technology and safety of marine systems.pdf

Upload: samir-alshaar

Post on 07-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Technology and safety of marine systems.pdf

    1/334

  • 8/18/2019 Technology and safety of marine systems.pdf

    2/334

    E L S E V I E R O C E A N E NG IN EE RI NG B OO K S E R I E S

    V O L U M E 7

    T E CH N O LO G Y AND SAFE TY

    OF

    MARINE SYSTEMS

  • 8/18/2019 Technology and safety of marine systems.pdf

    3/334

    Elsevier Internet Homepage:

    http://www.elsevier.com

    Consult the Elsevier homepage for full catalogue information on all books, journals and electronic products and 

    services.

    E l s e v i e r T i t l e s o f R e l a t e d I n t e r e s t

    Published Forthcoming rifles

    WATSON

    Practical Ship Design ISBN: 008-042999-8 

    YOUNG

    Wind Generated OceanWaves

     ISBN: 008-043317-0

    BAIPipelines and Risers ISBN: 008-043712-5

    JENSEN

    Local and Global Response ofShips

     ISBN: 008-043953-5

    TUCKER & PITTWaves in Ocean Engineering

     ISBN: 008-043566-1

    BELENKY   et al

    Safety and Stability of Ships ISBN: 008-043001-5

    BOSE & BROOKE

    Wave Energy Conversion

     ISBN: 008-044212-9

    McCORMICK & KRAEMER Ocean Wave Energy Utilization

     ISBN: 008-043932-2

    M U N C H M E Y E R

    Boat and Ship Geometry

     ISBN: 008-043998-5

    OCHIHurricane Generated Seas

     ISBN: 008-044312-5

    Related JournalsFree specimen copy gladly sent on request. Elsevier Ltd, The Boulevard, LangfordLane, Kidlington,

    Oxford, OX5 1GB, UK 

    Applied Ocean Research

    Advances in Engineering Software

    CADCoastal Engineering

    Composite Structures

    Computers and Structures

    Construction and Building Materials

    Engineering Failure Analysis

    Engineering Fracture Mechanics

    Engineering Structures

    FiniteElements in Analysis and Design

    International Journal o fSolid s and StructuresJournal o fConstructional Steel Research

    Marine Structures

     NDT & E International

    Ocean Engineering

    Structural Safety

    Thin-WalledStructures

    To Contact thePublisher

    Elsevier welcomes enquiries concerning publishing proposals: books, journal special issues, conference proceedings,

    etc. All formats and media can be considered. Should you have a publishing proposal you wish to discuss, please con-

    tact, withou t obligation, the publisher responsible fo r Elsevier's civ il and structural engineering publishing programme:

    James Sullivan

    Publishing Editor Elsevier Ltd 

    The Boulevard, Langford Lane

    Kidlington, Oxford 

    OX5 IGB, UK 

    Phone: +44 1865 843178

    F ax : +44 1865 84392E.mail: [email protected]

    General enquiries, including placing orders, should be directed to Elsevier's Regional Sales Offices - please access theElsevier homepage for full contact details (homepage details at the top of this page).

  • 8/18/2019 Technology and safety of marine systems.pdf

    4/334

    ELSEVIER OCEAN ENGINEERING BOOK SERIES

    VOLUME 7

    TEC HN OLOGY A N D S A F ETY

    OF

    MARINE SYSTEMS

    A N A N D P I L L A Y

    L l o y d s R e g i s t e r 

    JIN W A N G

    L i v e r p o o l J o h n M o o r e s U n i v e r s i t y , L i v e r p o o l , U K 

    OCE AN ENGINEERING SERIES EDITORS

    R.   B h a t t a c h a r y y a

    u s Naval Academy,

    Annapolis, MD, USA

    M.E. M c C o r m i c k 

    u s Naval Academy,

    Annapolis, MD, USA

    2003

    ELSEVIER A m s t e r d a m - B o s t o n - H ei de lb er g- L o n d o n - N ew Y o r k - O x f o r d - P ari s

    San Di eg o - San Francisco - Singapore - Sy dn ey - Tokyo

  • 8/18/2019 Technology and safety of marine systems.pdf

    5/334

    ELSEVIER SCIENCE Ltd 

    The Boulevard, Langford Lane

    Kidlington, Oxford OX5 1GB, U K 

    © 2003 Elsevier Science Ltd. All rights reserved.

    This work is protected under copyright by Elsevier Science, and the following terms and conditions apply to

    its use:

    PhotocopyingSingle photocopies of single chapters may b e made for personal use as allowed by national copyright laws.

    Permission of the Publisher and payment o f a fee is required f or all other photocopying, including m ultiple or 

    systematic copying, copying for advertising or promotional purposes, resale, and all fo rm s of document

    delivery. Special rates are available for educational institutions that wish to make photocopies for non-profit

    educational classroom use.

    Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK:

     phone: (+44) 1865 8438 30, fax: (+44) 1865 8533 33, e-mail: [email protected]. You may also

    complete your request on-line via the Elsevier Science homepage (http://www.elsevier.com), by selecting

    'Customer Support' and then 'Obtaining Permissions'.

    In the USA, users may cle ar permissions and make payments through the Copyright Clearance Center, Inc.,

    222 Rosewood Drive, Danvers, MA 01923, USA; phone: (+1) (978) 7508400, fax: (+1) (978) 7504744, and in the UK through the Copyright Licensing Agency Rapid Clearance Service (CLARCS), 9 0 Tottenham Court

    Road, London W1P 0LP, UK; phone: (+44) 207 631 5555; fax: (+44) 207 631 5500. O th er countries may have

    a local reprographic rights agency for payments.

    Derivative Works

    Tables of contents may be reproduced for internal circulation, but permission of Elsevier Science is required 

    for external resale or distribution of such material. Permission of the Publisher is required for all other derivative works, including compilations and translations.

    Electronic Storage o r Usage

    Permission of the Publisher is required to store or use electronically any material contained in this work,including any chapter or part of a chapter.

    Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording o r otherwise, without prior 

    written permission of the Publisher. Address permissions requests to: Elsevier's Science & Technology Rights

    Department, at the phone, fax and e-mail addresses noted above.

     Notice N o responsib ility is assumed by the Publisher fo r any injury and/or damage to persons o r property as a matter 

    of products liability, negligence or otherwise, or from any use or operation of any methods, products,instructions or id ea s contained in the material herein. Because of rapid advances in the medical sciences, in

     particular, independent verification o f diagnoses and drug dosages should b e made.

    First edition 2003

    Library o f Congress Cataloging in Publication Data

    A catalog record from the Library o f Congress has been applied for.

    British Library Cataloguing in Publication Data

    A catalogue record from the British Library has been applied for.

    ISBN: 0 08 044148 3

    The pa pe r used in this publication meets the requirements of ANSI/NISO Z39.48-1992(Permanence o f Paper).

    Printed in Hungary

  • 8/18/2019 Technology and safety of marine systems.pdf

    6/334

    S E R I ES P R E F A C E

    In this day and age, humankind has come t o the realization that the Earth's

    resources are limited. In the 19th and 20th Centuries, these resources have been

    exploited to such an extent that th eir availability to future generations is now in

    question. In an attempt to reverse this march towards self-destruction, we have turned 

    ou r attention to the oceans, realizing that these bod ies of water are both sources for 

     potable water, food and minerals and are re li ed upon for Wor ld commerce. In or der 

    to help engineers more knowledgeably and constructively exploit the oceans, the

    Elsevier  Oc ea n Engineering Book Series   has been created.

    The   Elsevier Oc ea n Engineering Book Series   gives experts in various areas

    of oce an technology the opportunity to relate t o others the ir knowl edge and expertise.In a continual process, w e are assembling world-class technologists who have both

    the desi re and the ability to write books. These individuals select the subjects for their 

     book sbas ed on t heir educational backgrounds and professional experiences.

    The series differs from other ocea n engineering book series in that the books

    are directed more towards technology than science, with a few exceptions. Those

    exceptions w e judge to have immediate applications to many of the oce an technology

    fields. Our goal is to co ve r the br oa d areas of nava l architecture, coastal engineering,

    oce an engi nee ring acoustics, mar ine systems engineering, applied oceanography,

    ocean energy conversion, design of offshore structures, reliability of ocean structuresand systems and many others. The bo ok s are written so that readers entering the topic

    fields can a cqu ire a wo rk in glevel o f expertise from their readings.

    We hope that the books in the series are well-received by the ocean

    engineering community.

