f or

A c t u a t i n g M o d e l

L o c k i n g D e v i c e

S ource A E D C -V K F i

  i I i I i l i i i i

0  2 4 6 8 10

S c a l e

  In

  I n c h e s

Pig. 58 Sting balance assembl y

 of

 the forced oscillation balance system

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 187/236

167

4$

Y o k e

L i n k a g e

S o u r c e A ED C -V K F, R e f . 5 6

[

Hinge Flexure

Strain-Gage Bridge (Displacement)

•Connecting Flexure

•Input Tor que Memb er

(Strain Gaged at Minimum

Cross Section Area)

Model Locking Device

0 1 2 3

• I I • I I I

S c a l e i n I n c h e s

Pig.59 Small amplitude (±3 deg), fo rce d- osc il la t io n balance

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 188/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 189/236

TORQUE

ANALOG SIGNAL INPUTS

DISPLACEMENT

IN-PHASE

TORQUE COMPONENT

LOW FREQUENCY

PEAK-TO-DC

CONVERTER

LOW FREQUENCY

PEAK-TO-DC

CONVERTER

FREQUENCY

COUNTER

ANALOG-TO-

DIGITAL CONVERTER

QUADRATURE

TORQUE COMPONENT

DC RATIO

DIGITAL VOLTMETER

ANALOG-TO-

DIGITAL CONVERTER

MANUAL INPUT

CONTROLS

TUNNEL

PARAMETER

INSTRUMENTS

I

SCANNER

(DIGITAL)

L & N

ANALOG-TO-DIGITAL

CONVERTERS

ERA 1102

DIGITAL COMPUTER

FLEXOWRITER

OR

PRINTER

Source AEOC-VKF

Pig.61 On- l ine data sys tem for force d-os ci l la t ion dynamic s ta bi l i ty tes t ing

a

to

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 190/236

o

P i g . 6 2 C o n t r o l p a n e l f o r f o r c e d - o s c i l l a t i o n sy s te m

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 191/236

171

S o u r c e A ED C -P W T, R e f . 5 7

^STMM-GMD) LEV sptme

FO*  UUSUWG ANOJUUt DcrLECTirx

w   FOB m e o u o c r v u u n o N

StCTiow A-|>

F i g . 6 3 F o r c e d - o s c i l l a t i o n b a l a n ce

Pig.63 Continued

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 192/236

TWO - PHASE

OSCILLATOR

GAGE

SUPPLY

PANEL

EXCITATION

PHASE

ADJUST

CHASSIS

DRIVE SIGNAL

i

SERVO

CONTROL

T

FEEDBACK SIGNAL

READOUT

EXCITATION

GAGE OUTPUT

ERROR

SIGNAL

BALANCE

POSITION

FEEDBACK

COMPUTER

TABULATORS

AND

PLOTTERS

Source

  AEDC-PWT,  Ref. 57

to

Fig.64 System block diagram for forc ed-osc il lation balanc e

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 193/236

ASSEMBLED OSCILLATION

BALANCE MECHANISM

DRIVE SHAFT

OPTING STING

DISPLACEMENT BRIDGE

MECHANICAL SPRING

Source NASA-LRC. Ref. 59

SCOTCH-YOKE

PIVOT

SHAFT

MOMENT BRIDGE

Pig.65 Photograph of

 the

 forward po rtion of

 the

 forced-oscilla tion bala nce mechanism

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 194/236

Moment ,—Scotch

yoke

Displacement beam

r

S o u rc e NASA-LRC, Re f . 61

Pig.66 Schemat ic view

 o f

 model

 and

 driving-syst em components

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 195/236

S o u r c e N A S A -L R C , R e f . 6 1

Displacement.

beam

_ Moment

beam

^ ^

Model pivot

axis

. \

  j .

  y y > / / / / / /

  } / ' / ' * *

i

  ' / { ' / * * r * J *

' ' ' *—*

5-

-Scotch yoke

F i g . 6 7 D e t a i l s o f o s c i l l a t i n g m ec ha ni sm

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 196/236

Attenuator

.