    Rameswar Bhattacharyya

    Michael E. McCormick 

    Series Editors

  • 8/18/2019 Technology and safety of marine systems.pdf

    7/334

    This Page Intentionally Left Blank 

  • 8/18/2019 Technology and safety of marine systems.pdf

    8/334

  • 8/18/2019 Technology and safety of marine systems.pdf

    9/334

    are established, the various safety assessment and risk analysis tools available to the

    re ad er are highlighted. For the more advanced reader, the following chapters plunge

    deep into the root o f problem of coping with uncertainty in the available data. The

    methods presented are based on the Formal Ship Safety Assessment framework and are

    demonstrated us in g practical examples.

    I wou ld also like to acknowledge Dr H. S. Sii, D r J. B. Yang and Dr D. L. Xu who

    mad e significant contribution t o Chapter 10.

    The views and opinions expressedin this book are strictly those o f the authors and do

    not necessarily reflect those o fLloydsRegist er and Liverpool J ohn Moores University.

  • 8/18/2019 Technology and safety of marine systems.pdf

    10/334

    T A B L E O F C O N T E N T S

    Series P r e f a c e v

    Preface   vii

    Chapter 1 Introduction

    Su mm ar y ..................................................................................................................................................... 1

    1.1 Introduction .......................................................................................................................................   1

    1.2 Sa fe ty and Reliability Development in the Ma rit im e Industry ......................................................... 11.3 Present Status ................................................................................................................................... 2

    1.4 Databases .......................................................................................................................................... 3

    1.5 Description o f the B oo k ..................................................... " ............................................................... 4

    1.6 Re fe re nc es (Chapter 1) ...................................................................................................................... 7

    Chapter 2 Ship Safety and Accident Statistics

    Su mm ar y ...................................................................................................................................................... 9

    2.1 Introduction ....................................................................................................................................... 9

    2.2 Th e Code o f Practice for the Sa fe ty o f Sm al l Fishing Vessels ........................................................ 10

    2.2.1 Development .......................................................................................................................   10

    2. 2. 2 Code Requirements ............................................................................................................. 11

    2.3 Th e Fishing Vessels (S af et y Provisions) Sa fe ty Ru le s 1975 ........................................................... 112.4 Accident Data fo r Fishing Vessels .................................................................................................. 12

    2.5 Data Analysis ..................................................................................................................................   13

    2.5.1 Machinery Da ma ge ............................................................................................................. 14

    2. 5. 2 Foundering/Flooding ........................................................................................................... 14

    2. 5. 3 Grounding ........................................................................................................................... 14

    2.5 .4 Collisions and Contacts .......................................................................................................   152. 5. 5 Fi re s and Explosions ........................................................................................................... 15

    2.5 .6 Capsizing ............................................................................................................................. 152. 5. 7 Hea vy Weath er Da ma ge ..................................................................................................... 15

    Containership Accident Statistics ...................................................................................................   16

    2.6.1 Introduction to Containerships ............................................................................................   162.6 .2 Containership Accident Statistics .......................................................................................   17

    Conclusion ......................................................................................................................................   18

    Re fe re nc es (Chapter 2) ....................................................................................................................   18

    2.6

    2.7

    2.8

    Chapter 3 Safety Analysis Techniques

    3.13.2

    3.3

    3.43.5

    3.6

    3.7

    3.8

    Su mm ar y .................................................................................................................................................... 29

    Introduction ..................................................................................................................................... 29

    Qualitative Sa fe ty Analysis ............................................................................................................. 30Quantitative Sa fe ty Analysis ........................................................................................................... 31

    3.3.1 Event Probabilities .............................................................................................................. 313. 3. 2 Failure Probability Distrib utions ......................................................................................... 31

    3.3.2.1 Exponential Distribution ........................................................................................ 323.3.2.2 No rm al Distribution ................................................................................................ 33

    3.3.3 E v e n t Consequences ........................................................................................................... 33

    C a u s e and Eff ect Relationship ........................................................................................................ 33

    Preliminary Ha za rd Analysis (P H A ) ............................................................................................... 34

    3.5.1 Subsystem Ha za rd Analysis/System Ha za rd Analysis ........................................................ 353. 5. 2 Operating and Support Ha zar d Analysis ............................................................................. 35

    What- If Analysis ............................................................................................................................. 36

    HA Za rd and OPerabilit y ( H A ZO P ) Studies .................................................................................... 36

    3.7.1 Guidewords, Selection o f Parameters a nd Deviations ........................................................ 363.7.2 HA ZO P Process .................................................................................................................. 37

    3.7.3 HA ZO P Application to Fishing Vessels ............................................................................. 38

    F au l t Tr ee Analysi s (F TA ) .............................................................................................................. 3 9

  • 8/18/2019 Technology and safety of marine systems.pdf

    11/334

    3.9

    3.10

    3.11

    3.12

    3.133.14

    3.8.1 Benefits to Be Gained fr om FTA ........................................................................................ 39

    3.8.2 Syste m Definition ............................................................................................................... 4 0

    3. 8. 3 Fa u l t Tr ee Construction ...................................................................................................... 4 0

    3. 8. 4 Qualitative F a u l t Tr ee Evaluation ....................................................................................... 41

    3. 8. 5 Quantitative F a u l t Tr ee Evaluation ..................................................................................... 413. 8. 6 FTA Ex am pl e ...................................................................................................................... 4 4

    E v e n t Tr ee Analysis ........................................................................................................................ 45

    3.9.1 E v e n t Tr ee Ex am ple ............................................................................................................ 4 6Mark ov Chains ................................................................................................................................ 4 6

    Failure M od e, Ef fe ct s and Critical Analysis (F ME CA ) .................................................................. 4 6

    3.11.1 FM EC A Ex amp le .............................................................................................................. 48O t he r Analysis M e th o d s .................................................................................................................. 50

    3.12.1 Diagraph-based Analysis (DA) ......................................................................................... 50

    3.12.2 Decision T ab l e M et hod ..................................................................................................... 50

    3.12.3 Lim it State Analysis .......................................................................................................... 50Conclusion ...................................................................................................................................... 50

    Re fe re nc es (C hapte r 3) .................................................................................................................... 51

    Chapter 4 Fo rma lSafe ty Assessment of Ships and Its Relation to OffshoreSafe ty Case Approa ch

    Su mm ar y ................................................................................................................................................... 61

    4.1 Of fs ho re Sa fe ty Assessment ........................................................................................................... 614.2 Fo rmal Ship Sa fe ty Assessment ...................................................................................................... 7 0

    4.3 Risk Criteria .................................................................................................................................... 72

    4.4 Discussion and Conclusion ............................................................................................................. 73

    4.5 Re fe re nc es (Chapter 4) .................................................................................................................... 74

    Chap ter 5 Formal Saf ety Assessment

    Su mm ar y .................................................................................................................................................... 81

    5.1 Fo rmal Sa fe ty Assessment .............................................................................................................. 81

    5.1.1 Step 1 - Haz ard Identification ............................................................................................. 82

    5. 1. 2 Step 2 - Risk Estimation ...................................................................................................... 83

    5. 1. 3 Step 3 - Risk Control Options (R COs ) ................................................................................ 845. 1. 4 Step 4 - Cost-Benefit Analysis (C BA ) ................................................................................ 84

    5. 1. 5 Step 5 - Decision-making .................................................................................................... 84

    5. 1. 6 A B r i e fDiscussion .............................................................................................................. 85

    5.2 A Forma l Sa fet y Assessment Fram ew ork for a Ge ne ti c Fishing Ves sel ........................................ 85

    5.2.1 Genetic Fishing Ve ss el ....................................................................................................... 855. 2. 2 HA ZI D ................................................................................................................................ 88

    5.2.3 Haz ar d Screening ................................................................................................................ 90

    5. 2. 4 "Equivalent To ta l" . ............................................................................................................. 91

    5.2.5 Recommendations ............................................................................................................... 91A n Exa mpl e .................................................................................................................................... 93

    Formal Sa fe ty Assessment of Containerships ................................................................................. 9 45.4.1 Genetic Containership ......................................................................................................... 9 4

    5. 4. 2 A For mal Saf et y Assessment Fra me wo rk for Containerships ............................................. 9 6

    5.4.2.1 Haz ar d Identification (H AZ ID ) ............................................................................... 9 6

    5.4.2.2 Risk Assessment ..................................................................................................... 985.4.2.3 Ways of Managing Risks ....................................................................................... 98

    5.4.2.4 Cost-Benefit Assessment ......................................................................................... 99

    5.4.2.5 Decision M ak in g ..................................................................................................... 99

    5.4 .3 Evaluation and Recommendations in Forma l Sa fet y Assessment of Containerships ......... 99Discussions ................................................................................................................................... 101

    5.5.1 Th e Brainstorming Process ............................................................................................... 102

    5.5.2 Need for Interaction with Other Industries' Safety and Quality Management Systems ... 102

    5.5.3 Hu ma n Fac to r .................................................................................................................... 102

    5. 5. 4 Th e Availability and Reliability o f Failure Data .............................................................. 1025.5.5 Cost Be ne fi t Analysis ........................................................................................................ 103

    Conclusion .................................................................................................................................... 103

    Re fe re nc es (C hapte r 5) .................................................................................................................. 104

    5.3

    5.4

    5.5

    5.6

    5.7

  • 8/18/2019 Technology and safety of marine systems.pdf

    12/334

    Chapter 6 - Risk Assessment Using F uzzy Set Approach

    Stm mmry ................................................................................................................................................. 1176.1 Introduction ...................................................................................................................................   117

    6.2 Uncertainty .................................................................................................................................... 118

    6.3 Fuz zy Set The or y Background ...................................................................................................... 120

    6.3.1 Ty pe s o fMe mb er shi p Function ........................................................................................ 121

    6. 3. 2 Representation Th eo re m ................................................................................................... 1226. 3. 3 Application of FS T ............................................................................................................ 123

    6.4 Risk Assessment U s i n g FS T ......................................................................................................... 123

    6.4.1 Part 1: Probability of Failure E v e n t Occurrence ............................................................... 124

    6. 4. 2 Part 2: Severity o f Consequences ...................................................................................... 127

    6. 4. 3 Risk Assessment ............................................................................................................... 130

    6. 4. 4 Rule Evaluation and Defuzzification ................................................................................ 130

    6.5 Application to a Hydraulic W in c h Sy st em .................................................................................... 131

    6.5.1 Severity o f Consequence Modelling ................................................................................. 1336. 5. 2 Risk Ranking o f the Hydraulic Wi n c h Sy st em ................................................................. 133

    6.6 Conclusion .................................................................................................................................... 134

    6.7 References (Chapter 6) .................................................................................................................. 134

    Chapter 7 Modified Failure Mode and Effects Analysis

    Su mm ar y ................................................................................................................................................. 149

    7.1   Introduction ................................................................................................................................... 149

    7.2 Some Weaknesses of FM EA ......................................................................................................... 1517.3 Background of Grey Theo ry ......................................................................................................... 152

    7.4 Fu zzy Rule Based M eth od ............................................................................................................ 153

    7.4.1 Fuzz y Mem be rs hi p Function ............................................................................................. 153

    7. 4. 2 Fuz zy Rule Base Development ......................................................................................... 154

    7. 4. 3 Ranking the Priority fo r Attention .................................................................................... 155

    7.5 Grey The or y Met ho d ..................................................................................................................... 1557.5.1 Comparative Se ri es ........................................................................................................... 156

    7. 5. 2 Standard Se ri es .................................................................................................................. 157

    7. 5. 3 Di ff er en ce ......................................................................................................................... 157

    7. 5. 4 Gre y Relation Coefficient ................................................................................................. 158

    7. 5. 5 Grey Relation .................................................................................................................... 1587.6 Application to Fishing Vessels ...................................................................................................... 159

    7.6.1 Fuz zy Rule B a se Application ............................................................................................ 159

    7. 6. 2 Grey Theo ry Application .................................................................................................. 161

    7.7 Analysi s o f Results ........................................................................................................................ 163

    7.8 Conclusion .................................................................................................................................... 1647.9 Re fe re nc es (Chapter 6) .................................................................................................................. 164

    8.38.4

    8.5

    8.6

    Chapter 8 Maintenance Modelling

    Su mm ar y ................................................................................................................................................. 179

    8.1 Introduction ................................................................................................................................... 179

    8.2 M o d e m Maintenance Concepts ..................................................................................................... 180

    8.2.1 Reactive Maintenance .......................................................................................................   181

    8. 2. 2 Preventive Maintenance .................................................................................................... 181

    8.2.3 Predictive Maintenance ..................................................................................................... 1828.2.4 Proactive Maintenance ...................................................................................................... 183

    8.2.5 Summ ary o f Maintenance Techniques .............................................................................. 183Current Maintenance Practice on Fishing Vess els ........................................................................ 183

    Background o fDe la y- Ti me Analysis ............................................................................................ 185Mo de l Development ...................................................................................................................... 186

    8.5.1 Ex pecte d Downtime Mo de l ............................................................................................... 186

    8.5.1.1 De la y Time Pa ra me te r Estimation ........................................................................ 187

    8. 5. 2 Ex pecte d Cost Mo de l ........................................................................................................ 188

    8.5.2.1 Breakdown R e p ai r Cost ........................................................................................ 1898.5.2.2 Inspection R ep a i r Cost ..........................................................................................   191

    8.5.3 Ex pecte d Sa fe ty Criticality Mo de l .................................................................................... 192

    A n Ex am pl e .................................................................................................................................. 193

    8.6.1 Modelling Process .................................................................................................... 194

  • 8/18/2019 Technology and safety of marine systems.pdf

    13/334

    8.7

    8.8

    8.6.20ptimisation Resuits ................................................................................................ 198

    Conclusion .................................................................................................................................... 198Re fe re nc es (Chapter 8) .................................................................................................................. 199

    Chap ter 9 Hu ma nEr ror Assessment and Decision Mak ing Usi ng Analytical Hierarc hyProcessing

    Su mm ar y ................................................................................................................................................. 213

    9.1 Introduction ................................................................................................................................... 213

    9.2 Re vi ew o f Hu ma n Er ro r Assessment Methods ............................................................................. 214

    9.2.1 Methods for Quantification of Hu ma n Failures ................................................................ 214

    9. 2. 2 TH ER P .............................................................................................................................. 214

    9. 2. 3 Accident Sequence Evaluation Pro gra mme ( A S E P ) ......................................................... 2159. 2. 4 SL IM -M AU D ................................................................................................................... 215

    9. 2. 5 Hu ma n Reliability Assessment (H RA) ............................................................................. 215

    9.3 Hu ma n Err or Probability ............................................................................................................... 2179.3.1 Skill-Based ........................................................................................................................ 217

    9. 3. 2 Rule-Based ........................................................................................................................ 218

    9. 3. 3 Knowledge-Based ............................................................................................................. 218

    9.4 Analytical Hierarchy Processing ................................................................................................... 220

    9.4.1 Principles and Background of AHP .................................................................................. 220

    9. 4. 2 Weight Ve ct or Calculation ................................................................................................ 2219. 4. 3 Risk and AHP ................................................................................................................... 221

    9.4 .4 AHP for Hum an Er ro r Assessment and Decision Ma ki ng for Ship Operation ................. 222

    9.5 Application o f AH P to Ve ss el Operations .................................................................................... 222

    9.6 A n Exa mpl e .................................................................................................................................. 225

    9.6.1 Initial Shooting Operation ................................................................................................. 225

    9. 6. 2 Hierarchy Set-Up .............................................................................................................. 2269. 6. 3 Le ve l Tw o M atr i x ............................................................................................................. 226

    9. 6. 4 Hu ma n Err o r Probability Evaluation ................................................................................. 226

    9. 6. 5 Hu ma n Err o r Severity Evaluation ..................................................................................... 228

    9. 6. 6 Risk Control Options (R CO ) ............................................................................................. 229

    9. 6. 7 RC O Evaluation to Re du ce Probability o f Occurrence ..................................................... 2309. 6. 8 RC O Evaluation to Re du ce Severity o f Poss ible Consequences ....................................... 231

    9. 6. 9 Summary of Results .......................................................................................................... 232

    9.7 Conclusion .................................................................................................................................... 2329.8 Re fe re nc es (Chapter 9) .................................................................................................................. 233

    Chap ter 10 Three Nov el Risk Modelling and Decision Mak ing Techniq ues

    Su mm ar y ................................................................................................................................................. 243

    10.1 A   Safety-Based Decision Support S ys te m Using Artificial Ne ur al Ne tw or k Techniques ............ 24410.1.1 Introduction ..................................................................................................................... 24410.1.2 A Risk Estimation Fr am ew or k ........................................................................................ 245

    10.1.3 Tw o Ex am pl es ................................................................................................................. 246

    10.1.3.1 Case Study 1 ...................................................................................................... 246

    10.1.3.2 Case Study 2 ...................................................................................................... 247

    10.1.4 Discussion s ......................................................................................................................... 249

    10.1.5 Conclusion ......................................................................................................................... 24910.2 Ta gu ch i Concepts and Th ei r Applications i n Mari time Sa fet y Assessment ................................. 250

    10.2.1 Introduction ..................................................................................................................... 250

    10.2.2 Th e Ta gu ch iM e th o d s and Robust Design .................................................................... 251