Bridge

balance

circuit

Linear

amplifier

y>flre\

/

  strain X

<  gage  y

Xbrldge

\S

(Real comp onent)

Resolver

Attenuator

(imaginary component)

Attenuator

Phase

shifter

Phase

shifter

Demodulator

and

filters

D-c

nlcroafflffleter

'

 W  Demodulator

and

filters

D-c

mlcroammeter

05

o

0-V  3K

C

  Carrier

Source NASA LRC, Ref. 60

Fig.68 Block diagram of electronic circuits used to measure model displacement and

applied moment

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 197/236

177

FP tQ UC NC Y MOTSIJLATtO

VAW   1

r i j

j | ElClTCR CUPBENT

i

Schematic arrangement

  for

 yaw-sideslip oscillations.

S o u r c e  RAE, Ref. 61

Pitch

 or

 yaw spring unit.

Roll spring unit.

P i g . 6 9 F o r c e d - o s c i l l a t i o n d yn am ic s t a b i l i t y b a l a n c e

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 198/236

- J

00

• r

Balance

t i i

O I 2

INCHES

C

Source RAE, Ref. 61

Accelerometers

Pig.70 Y aw-roll balance and accelerom eters

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 199/236

179

B

/ / / / / / /

.Mognet Coil

TOP

Ins t rumenta t ion

Leads

V I I I I I > I

mz

i i i i 11 1 11 11 11 1 n

11  J  i / i

aM.

i ) i i i i i ) i ) i i ) - m

Pi vo t Ax i s

Source UM, Ref. 64

SIDE

Krr

Coi

Posit ion

Magnet Coir

\....L.7^^

/

-

/ / / / / / / > < / / / / 1 1 1 I /I i  > 1 1 1 r r ,

F i g . 7 1 F o r c e d - o s c i l l a t i o n b a l a n ce w i th e l e c t r o m a g n e t i c e x c i t a t i o n

Pivot Axis

Exciter Coil Lead

Strain-Gage

Leads

Magnetic

. Field

Wind

Direction

Source

 UM,

 Ref. 64

P i g . 7 2 C utaway v iew o f t o r s i o n a l f l ex u r e p i v o t w i t h s t r a i n g ages f o r

f o r c e d - o s c i l l a t i o n b a l an c e w it h e l e c t r o m a g n e t i c e x c i t a t i o n

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 200/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 201/236

181

Source PU, Ref. 66

Nylon

Copper

Pig. 74 Cone model

 for

 magnetic suspension

Lift Electromagnets

Lateral

Electromagnets

Mirror

Model

^—Light Source

i ^ s ^ ; and Pho toce ll

Drag Solenoid

Pig.75 Basic

 L

 configuration magnetic suspension system

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 202/236

182

P H O T O C E L L S

N O Z Z L E  OF

W I N D T U N N E L

D R A G S O L E N O I D

SIDE VIEW

L I F T

E L E T R O M A G N E T 5

U G H T S E A M S  FOR

L A T E R A L C O N T R O L

L.1GMT

  B E A M  FOR

D R A G C O N T R O L

L I G H T B E A M S  FOR

L I F T C O N T R O L

Sourc e RAE, Ref. 68

I F T E L E C T R O M A G N E T

L A T E R A L

E L E C T R O M A G N E T

S C H L I E R E N

BEA.M

D R A G C O i L

L I F T L I G H T

B E A M

D R A G L I G H T

B E A M

L A T E R A L

L I G H T B E A M

END VIEW

Fig.76 Magnetic suspension system

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 203/236

Sourc<

British Crown Copyrig ht. Reproduced

with the permi ssion of Her Britannic

Majesty's Stationary Office.