    10.2.3 Th e Design Process ......................................................................................................... 25210.2.4 Background o f Taguchi Concepts ................................................................................. 254

    10.2.4.1 The Tagnchi Quality Loss Function .................................................................... 254

    10.2.4.2 Signal-to-Noise Ra t i o (S/N Ratio) ...................................................................... 255

    10.2.4.3 Life C y c l e Quality Loss ...................................................................................... 256

    10.2.4.4 T a gu ch i' s Tw o Step Optimisation Process ......................................................... 25710.2.4.50rthogonal A rr a ys ............................................................................................. 257

    10.2.4.6 De gre e of Fr eedom .............................................................................................. 257

    10.2.4.7 Control Factors .................................................................................................... 258

    10.2.4.8 N o i s e Factors ....................................................................................................... 25810.2.4.9 AN OV A Terms and Notations ............................................................................ 258

    10.2.4.10 Confidence Intervals ......................................................................................... 259

  • 8/18/2019 Technology and safety of marine systems.pdf

    14/334

    10.3

    10.4

    10.2.4 .11 Brainstorming .................................................................................................... 26010.2.5 A Sa fe ty Optimisation Framework U sing Taguchi Concepts ......................................... 26010.2.6 Application o f Taguchi Concepts in Maritime Sa fe ty Studies ........................................ 26110.2.7 Conclusion ...................................................................................................................... 266

    A Mult iple Criteria Decision Making A p p ro a c h ........................................................................... 26610.3.1 Introduction ..................................................................................................................... 26610.3 .2 Safety a n d Cost Modelling .............................................................................................. 266

    10.3 .2.1 S af et y Modelling ................................................................................................. 26610.3.2 .3 Cost Modellin g .................................................................................................... 26710.3.2.2 Sa fe ty an d Cost M o d e l l i n g - an Example ........................................................... 268

    10.3. 3 Sa fe ty and Cost Synthesis Using MCDA Methods ......................................................... 27210.3 .3.1 Additive Utili ty Function Approach .................................................................... 27210.3.3 .2 AHP ..................................................................................................................... 27510.3. 3.3 The Evidential Reasoning Approach ................................................................... 277

    10.3. 4 Discussion o f the Results ................................................................................................ 28010.3.5 Conclusion ...................................................................................................................... 281

    References (Chapter 10) ................................................................................................................ 281

    Chapter 11 - Conclusions

    Summary ................................................................................................................................................. 305

    Appe ndix 1: Code of Practice for Small Fishing Vessels .................................................................... 307

    Appe ndix 2: Fish ing Vessel (Safety Provisions) Safety Rules 1975 .................................................... 311Appe ndix 3: Influe nce Diagram ............................................................................................................ 317

    Subject Ind ex ........................................................................................................................................... 319

  • 8/18/2019 Technology and safety of marine systems.pdf

    15/334

    This Page Intentionally Left Blank 

  • 8/18/2019 Technology and safety of marine systems.pdf

    16/334

    Chapter 1

    I n t r o d u c t i o n

    Summary

    This Chapter br ief ly reviews the his tor ical development of safety and reliabili ty assessments

    with in the m ar i t ime indu s try and out l ines the appl icat ion of such assessments . This is fo l lowed

    by a review of the current s ta tus of safety and reliabili ty assessments in the United Kingdom.

    The different databases available in the maritime industry are descr ibed, highlighting the

    inform ation that each of these databases carr ies. The co ntents in the book are finally outlined.

    Keywords: M aritim e industry, re liabili ty , risk assessment, safety, ships .

    1.1 Introduction

    Safe ty was not cons idered to be a mat te r of publ ic concern in anc ien t t imes , when acc idents

    were regarded as inevitable or as the will of the gods. Modern notions of safety were

    deve loped only in the 19 h century as an outg row th of the industr ia l revolution , wh en a terr ible

    toll of factory accidents aroused humanitar ian concern for their prevention. Today the concern

    for safety is worldwide and is the province of numerous governmental and pr ivate agencies at

    the local, national an d international levels .

    The f requency and sever i ty ra tes of acc idents vary f rom country to country and f rom indus try

    to industry. A number of accidents in the chemical, oil and gas, marine and nuclear industr ies

    over the years have increased the public and polit ical pressure to improve the safety which

    protects people and the environment. In the evolution of the approach to safety, there has been

    an increas ing move towards r isk management in conjunc t ion with more technica l so lu t ions .

    Hazardous industr ies have developed approaches for dealing with safety and loss prevention,

    from design s tandards to plant inspections and technical safety, through to safety auditing and

    hum an fac tors (Trbojev ic and Soares (2000)) .

    As far as the marine industry is concerned, tragic accidents such as the Herald o f Free

    Enterprise and Derbyshire, together with environmental disasters such as Exxon Valdez and

    Amoco Cadiz, have focused wor ld opin ion on sh ip sa fe ty and opera t ion (Wang (2002) ) . This

    demand for improved sa fe ty requires comprehens ive sa fe ty ana lyses to be deve loped . Such

    safety analyses will ensure eff ic ient, economic and safe ship design and operation.

    1.2 Safety and Rel iabi li ty Dev elopment in the M aritime Industry

    Reliab i l i ty and sa fe ty methods saw a rap id deve lopment a f te r the Second Wor ld War . These

    methods were main ly concerned with mil i ta ry use for e lec t ronics and rocke try s tud ies . The

  • 8/18/2019 Technology and safety of marine systems.pdf

    17/334

    2 Chapter 1

    f i r s t p red ic t ive re l iab i l i ty models appeared in Germany on the V1 miss i le pro jec t where a

    reliabili ty level was successfully def ined from reliabili ty requirements and experimentally

    ver i fied on com ponents dur ing the ir deve lopmen t s tages (Bazovsky (1961)) .

    The f irs t formal approach to shipboard reliabili ty was the Buships specif ication, MIL-R-22732

    of Ju ly 31 , 1960, prepared by the Uni ted Sta tes of Amer ica ' s Depar tment of Defence and

    addressed ground and sh ipboard e lec tronic equipment (MIL (1960)) . Subsequent ly in 1961 the

    Bureau of Weapons is sued the MIL s tandards concern ing re l iab i l i ty models for av ionics

    equipment and procedures for the pred ic t ion and repor t ing of the re l iab i l i ty of weapon

    sys tems . This was due to the fac t tha t the growing complexi t ies of e lec t ronic sys tems were

    responsible for the failure rates leading to a s ignif icantly reduced availabili ty on demand of the

    equipment .

    In February 1963 the f i r s t sympo s ium on advanced m ar ine engineer ing concepts for increased

    reliabili ty was held at the off ice of Naval Research at the University of Michigan. In December

    1963 a paper entit led

    "Reliability Engineering Applied to the Marine Industry"

    (Harr ington

    and Riddick (1963) ) was presented a t the Soc ie ty of Nava l Archi tec ts and Mar ine Engineers

    (SNAME) and in June the fo l lowing year another paper , en t i t led "Reliability in Shipbuilding"

    (Dunn (1964) ) , was presented . Fol lowing the presenta t ion of these two papers , SNAME in

    1965 established Panel M-22 to investigate the new discipline as applied to marine machinery

    and m ake i t o f use to the com merc ia l mar ine indus try .

    In the last three decades, s t imulated by public reaction and health and safety legis lation, the

    use of r isk and reliabili ty assessment methods has spread from the higher r isk industr ies to an

    even wider range of appl ica t ions . The Reac tor Safe ty Study under taken by the U.S.A (U.S

    Nuclear Regula tory Commiss ion (1975) ) and the Canvey s tud ies per formed by the UK Heal th

    & S afety Exe cutiv e (H SE (1978, 198 l a ,b)) resulted f rom a desire to dem onstrate safety to a

    doubtful public . Both these s tudies made considerable use of quantita tive methods, for

    assess ing the l ike l ihood of fa ilures and for de te rmining consequence models .

    1 . 3 P r e s e n t S t a t u s

    There is a long h is tory in the Uni ted Kingdom (UK) of research , deve lopment and success fu l

    practical application of safety and reliabili ty technology. There is a continuing programme of

    fundamental research in areas such as sof tware reliabili ty and human error in addition to

    fur ther deve lopment of the genera l methodology. Much of the deve lopment work was car r ied

    out by the nuclear industry.