©CONICAL TEST MODEL

©FRONT LIFT ELECTROMAGNET

® REAR LIFT ELECTROMAGNET

® FRONT LATERAL LIGHT BEAM

® REAR LATERAL LIGHT BEAM

©QUARTZ WINDOW

©DRAG LIGHT BEAM

©REAR LIFT LIGHT BEAM

©DRAG PHOTOCELL

©REAR LATERAL ELECTROMAGNET

©FRONT LIFT PHOTOCELL

©R EA R LIFT PHOTOCELL

©UPPER SCHLIEREN WINDOW

©LOWER SCHLIEREN WINDOW

©DRAG COIL

©INLET NOZZLE (lVl -8-6)

©L I G H T SO U R C E U N I T

©MODEL LAUNCHING UNITS

©OBSERVATION WINDOW

@   SERVICES SUPPLY PANEL

Pig .77 Magnetic suspen s ion working sec t io n . 7 in . x 7 in . hyperson ic wind tunn e l

a >

to

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 204/236

184

Airstream

Direction

) Source SU

Ref.  70

\

Pig.78 Schematic diagram  of the  suspension magnet array of a  six-component

magneti c wind tunnel balance and  suspension system

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 205/236

185

Fig.79 Model subjected to a forced oscillatio n in roll while suspended in the

six-component balance

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 206/236

186

Pig.80 View of control surface drive

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 207/236

ATTACHED  TO  WIND TUNNE L STRUCTURE

VERTICAL SUSPENSION SPRING

(b)-

.-SRHCER

*•—REFLECTION PLATE

Sour c e NAE, Ref . 74

CONTROL SURFACE

WING

CONTROL

SURFACE

•y » m >> » r — B O P S

t

DETAIL  OF  HINGE ARRANGEMENT

(o) INPUT  AND  OUTPUT  OF THE

STRAIN GAUGE BRIDGE

(b )  A.C.  INPUT  TO THE  COILS

Pig .81 Apparatus for elevator osc il lation

CO

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 208/236

188

Fig. 82 Appa ratu s for elevator oscilla tion

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 209/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 210/236

PERMANENT MAGNET

CRUCIFORM SPRING

(WITH STRAIN GAUGES ONI

POLE PIECES

O F M A G N E T

COIL'

COIL HOLDER

THIS SPRING END ATTACKED

TO FRAME

MODEL CLAMPED TO

THIS SPRING END

ARM CARRYING COIL HOLDERS

THIS FACE OF FRAME ATTACHED

TO W I N D TU N N E L W A L L

S o u r c e NA E, R e f . 7 6

Pig.84 Elastic model suspension

 a nd

 electromagnetic oscillator

 f o r

osclllation-in-pitcu

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 211/236

ELASTIC

MODEL

SUSPENSION

MODEL

DISPLACEMENT

TRANSDUCERS

PRINTER

I

MAX - MIN

TRIGGER

H

ELECTRO

MAGNETIC

OSCILLATOR

DAMPOMETER

COUNTERS

' ^ - c T

<

o I

W l

P H O TO C ELL

PHASE

SHIFT

MECHANICAL CONNECTIONS

ELECTRICAL CONNECTIONS

POWER

AMPLIFIER

LIMITER

Source NAE, Ref. 76

Pig.85 Free oscillat ion with automatically recycled feedback excitation

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 212/236

192

P i g . 8 6 H a l f- mo d el o s c i l l a t i n g r i g

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 213/236

193

Source NOL, Ref. 78

* * *

Pig.8 7 Roll-damping system

E l e c t r i c a l C l u t c h

ou rc e NOL, Ref . 79

Tachomete r

R a d i a l S u r f a c e s — . T h r u s t S u r f a c e -

T h r u s t S u r f a c e

4 0 0 - p s i A i r

S u p p l y f o r B e a r i n g

Air Motor

Air to Motor

Fig .88 Air bear ing roll-da mp ing mechanism

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 214/236

a

*.

Air Turb ine

-Thrust Gas Bearing

  N

—Gas Bearing Supply Line

Pig.89

  Ai r

 bearing roll-damping balance

Wafer-Cooled Sting

Source AEDC-VKF

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 215/236

D y n a m i c S t e a d y - R o l l B a l a n c e , In t e r na l D e t a i l s

27.875-

S l e ev e A s s e m b l y — ,

  S p i d e r B

B r a k e L i n k s —

\

  / _., V- t

  A

\ / Piano \ —

t

Front Portion Outer Shell? \ / wire \

Brake Lever Support \ / \

-Tachometer

•Electrical I  Rotor

\Condui -—Rear Portion

Outer Shell

Source OAL , Ref. 80

Sectio n B-B Section A-A

Pig .90 Dynamic s te ad y- ro l l ba lance

On

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 216/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 217/236

Pig.92 Pictor ial drawing, forced-osc illation balance

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 218/236

198

Sections

Boundary layer

  is

  shifted

 to

asymmetric shape

  b y

 sp in.