    Based on the considerable exper tise gained in the assessment of nuclear plants , a National

    Centre for Sys tem Rel iab i l i ty (NCSR) was es tab l ished by the UK Atomic Energy Author i ty

    (UKAEA) to promote the use of re l iab i l i ty technology. This organisa t ion p lays a lead ing ro le

    in research, tra ining, consultancy and data collection. The NCSR is par t of the safety and

    re l iab i l ity d i rec tora te of the U KA EA , which has p layed a m ajor ro le in formula t ing leg is la t ion

    on major hazards, and has carr ied out major safety s tudies on industr ia l plants . I t is noted that

    some of the major hazard s tud ies commiss ioned a t the na t iona l leve l in the UK have inc luded

    the evaluation of the r isks involved as a result of marine transportation of hazardous mater ials

    such as l iquef ied gases and radioactive substances. I t is expected that the recent legis lation in

    relation to the control of major hazards will result in a wider use of quantita tive safety

    assessment m ethods and th is wi l l inevi tab ly involve the m ar ine indus try .

  • 8/18/2019 Technology and safety of marine systems.pdf

    18/334

    In t roduc t ion 3

    Most chemical and pet rochemical companies in the UK have made use of safe ty and re l iabi l i ty

    assessment techniques for p lant evaluat ion and planning. S imi lar methods are regular ly

    emp loyed in re la t ion to of fshore product ion and explora t ion ins ta l la t ions .

    The Royal Navy has in t roduced re l iabi l i ty and mainta inabi l i ty engineer ing concepts in order to

    ensure tha t modem warships are capable of a h igh combat avai labi l i ty a t opt imum cost

    (Gosden and Galpin (1999)) . The appl ica t ion of these methods has been progress ively

    extended f rom considera t ion of the opera t ional phase and maintenance planning to the des ign

    phase .

    To date , com parat ive ly l i tt le use of safe ty and re l iabi l i ty assessm ent metho ds has b een m ade in

    connect ion wi th merchant shipping. L loyd ' s Regis ter of Shipping has for a long per iod,

    col lec ted informat ion re la t ing to fa i lures and has carr ied out development work to inves t igate

    the appl ica t ion of such methods to the c lass i f ica t ion of ships . Apar t f rom this , some

    consul tancy work has a lso been carr ied out on behal f of ship owners . One example i s the

    P & O

    G r a n d P r i n c e s s ,

    for which a comprehensive safe ty and avai labi l i ty assurance s tudy was

    carr ied out a t the concept des ign s tage of th is cruise ship . Establ ished r i sk assessment

    techniques were used including Fai lure Mode and Effects Analys is (FMEA), f looding r i sk

    analys is and f i re r i sk analys is . The resul tant ship was bel ieved to be bet ter and safer than i t

    would have been otherwise (Best and Davies (1999)) . P&O has now developed an in-house

    safe ty management sys tem which i s des igned to capture any opera t ional feedback, so as to

    impro ve the safe ty and ef f ic iency o f i ts cruise f lee t opera t ion and to use i t for bet ter des ign in

    the future.

    The merchant ship-bui ld ing yards in the UK, having seen the success of the warship yards in

    applying Avai labi l i ty , Rel iabi l i ty and Mainta inabi l i ty (ARM) s tudies a t the des ign s tage , are

    act ively seeking benef i t s f rom adopt ing a s imi lar approach. Som e joint indust ry-univers i ty

    research projec ts are being un der taken to explore th is area .

    1 . 4 D a t a b a s e s

    The ear ly re l iabi l i ty s tudies , par t icular ly on e lec t ronics , made use of fa i lure data obta ined by

    tes t ing a large number of components . As the techniques found more widespread appl ica t ions ,

    the methods for s ta t i s t ica l ly analys ing data f rom real l i fe exper ience became more advanced

    and large com mu nal databases of re liabi li ty data were crea ted.

    In the 1980 's , the mar i t ime c lass i f ica t ion socie t ies , commercia l ins t i tu t ions and other

    author i t ies rea l i sed the impor tance of s ta t i s t ica l da ta col lec t ion on fa i lure or repai r da ta and

    eventual ly , da ta on g enera l accident s ta t i s tics were provided (HSE (1992a, b) ). These data g ive

    genera l t rends and are not d i rec t ly useable in quant i ta t ive assessments . By far the most useful

    se ts of s ta t i s tics on m ar ine accidents are presented in the publ ica t ions o f the UK Protect ion and

    Indem ni ty (P&I) Club of insurers (P & I Club (1992)) .

    Accident inves t igat ion i s a common method used by many organisa t ions in a t tempt to enhance

    safe ty . Discover ing the causes of casual t ies may a l low s teps to be taken to preclude s imi lar

    accidents in the future . S ince 1981 the Uni ted S ta tes Coast Guard (USC G) has ma inta ined a

    computer database summaris ing the causes of inves t igated mar ine casual t ies . In 1992 the

    U S C G im plem ented a new com pute r casua l ty da t abase , t he M ar ine Inves t iga t ion M odule

    (MINMOD), which changed the way mar ine casual ty inves t igat ions were repor ted (Hi l l e t a l .

    (1994) ) . T he new sys t em im plem ented seve ra l im provem ent s t ha t w ere expec ted to enhance

    the val id i ty and co mp leteness of the casual ty data repor ted. O ne of the most impor tant changes

  • 8/18/2019 Technology and safety of marine systems.pdf

    19/334

    4 Chapter 1

    made was the adopt ion of a cha in-of -events ana lys i s o f acc ident causes , enabl ing a more

    com ple te desc r ip t ion o f a ll acc ident - re la ted events and the i r assoc ia ted causes .

    In the pas t , acc ident s ta t i s t i cs were no t ga thered sys temat ica l ly and the da ta type was not

    cons is ten t . This led to the ana lys t no t knowing i f the se t o f da ta i s appl icab le to the ana lys i s

    unde r c ons ide r a t i on . Some c omme r c i a l i n s t i t u t i ons ha ve f oc use d on de ve lop ing da t a ba se s o f

    mar i t ime acc idents . The acc ident in format ion i s p resen ted sys temat ica l ly and in some cases

    cor re la t ion i s ava i lab le . Typica l exa mp les inc lude :

    9 O RE D A (Offsho re Rel iab i li ty Data) - A da tabase of of f shore acc idents which was f ir s t

    publ i shed in 1982 and has been upda ted annua l ly ever s ince (OREDA (1982)) .

    9 Ma r ine I nc ide n t Da t a ba se Sys t e m ( MI DS) - A da t a base ma in t a ine d by the Ma r ine Ac c ide n t

    Inves t iga t ion Branch (MAIB) .

    9 W or ld C asua l ty S ta t i s ti cs - A co l lec t ion of da ta publ i shed annua l ly by Lloyds Regis te r o f

    Shipping .

    9 The Ins t i tu te of Lo ndon Underw r i te rs .

    9 C A S M A I N -

    A database main ta ined by the Uni ted S ta tes Coas t Guard .

    9 SE AR EM - A Br i t i sh I s le da tabase deve lo ped and re f ined unde r the s tewardship of the

    Royal Nat iona l Li feboa t Ins t i tu t ion (RNLI) .

    Over the las t severa l years , p rogress ive mar i t ime organisa t ions a round the wor ld have been

    c oope r a t i ng t o f o r m a wor ldwide i n f o r ma t ion ne twor k , c a l l e d RAM/SHI PNET, t o suppo r t t he

    opt imisa t ion of sa fe ty , re l iab i l i ty , and cos t e f fec t iveness in vesse l opera t ions . The miss ion of

    RAM/SHI PNET i s t o f o r m a n e f f i c i e n t i n f o r ma t ion ne twor k f o r ve s se l ope r a to r s a nd o the r

    indus t ry par t ic ipants to co l lec t and share san i t i sed per formance informat ion on vesse l

    equipment . I t consists of distr ibuted and part ial ly shared Reliabi l i ty , Availabi l i ty , and

    Ma in t a ina b i l i t y ( RAM) da t a ba se s . RAM/SHI PNET wa s e s t a b l i she d t o c o l l e c t e qu ipme n t

    per formance da ta and to share th i s da ta a t d i f fe ren t l eve ls by l ink ing ch ie f engineers , sh ip

    opera tors /managers , regula tory agenc ies , equipment manufac turers and sh ipyards /des igners .

    F i r s t genera t ion s tand-a lone da ta co l lec t ion and process ing too ls were deve loped and the

    sys tem became ready for implementa t ion . The ro l l -ou t per iod i s in progress for fu l l va l ida t ion ,

    de mons t r a t i on , a nd imp le me n ta t i on o f RAM /SHI P NE T ( Inoz u a nd Ra dov i c ( 1999 )) .

    The databases that are described in this sect ion, are s t i l l lacking specif ic information of

    e qu ipme n t a nd c ompone n t f a i l u r e s . Nove l me thods ha ve t o be de ve lope d t o ha nd l e t h i s

    shor tcom ing . Th ese nove l t echniques should in tegra te exper t jud gem ent w i th ava i lab le da ta in

    a formal manner to ensure the accuracy and the appl icab i l i ty of the sa fe ty assessment car r ied

    out.