(a) Magnus force

 at low

 angles

 of

 attack

( 0   *>>

Separated region  is   shifted

to asymmetric shape b y sp in.

Cy(-)

(b) Magnus force at  large angles of  attack

Lower lift  is

lost f i rst.

Force on  th is   f i n i s  b lanketed

off leaving

 a net

 side force.

Axial Components  o(

Fin Normal Force

(-C

n

) Net Couple Results

(c) Magnus ef fe ct s on can ted f i n s

_ / —   Force on  th is   f i n

" ^ f

  is

 blanketed

 off.

\ Z . —   Cy(+)

(d) Magnus effects

 on

 drive n fi ns

Pig.93 Illustrations  of the various Magnus effects

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 219/236

M O Q - 2 . 0 ,  Re

d

 =0.65

  = 10

4

TD

OO

8

0.004

0.003

0.002

0.001

0

-0.001

-0.002

-0.003

-0.004

L--0-—9

  o

j ^ ^ T  o .

°y

/

'

Q  6

n  r

1

Source BRL,

  Ref. 89

No.

  20 Emery Grit Transition Strip

</) <m>

< / • >   on

o>   co

> -  -C

^

  E

•S

 £

S  0

D   - Q

CL >

  (J

u

£  c

^  CD

C  o

C O

-2

\

r^///i

Data

 for all

 angles

 of

attack

 lie in

 this region.

p ^

0  0.1 0.2 0.3 0.4 0.5

V

0D

0  0.1 0.2 0.3 0.4 0.5

Fig.94 Effect of spin p arameter on the  Magnus characteristics

to

CD

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 220/236

200

a

T}\ 8

3 \ >

eg

CM

8

>

8

Q .

a

o

o

o

o

ml

o

o

S o

Cm

M   = :

0 0

Re , =

a

0 . 0 1 0

0 . 6 5 x 1 0 '

S o u rc e BRL, Re f . 89

0 . 0 0 5

0

H _

a

Sym

O

D

A

O

d e g

Laminar Boundary Layer

No.  20 T r a n s i t i o n S t r i p ( L a r g e s t G r i t )

No.

  40 T r a n s i t i o n S t r i p (M edium G r i t )

No.  80 T r a n s i t i o n S t r i p ( S m a l l e s t G r i t )

Fi g. 95 Eff ect of boundary la ye r on th e Magnus for ce

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 221/236

-Tachometer  No. 1

Tachometer

  No. 2 -

Pig.96 Electric motor drive. Magnus force system

Source Sandia Corp.,  Ref.

 92

Magnetic

Tachometer

zzzzzzzzz

\\\w

/ / / /

Two-Stage

Air Turbine

Model Drive

z / / / / / z :

/

/ \ * / ; / / , > / / >

S-

Turbine

Air

Supply

Source NO L, Ref. 79

F o u r - C o m p o n e n t B a l a n c e

Fig .97 Magnus forc e system, turb in e dr iv e wi thin the model

w

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 222/236

NOZZLE a HOUSING ASSEMBLY

BALANCE

^^^mm^m

wmmzM

T—-TURBINE

URBINE LOCK RING

[ZZZZ3£

" " " { ' " " " " " " " - * •

MAGNET RING S REAR  <— SLEEVE

BEARING RETAINER

Q=  90° TO 180° MODEL

PICKUP COIL

t. a a a a a

  G

w^vvwr

J J t W / J J U f - M J j m - r - r

BEARING PRELOAD SPRING

BALANCE SHOWN ROTATED 9 0*

a  =90° TO 180° MODEL

FORWARD BEARING

INNER RETAINER

Source

 WADD,  Ref. 94

to

Pig.98 Magnus force system, turbine drive within

 the

 model

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 223/236

Air Turbine

Model Drive

•Four-Component Balance

Fig.99 Magnus force balance

Water-Cooled Sting

Source AEDC-VKF

"E "