    1 .5 D e s c r i p t i o n o f t h e B o o k

    The a ims o f the boo k a re to :

    1 . Re view the cur ren t p rac t ices emplo yed in the mar ine indus t ry wi th par t icu la r re fe rence to

    f i sh ing v esse l s .

    2 . Des cr ibe the typ ica l sa fe ty assessment techniques and the i r appl ica t ion in order to in tegra te

    them in to formal sa fe ty assessment .

  • 8/18/2019 Technology and safety of marine systems.pdf

    20/334

    Introduction 5

    3. Descr ibe severa l nove l sa fety model l ing and dec is ion making techniques tha t can be

    applied in s ituations where traditional methods cannot be applied with confidence.

    4. De m onstra te how the adoptio n of safety analysis me thods can facili ta te the application of

    formal safety assessment of ships .

    5. Add ress the issues in form al ship safety assessment.

    This book may be used as a reference by marine and offshore safety analysts within industry;

    by marine and offshore safety researchers; and by undergraduates and postgraduates in marine

    and of f shore technology.

    Fishing vessels are chosen as a major tes t case while other types of ships are also used. Fishing

    vessels are generally smaller with a unique operating nature and the accidents concerning these

    vessels have been over looked in the past. Most f ishing vessels are owner operated and lack the

    organisational s tructure of merchant vessel owners and operators . This leads to the diff iculty in

    gather ing accident/failure information for a safety analysis . Since the f ishing industry is s tarved

    of safety and reliabili ty data , conventional safety and r isk assessment techniques may not be

    readily applied. The available quantita tive techniques require a cer tain amount of failure data in

    order to make a reasonable safety prediction. The novel methods descr ibed in this book will

    address this setback of the traditional methods by integrating within their models the abili ty to

    handle vague and uncer tain data in an effective manner to produce a reasonably accurate safety

    assessment. These novel methods will integrate hazard identif ication, r isk quantif ication and

    ranking with formal dec is ion making techniques so tha t sa fe ty improvements made to new as

    well as exis ting v essels are effective and justif ied.

    The body of th is book is d iv ided in to e leven Chapte r s . Each Chapte r is summar ised here ,

    highlighting the salient points delivered.

    Chapter 2

    highlights the international conventions that govern f ishing vessel safety and some

    of the sa fe ty programmes tha t have been implemented by the In te rna t iona l Mar i t ime

    Organiza t ion ( IMO) member s ta tes . The da ta tha t were co l lec ted and ana lysed f rom var ious

    sources inc luding the Depar tment of the Environment , Transpor t and the Regions (DETR) and

    the Marine Accident and Investigation Branch (MAIB), are presented. The f indings of the

    accident data analysis are descr ibed. A statis tical analysis of containership accidents is a lso

    brief ly conducted.

    Chapter 3

    gives an introduction to typical safety analysis techniques. The advantages and

    disadvantages of each method a re rev iewed. This is fo l lowed by a proposed approach to

    identifying hazards on board ships.

    Chapter 4

    descr ibes both the offshore safety case approach and formal safety assessment of

    ships. The current practices and the la test development in safety assessment in both the marine

    and offshore industr ies are descr ibed. The relationship between the offshore safety case

    approach and formal ship safety assessment is descr ibed and discussed. The s tudy of r isk

    cr iter ia in marine and offshore safety assessment is carr ied out. The recommendations on

    fur ther work required are f inally given.

    Chapter 5

    discusses the incept ion of Formal Safe ty Assessment (FSA) , or ig ina lly proposed by

    the UK Mar i t ime & Coas tguard Agency , in the mar i t ime appl ica t ions . The FSA is appl ied to

    f ish ing vesse ls wi th an i l lus t ra t ive example . The appl ica t ion of the FSA f ramework to

    containerships is a lso descr ibed. Detailed discussions on several aspects of FSA's application

    to ship design and operation are given.

  • 8/18/2019 Technology and safety of marine systems.pdf

    21/334

  • 8/18/2019 Technology and safety of marine systems.pdf

    22/334

    Introduction 7

    Chapter 11 concludes the book by summarising the results and outl ining the contributions to

    formal ship safety assessment.

    The safety analysis techniques described in this book will facilitate ship safety assessment in

    various situations. They can be tailored for safety analysis of any maritime and offshore

    engineering product with domain-specific knowledge. As some of these approaches described

    are subjective in nature, they may be more applicable for many engineering applications that

    lack reliable failure data.

    1 .6 References (Chapter 1 )

    Bazovsky I . , (1961) "Reliabil i ty Theory and Practice", Prentice Hall , Englewood Cliffs

    New Jersey.

    2 Best P.J. and Davies W.B., (1999) "The Assessm ent of Safety for Vessels in Service:

    Practical Examples of the Application of FSA Techniques from Inland Vessels to Ocean

    Going F erries", Transactions of IMarE, Vol. 111, No. 2, pp. 51-58.

    3 Dunn T .W., (1964) "Reliabil ity in Shipbuilding", SN AM E, Spring Meeting, June 4-5,

    Boston, Massachusetts, USA.

    Gosden S.R. and Galpin L.K., (1999)"Breaking the Chains of Preventive Maintenance:

    The Royal Navy Experience", Maintenance & Asset Management Journal , Vol. 14, No 5,

    pp. 11-15.

    Harrington R.L. and Riddick R.P. , (1963) "Reliabil i ty Engineering Applied to the Marine

    Industry" , SNAM E, H ampton Road Section, Decemb er 1963.

    Hill S.G., Byres

    J . C . ,

    Rothblum A.M. and Booth R.L. , (1994) "Gathering and Recording

    Human Related Casual Data in Marine and Other Accident Investigation", Proceedings of

    the Human Factors and Ergonomics Society

    38 th

    Annual Meeting, Nashvil le, Tennessee,

    USA , O ctober 24-28, pp. 863-867.

    HSE, (1978) "Canvey: An Investigation of Potential Hazards from Operations in the

    Canvey Is landffhurrock Area" , Heal th & Safety Execut ive, HM SO, Uni ted Kingdom.

    HSE , (1981 a) "Canvey: A Second R eport . A Review of Potential Hazards from Operations

    in the Canvey Island/Thurrock Area", Health & Safety Executive, HMSO, United

    Kingdom.

    HSE , (198 l b) "Ca nvey: A Second R eport . A S umm ary of a Review of Potential Hazards

    from Operations in the Canvey Island/Thurrock Area", Health & Safety Executive, HMSO,

    Uni ted Kingdom.

    10 HSE, (1992a) "The Offshore Instal lat ion (Safety Case) Regulation 1992", Health & Safety

    Executive, ISBN 00118820559.

    11 HSE, (1992b) "The Tolerabil i ty of Risk from Nuclear Power Stat ions", 1992 Edit ion,

    Health & Safety Executive, ISBN 00118863681

    12 Inozu B. and Radovic I. , (1999) "Practical Implementations of Shared Reliability and

    Maintainabil i ty Databases on Ship Machinery: Challenges and Rewards", Transactions of

    IM arE, V ol. 111, No. 3, pp. 121-133.

  • 8/18/2019 Technology and safety of marine systems.pdf

    23/334

    8 Chapter 1

    13 MIL, (1960) "Buships Specificat ion", MIL-R-22732, Department of Defence, United

    States of America.

    14 OR ED A, (1982) "Offshore Rel iab i li ty Data Hand book (ORED A)" , PennWel l Books, 1982

    onwards.

    15 P & I Club, (1992) "Analysis of Major Claims 1992", UK Mutual Steam Ship Associat ion

    (Bermuda) Ltd Publication.

    16 Trbojevic V.M. and Soares C.G., (2000) "Risk Based Methodology for a Vessel Safety

    Management System", Proceeding ESREL 2000 and SRA-Europe Annual Conference,

    ISBN: 90 5809 141 4, Scotland, UK, 15-17 M ay, Vol. 1 , pp. 483-488.

    17 U.S Nuclear Regulatory Commission , (1975) "Reactor Safety Study: An Assessment of

    Accident Risks in U.S. Commercial Nuclear Power Plan ts" , October 1975, WASH-1400

    (NUREG 75/014) .

    18 Wang J. , (2002) "A Brief Review of Marine and Offshore Safety Assessment", Marine

    Technology, SNAME, Vol. 39, No. 2, April, pp. 77-85.