  C O R E -

TRANSDUCER

-M A G N E T IC

TACHOMETER

AIR OPERATED

CLUTCH

-AIR EXHAUST

'mm-BALANCE COOLING

i - BEARING AIR

' ^ B A L A N C E C O O L I N G

^AIR INLET

Source NOL, Ref. 79

AIR BEARINGS

THRUST & RADIAL

MULTI-STAGE

AIR TURBINE

Pig .100 Magnus-ro l l damping ba lance wi th a i r bear i ngs

M

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 224/236

204

190

170

o" 150

S

u

3

4->

a

u

01

| 130

5

H

M

e

tl

CO

a

« 110

90

70

Valve Opening in Percent

J

  L

J

  L

Source WADD, Ref. 94

J

  I I L

10 20 30

rpm x 10"

40

50

60

Pig.101 Variation of bearing temperature with spin rate for bypass air cooling

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 225/236

SCALE

OIL MIST

PATH

Source WADD.

 Ref. 94

-TUNNEL STINO

STRAIN GAGE BRIDGE

(I

  of 4)

€_.—k

RPM COIL

TYPICAL THERMOCOUPLE

®

  (

 

>t4

'

T U N N E L

M

n u

&

D

 »

CONTROL ROOM

POWER

SUPPLY

JK C 10V

,  M f t f l TT 9 i » °

A

TRON  ' H |» W-

SUPPLY ? r r r ;

NOBATRON

POWER SUPPLY

6 V DC

SKC CARRCR

AMPLIFIER

BROWN

POTENTIOMETER

X

r

J

IBM

SUMMARY

PUNCH AND

TABULATOR

SANBORN

OSCILLOGRAPH

HEWLETT

PACKARD

- |  FREQ. METER

9** " *

V f  4

LINEAR

SWEEP

**

SKC VOLTAGE

DEMODULATOR

1  P

110 »

6 0 -

1R0WN

STRIP CHART

RECORDER

CEC CARRIER

AMPLIFIER

TIME

DELAY CIRCUT

DEMODULATOR

PREBEND

POSITIONING

B DRIVE

CONTROL

MO v

« 0 -

L 8 E E B

T^frj

ELECTRONIC

PLOTTER

ELECTRO

INSTRUMENT

X- Y PLOTTER

(TYPJ (I of 4 )

TO PEN DROP RELAY

r ^ « "

ELECTRONIC

FILTER

-o*-d

%

1200 PSI

PRESSURE

CM

  TAPE

~W I RECORDER

OIL M IST REGULATOR

WATER TRAP

DEMODULATOR

OVERDRIVE

CHECK SCOPE

(TYP.) (I of 4)

5

  1

^ " R E C O R D E R

0

AIR

REGULATOR

^H2f

ALEWTE

OIL HIST SYSTEH

MOISTURE [

MOISTURE FILTER

A PARTICLE

FILTER

PRESSURE

STATIC FORCE | UAONUS FO RCE

RECORDING

  8 MONITORING SYSTEM

DRIVE

 8 LUBRICATING SYSTEM

Fig.102

  Oil mist lubricatin g system and other instrumentation

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 226/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 227/236

207

Cm

> 4

< U

bD

a

O

+ - >

a

o

u

0 . 5 0

1.00 -

Semic onductor Gage

Sourc e BRL, Ref. 96

1

_^22

—  - * ^ - ,.

1 1

1 2

M o d e l S p i n R a t e , rpm x 10

C o n v e n t i o n a l G a g e

3

- 3

4

Fig.104 Comparison of semiconductor and conventional gage outputs

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 228/236

208

be

0)

X3

be

c

<

ca

S

a,

120

110

100

9 0

8 0

7 0

6 0

50

4 0

3 0

2 0

10

0

1

  ' I ' I I | I I I

S o u r c e , R e f . 1 0 4

1 0 0

I

  . 1 . 1

  I I M I I

2 0 0 4 0 0

F r e q u e n c y , f, c p s

7 0 0

Pig.105 Experimental response magnitude and phas e-ang le ca li br at io n for 1.38 in. of

0.030 in. nominal-diameter tubing connected to a gage volume of 0.02 cu.in.

fo r a i r a t sea- level condi t ions

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 229/236

209

Motor Driven Cam

Return Spring

Source Ref. 101

Plunger

Corrugated

Rubber Seal

To Manometer

Piston

/ / s / / / / / /

Source RAE, Ref. 101

F i g .1 0 6 Pump f o r s i n u s o i d a l o s c i l l a t i n g p r e s s u r e

P r e s s u r e G a g e t o

b e C a l i b r a t e d

O r i f i c e

- ^

y//////w/////////7rmr.

H ™

N

  r

1

R e f e r e n c e P r e s s u r e G a g e

H i g h - P r e s s u r e

S u p p l y

So ur ce , Ref . 104

P i g .1 0 7 Cam -ty pe p u l s a t o r c a l i b r a t o r

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 230/236

D I S T R I B U T I O N

Copies o f  AGARD publications m a y b e  obtained in the

various countries

 at the

 addresse s given below.

On peut se  procurer de s exemplaires des publications

de 1' AGA RD

 aux

 adresses suivantes.

BELGIUM

BELGIQUE

Centre National

  d'

 Etudes

 et de

 Recherches

Aeronautiques

11,  rue

 d'Egmont, Bruxelles

CANADA Director

  of

 Scientific Information S ervice

Defense Research Board

Department

  of

 National Defense

"A" Building, Ottawa, Ontario

DENMARK

DANEMARK

Danish Defence Research Board

0sterbrogades Kaseme

Copenhagen 0

FRANCE

O.N.E.R.A.

  (Direction)

25 avenue d e l a  Division Leclerc

92 C hatillon-sous-Bagneux

GERMANY

ALLEMAGNE

Zentralstelle

  fur

 Luftfahr tdokumentation

und Information

Maria-Theresia Str.21

8 MUnchen 27

At tn : Dr Ing . H . J .R au te nbe rg

GREECE

GRECE

Greek National Defence Staff

D.JSG,

  Athens

ICELAND

ISLANDS

Director

 of

 Aviation

c/o Plugrad

Reykj

 avik

ITALY

ITALIE

Ufflcio

 del

 Delegate Nazionale

all'

  AGARD

Ministero Difesa

  -

 Aeronautica

Roma

LUXEMBURG

LUXEMBOURG

Obtainable through Belgium

NETHERLANDS

PAYS

 BAS

Netherlands Delegation  to  AGARD

c/o National Aerospace Laboratory

 NLR

Attn: M r

 A.H.Geudeker

P.O.Box 126

Delft

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 231/236

NORWAY

NORVEGE

Norway Defence Research Establishment

P.O.Box 25

Kjeller

Attn:

 M r  O.Blichner

PORTUGAL Diraccao do  Servigo de  Material

da Porca Aerea

Rua d a  Escola Politecnica 42

Lisboa

Attn:

  Brig.

 Gen.  J.Pereira

 do

 Nascimento

TURKEY

TURQUIE

Turkish Delegation

 to

 NATO

North Atlantic Treaty Organisation

Brussels 39, Belgium

Attn:  AGARD National Delegate

UNITED KINGDOM

ROYAUME UNI

Ministry  of  Technology

T.I.L.(E) Room 401

Block A,  Station Square House

St.

  Mary Cray

Orpington, Kent

UNITED STATES

ETATS UNIS

National Aeronautics and  Space Administration

Langley Field, Virginia

Attn:

  Report Distribution  and  Storage Unit

*

Pr in t ed by Techn ica l Ed i t i ng and Reproduc t ion L td

Harford House,  7-9  Ch ar l o t te S t . London , V. l .

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 232/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 233/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 234/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 235/236

8/10/2019 Techniques for Measurement of Dynamic Stability Derivatives in Ground Test Facilities

http://slidepdf.com/reader/full/techniques-for-measurement-of-dynamic-stability-derivatives-in-ground-test 236/236