  • 8/18/2019 Technology and safety of marine systems.pdf

    24/334

    Chapter 2

    Ship Safe ty and Acc ident Stat i s t i c s

    Summary

    This Chapter highlights the international conventions that govern f ishing vessel safety and

    some of the sa fe ty programmes tha t have been implemented by the In te rna t iona l Mar i t ime

    Organization (IMO) member s tates . The data that were collected and analysed from var ious

    sources inc luding the Depar tm ent of the Environment , T ransport and the Regions (DET R) and

    the Marine Accident and Investigation Branch (MAIB), are presented. The f indings of the

    accident data analysis are descr ibed. A statis tical analysis of containership accidents is a lso

    brief ly conducted.

    K e y w o r d s : Accid ent data , containerships, data analysis , f ishing vessels .

    2 .1 In troduct ion

    Recogn ising the need for a ttention to safety of commercial f ishing vessels , the IMO organised an

    international conference, w hich culm inated in the Torremolinos International C onvention for the

    safety of fishing vessels in 1977 (IMO (1977)). It established uniform principles and rules

    regarding design, construction and equipment for fishing vessels 24m (79 feet) in length and

    over . This Convention was a major milestone. I t provided benchmarks for improving safety, and

    ma ny f ishing nations have adopted its measures into their marine safety programm es.

    The IMO convention on Standard of Training, Certif ication and Watch keeping for seafarers

    (STC W) 1978 is another important inf luence on f ishing vessel safety. Although the ST CW 1978

    specifically exempts fishing vessels, it has inspired efforts to develop personnel qualification

    standards (STCW 95 also exempts f ishing vessels) . Notable among these effor ts is the

    Document for Guidance on Fishermen's Training and Certif ication (IMO (1988)) and the Code

    of Safety for Fishermen and Fishing Vessels ( IMO (1975a)) . Other IMO codes and guidelines

    include the Voluntary Guidelines for the Design, Construction and Equipment of Small Fishing

    Vessels ( IMO (1980)) and the Code of Safety for Fishermen and Vessel Design and

    Construction (IMO (1975b)) . These s tandards are jointly prepared by the IMO and two other

    United Nations subsidiaries, the Food and Agricultural Organisation (FAO) and the International

    Labour Organisation (ILO). They provide guidance on training and education and detailed

    curr iculum development.

    There are s trong safety programmes among the IMO member s tates that include equipment

    standards, inspection requirements and certification or licensing of vessel operators and crew.

    These programmes vary in each country. For example, Canada, Norway and the UK have

    extensive requirements, while other countries are less stringent. Generally fishing vessels in

  • 8/18/2019 Technology and safety of marine systems.pdf

    25/334

    10 Chapter 2

    length 15m or longer are addressed; however some countries address vessels as small as 9m,

    such as New Zealand and 12m as in the UK.

    In the UK, comprehensive regula t ions have come into force s ince 1975. Surveys and

    cert if ication of f ishing vessels with the length of 12m or longer are required; they apply to about

    2000 vessels. For vessels with the length of over 16.5m, deck officers and engineers have

    comprehensive entry level professional training, cert if ication, manning and watch keeping

    requirements.

    S tudies on the ef fec t of compulsory programmes have been conducted in Norway, The

    Netherlands, UK and Spain, but they have tended to focus on training, stat ist ics and causes of

    accidents rather than performance of technical systems in relat ion to compulsory programmes. I t

    appears that fatal i t ies have generally been reduced, while the rates of incidence for injuries

    related to vessel casualt ies and workplace accidents appear unchanged. The lack of apparent

    change in injury rates may be related to working condit ions and methods, vessel design, training

    def ic iencies and changes in the number of f i shing vesse ls and f i shermen (Carbajosa (1989) ,

    Dahle and Weerasekara (1989) , Hoefnagal and Bouwman (1989) , S toop (1989)) . The number of

    vessel casualt ies over the years has changed. For example, in the UK, since safety rules were

    applied to al l vessels ov er 12m during the m id 1980' s , the num ber o f losses of these vessels has

    significantly reduced. However, losses of vessels under 12m have more than doubled, perhaps

    part ly because of a large increase in the number of vessels under 12m, to which only l ife saving

    and f i re safe ty government regula tions apply (Ho pper and D ean (1992)).

    2 . 2 T he Co de o f Pr a c t ic e fo r the Sa fe ty o f Sm a l l F i sh ing V e sse l s

    The development of a Code of P ract ice for smal l f i shing vesse ls marked the beginning of the

    f i rs t major review of f i shing vesse l safe ty regula t ions s ince 1975. The pr incipal a im in

    developing the Code was to update the safe ty equipment requi rements for smal l f i shing

    vessels . I t s secondary a im was to bui ld on the concept of hazard ident i f ica t ion and r i sk

    assessment , and to in t roduce an assessment by owners of the f i tness of the i r vesse ls (House of

    C om m ons (2000) ) .

    The Code of P ract ice for the safe ty of smal l f i shing vesse ls has been ef fec t ive s ince the 1

    t

    of

    Apri l 2001. T he a im of th is Code of P ract ice i s to impro ve safe ty in the under 12 meter sec tor

    of the f i shing indust ry and to ra ise the safe ty awareness of a l l those involved wi th the

    const ruct ion, opera t ion and m aintena nce o f f ishing vesse ls wi th a regis tered length of less than

    12 meters.

    2.2.1

    D e v e l o p m e n t

    In 1992 the Nat ional Audi t Off ice , in i t s repor t ent i t led "Depar tment of Transpor t : Ship

    Safety", noted an increase in the f ishing vessel accident rate from 1978 to 1989, due in part to

    an increase in the numbers of smal ler vesse ls (Nat ional Audi t Off ice (1992)) . I t observed the

    absence , unt i l 1990, of any prog ram me o f inspection o f f i shing vesse ls wi th a regis tered length

    of less than 12 meters . At about the same t ime, the House of Lords Selec t Commit tee on

    S c ience and T echno logy r ecom m ended tha t f i sh ing vesse l s dow n to 7m in l eng th shou ld be

    brough t w i thin the l icensing, crew cer t i fica t ion and s t ructura l safe ty regimes.

    In response , the Surveyor Genera l ' s Organisa t ion of the Depar tment of Transpor t (now the

    M ar i t im e & C oas tgua rd A gency (M C A )) , i n consu l t a t ion w i th indus t ry m em bers o f t he

  • 8/18/2019 Technology and safety of marine systems.pdf

    26/334

    Ship Safety and Accid ent Statistics 11

    Fishing Indust ry Safe ty Group (FISG), decided to develop a Code of P ract ice for f i shing

    vessels wi th a regis tered length of less than 12 meters . The content of the Code has been the

    subject of extensive discuss ion wi th representa t ives of the under 12 mete r sec tor of the f i shing

    indust ry wi thin a S teer ing Commit tee se t up by FISG to oversee the Code ' s development . The

    C ode has been app l i ed f rom the

    1 st

    of Apr i l 2001 to a l l Uni ted Kingdom regis tered f i shing

    vessels wi th a regis tered length of less than 12 meters .

    2 .2 .2 Code Req uirements

    To co mp ly wi th the Cod e of P ract ice , a vesse l owner i s requi red:

    To carry safe ty equipment on the vesse l appropr ia te to i t s length and const ruct ion ( i .e .

    decked or open) . The equipm ent checkl is t i s g iven in App endix 1 .

    To complete or ar range complet ion of an assessment of the heal th and safe ty r i sks ar i s ing

    in the normal course of work ac t iv i t ies or dut ies on the vesse l in accordance wi th the

    provis ions of the Merchant Shipping and F ishing Vessels (Heal th and Safe ty a t Work)

    R egu la t ions 1997 and M G N (M ar ine G uidance N ote) 20 (M +F ) (M S A (1998) ).

    To cer t i fy annual ly tha t the vesse l compl ies wi th the Code, by declar ing that the safe ty

    equipment has been proper ly mainta ined and serviced in accordance wi th manufacturers '

    recommendat ions and that an appropr ia te , up- to-date heal th and safe ty r i sk assessment has

    been com ple t ed .

    9 To present the vesse l for inspect ion e i ther voluntar i ly or as requested by the M CA .

    App endix 1 gives the checkl is t of requi rements for the Code of P ract ice for the safe ty of smal l

    f i shing vesse ls in 4 ca tegor ies . T he vesse ls addressed in th is Code of P ract ice inc lude:

    1. Dec ked vesse ls 10m and above regis tered length to less than 12m registered length .

    2 . Al l deck ed vesse ls up to 10m regis tered length .

    3 . Open vesse ls 7m and above to less than 12m regis tered length .

    4 . Open vesse ls less than 7m registered length .

    2.3 The Fishing Vessels (Safety Provis ions) Safety Rules 1975

    In 1968, three vesse ls were t ragica l ly los t of f the coas t of Ice land. The invest igat ion of these

    three vesse l accidents determines the loss as ' caps iz ing due to ice accumulat ion ' . Fol lowing

    the off ic ia l inqui ry in to these losses , a ru le regime was invest igated which eventual ly ar r ived

    on the s ta tute as "The F ishing Vessels (Safe ty Provis ions) Safe ty Rules 1975" . Unfor tunate ly

    the formu lat ion of the rules d id no t resul t in an analys is of the organisa t ional or hum an fa i l ing,

    present in many safe ty t ragedies wi thin the f i shing communi ty . The rules are pr imar i ly

    concerned wi th vesse ls of over 12 meters regis tered length . Smal ler vesse ls are addressed, but

    only l i fe saving appl iances and f i ref ight ing measures are inc luded. Appendix 2 gives a l i s t of

    a l l equipment addressed in The F ishing Vessel (Safe ty Provis ions) Safe ty Rules 1975. These

    rules do not conce rn them selves wi th the whole vesse l , but may be noted to consider the vessel

    f rom the deck and ac com m oda t ion l i ne dow nw ards . T he w inches, w i res and f ish ing equ ipm ent

    are not covere d by the rules .

  • 8/18/2019 Technology and safety of marine systems.pdf

    27/334

  • 8/18/2019 Technology and safety of marine systems.pdf

    28/334

    Ship Safety an d Accident S tatistics 13

    the f igures ind ica t e a decreas ing t rend , t he number of acc ident s re l a t ed to th i s ca t egory i s s t i l l

    h igh and cer t a in ly unacceptab le f rom a sa fe ty perspec t ive .

    T h e n ex t h i g h es t co n t r i b u t o r t o a cc i d en t s i s fo u n d t o b e f l o o d i n g an d fo u n d e r i n g fo l l o w ed b y

    grounding and then co l l i s ion and contac t . A compar i son of a l l acc ident t ypes i s made as seen

    in F igure 2 .5 . F looding and founder ing i s es t imated to cause a lmost 15% to 20% of acc ident s

    on f i sh ing vesse l s .

    These da t a a re cumula t ed and presen ted as a p i e char t i n F igure 2 .6 to revea l t he cont r ibu t ion

    o f e ach acc i d en t t y p e fo r t h e s am p l i n g p e r i o d . A s r ev ea l ed ea r l ie r , m ach i n e ry d am ag e i s fo u n d

    t o b e t h e m o s t co m m o n cau se o f a cc i d en t s o n f i sh i n g v e s se l s , co n t r i b u t i n g 6 4 . 4 % o f a l l

    acc ident s . Founder ing and f looding (14 .2%), g rounding (10 .2%), co l l i s ion and contac t s

    (5 .7%), and f i res and explos ions (2 .9%) fo l low.

    To de te rmine the sever i ty of t he acc ident s on f i sh ing vesse l s , da t a re f l ec t ing the acc ident s t o

    vesse l c rew toge ther wi th the number of dea ths a re ga thered and presen ted in F igures 2 .7 and

    2 .8 . These bar char t s show tha t a lmost 30% of acc ident s t o c rew on vesse l s t ha t a re under 12

    meter resu l t i n dea ths and for vesse l s t ha t a re 12-24 meters and more than 24 meters i n l ength ,

    these f igures a re ca l cu la t ed to be 13% and 15%, respec t ive ly . The resu l t s i nd ica t e t ha t vesse l s

    u n d e r 1 2 m e t e r s h av e t h e h i g h es t c a su a l t y r a t e s an d su f f e r s ev e re co n seq u en ces w h en an

    acc ident happens . Thi s could be a t t r i bu ted to the s i ze and s t ab i l i t y of t hese vesse l s when

    sa i li n g i n b ad w e a t h e r co n d i t i o n s. T h e n u m b er o f u n d e r 1 2 m e t e r v e s se l s t h a t w e re l os t is m u ch

    higher t han the o ther vesse l s as seen in F igure 2 .9 . The t rend in the number of vesse l s l os t i s

    d i f f i cu l t t o de t e rmine , as i t does no t fo l low any spec i f i c mathemat i ca l ru l e . However , by

    compar ing the graphs in F igures 2 .1 , 2 .2 and 2 .9 , i t can be conc luded tha t f rom 1997, t he

    n u m b er o f v e s se l s l o s t i n c rea sed a s t h e p e rcen t ag e o f r eg is t e r ed v e s se l s d ec rea sed .

    Table 2 .1 g ives the de t a i l ed breakdown of acc ident s by vesse l l ength and acc ident cause for

    1999 (MA IB (1999a)) . Fro m th i s t ab le , i t i s no ted tha t a g rea t p ropo r t ion o f f i sh ing vesse l

    acc i d en ts (2 0 % ) i s c au sed b y n eg l i g en ce / ca re l e s sn es s o f t h e cr ew . T h i s co u l d b e su m m ar i sed

    as human er ror a t t r i bu ted by severa l fac tors i nc lud ing competency of t he c rew, fa t igue , poor

    m an n i n g o f v e s se l an d d i f f i cu l t o p e ra t i n g co n d i t i o n s . A m e t h o d a s se s s i n g h u m an e r ro r an d

    means to reduce these e r rors wi l l be descr ibed in Chapter 9 . Acc ident s caused by the l i f t i ng

    g ea r (1 5 % ) an d o t h e r f i sh i n g g ea r eq u i p m en t (1 2 % ) a re a l so h i g h co m p ared t o t h e o t h e r

    acc ident causes .

    2 .5 Data Ana ly s i s

    In many cases of f i sh ing vesse l acc ident s , i n format ion i s i ncomple t e or t o t a l ly l ack ing . Thi s

    makes i t d i f f i cu l t t o ana lyse the event s t ha t l ead to the acc ident . Accura t e h i s tor i ca l and curren t

    da t a on vesse l s , f i shermen, p rofess iona l exper i ence , hours and na ture of exposure and safe ty

    p e r fo rm an ce o f p e r so n n e l an d eq u i p m en t a r e fu n d am en t a l t o a s se s s i n g sa fet y p ro b l em s ,

    m o n i t o r i n g r e su l t s o f s a f e t y p ro g ram m es an d m easu r i n g t h e e f f ec t i v en es s o f s a f e t y

    improvement s t ra t eg ies (Loughran e t a l . (2002)) . Very few da ta a re regular ly co l l ec t ed or

    publ i shed on these parameters . The l imi t ed da t a make i t d i f f i cu l t t o quant i fy sa fe ty problems,

    de t e rmine casua l re l a t ions and assess sa fe ty improvement s t ra t eg ies . However , t he da t a t ha t a re

    ava i l ab le i nd ica t e t ha t s ign i f i can t sa fe ty problems ex i s t and tha t human er ror , vesse l s and

    eq u i p m en t i n ad eq u ac i e s an d en v i ro n m en t a l co n d i t i o n s a l l co n t r ib u t e t o th em .

    M ar i n e acc i d en t s t h a t h av e o ccu r r ed co u l d h av e b een p rev en t ed w i t h g rea t e r a t t en t i o n t o

    safe ty . Thi s i s par t i cu l a r ly t rue for f i sh ing vesse l s . Recent i nqui r i es i n to the losses of f i sh ing

  • 8/18/2019 Technology and safety of marine systems.pdf

    29/334

    14 Chap ter 2

    v e s s e l s "P e s c a d o " ( MAI B ( 1 9 9 8 ) ) a n d "Ma g a r e t h a Ma r i a " ( MAI B ( 1 9 9 9 b ) ) h a v e r a i s e d

    conce rns a s to how s imi la r acc iden t s may be p reven ted in the fu tu re . The da ta ana lys i s in

    Sec t ion 2 .4 shows tha t the re i s a r i se o f f i sh ing vesse l acc iden t s and the t r end seems to be

    con t inu ing in an upward fa sh ion . F rom the l i t e ra tu re su rvey , i t i s found tha t sa fe ty a ssessmen t

    o f f i sh ing vesse l s has been l imi ted to s t ab i l i ty cons ide ra t ion and ve ry l i t t l e work has been

    ca r r i ed ou t on the ope ra t iona l and equ ipment sa fe ty a ssessmen t . F rom the da ta g iven in Sec t ion

    2 .4 , i t can be deduced tha t f i sh ing vesse l sa fe ty needs to be addressed and the number o f

    acc iden t s and inc iden t s r e la ted to the ope ra t ion and equ ipment i s to be reduced . In o rde r to

    d i rec t the a t t en t ion o f the sa fe ty a ssessmen t on f i sh ing vesse l s , the p robab le causes o f each

    a c c i