technology specific, current capacity design...

33
Technology Specific, Current Carrying Capacity Design Charts Carrying Capacity Design Charts An Extension of IPC2152 Mike Jouppi 3033593280 www.thermalman.com

Upload: vuongtruc

Post on 08-May-2018

228 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

Technology Specific, Current Carrying Capacity Design ChartsCarrying Capacity Design ChartsAn Extension of IPC‐2152 Mike Jouppi

303‐359‐3280www.thermalman.com

Page 2: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

Introduction• Current Carrying Capacity in Printed Board Design

• Printed circuit board electrical conductors or traces are sized using a nomograph that relates current, conductor cross‐sectional area and conductor temperature rise.

• The temperature rise is supposed to represent the trace temperature increase, above the local board temperature, when a defined amount of current is applied to the trace. 

Page 3: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

T h l  S ifi  D i  ChAgenda• Original (IPC‐2221, IPC‐D‐275, Mil‐Std‐275, and others ) charts

• What the charts really represent

Technology Specific Design Charts

• What the charts really represent

• IPC‐2152 Charts• Test methodB d• Boards

• Trace Sizes• Test environment• EnclosureEnclosure

• Technology Specific Design Charts • Why they are useful• Process for creating them

Technology Specific Design Charts are created through computer simulations with a foundation on test data collected for IPC‐2152, Standard for Determining Current Carrying Capacity in Printed Board Design• Process for creating them Current‐Carrying Capacity in Printed Board Design.

Page 4: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

External ConductorsExternal ConductorsMil‐Std‐275 (A‐E)

Equations for these curves were not available until 1997, which were 

d b h d dh dcreated by Mahendra Gandhi and John McHardy (IPC‐TP‐SO6‐2)

Page 5: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

Where did the data come fromWhere did the data come from for these old charts?

National Bureau of Standards Report 4283, dated 1955

Now lets look at the chart from 1955, compare with the old charts and look at some of the data used to create them.

Page 6: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

IPC‐2221 DesignChart

NBS “Tentative” Design Chart

0.150”

Page 7: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

llAll EXTERNAL DATA, Double sided boards.

Page 8: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

hi h i b dThis chart is not based on data.  It is based on half the current  of the external chart.

Page 9: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

IPC‐2152• IPC‐2152 ‐ Standard for Determining the Current Carrying Capacity in 

Printed Board Designg• Baseline charts in IPC‐2152 are 0.07‐in thick polyimide.• Examples in this presentation use unpublished 0.06‐in thick FR4 data

• Developed following IPC‐TM‐650 2.5.4.1a (14‐in long, 7‐in tall)

• Separated variables that impact trace temperature rise:• Trace thickness• Trace width• Board material• Board material• Board thickness• Environment (air, vac, humidity, altitude)• Board Orientation (vertical and horizontal)

( )• No Copper Planes (JUST TRACES, each trace powered individually)

Page 10: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

IPC‐2152 Chart Data0.07‐in thick polyimide

IPC 2221IPC 222110C, 20C, 30C

Page 11: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

( )Existing Charts (IPC‐2221, IPC‐2152)• Existing conductor sizing charts are marginally useful if they are f ll   d t dfully understood.• The concept of a chart for determining a trace temperature based on its cross‐sectional area and current is a nice idea, but not a simple thing to doto do.

• IPC has been the publisher of current carrying capacity charts since 1992 as a result of the Perry Act. Military standards were the place holder before that.  Mil‐Std‐275, IPC‐D‐275 and IPC‐2221 hold the most 5, 5commonly used conductor sizing charts used through out the world, and they are all the same charts. 

• IPC‐2152 replaced the IPC‐2221 charts for sizing electrical conductors in i t d  i it b d  i  2009printed circuit boards in 2009.

Page 12: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

Technology Specific Charts• There are many areas in electronics thermal design that require better information in 

order to make quick design decisions.q g

• Some areas worthy of a better understanding of current flow and temperature rise (steady state and transient)

• Wagon wheels/thermal reliefs• Vias, microvias

• Neck down areas in planes and neck downs for traces between power pins on connectors  

• Steady state trace temperatures in designs taking into account copper planes and mounting configurationsg• Improved starting point for the parallel conductor rule• Improved information for high current pulse calculations

• Embedded resistors• High current pulses on all the aboveHigh current pulses on all the above

Page 13: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

Technology Specific Charts• How can one reasonably achieve technology specific design information without 

running a full set of expensive experiments?  Thermal model computer simulationsg• Start with a known baseline configuration.  This would be the baseline charts in IPC‐2152.  

• Known trace thickness, trace width, board material, board orientation, air, vacuum, internal traces, external traces,  temperature and current.  (IPC‐TM‐650 2.5.4.1a)

• Create thermal models of traces in test boards described in IPC‐2152C l l t  th  t    di i ti  b d   IPC   id li• Calculate the trace power dissipations based on IPC‐2152 guidelines

• The only unknowns are the convective coefficient to be applied to the model and the radiation properties of the board material.  The example in this study uses 0.95 as the board emissivity.  

• Adjust the convective coefficient on the model to match the temperature rise of the trace in th  th l  d l  t  IPC  b li  d tthe thermal models to IPC‐2152 baseline data

• Create models for internal or external traces for multiple current levels and trace temperatures.

• Use the environmental conditions from the correlated model and create technology specific thermal models.

Page 14: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

Technology Specific Charts Examples• This example presented is for creating an internal conductor sizing chart for a small FR4 PWB 2.36‐in x 1.57‐in x 0.06‐in thick (60mm x 40mm x 1.5mm)small FR4 PWB 2.36 in x 1.57 in x 0.06 in thick (60mm x 40mm x 1.5mm)

• This is a double sided board with circuitry on the top and bottom.

• Example 2 includes a 1‐oz internal copper plane to the board.1. Trace widths 0.01‐in, 0.02‐in, 0.04‐in and 0.08‐in (all 1‐oz copper)2. Thickness = 0.0013‐in and length = 2‐in3. Power for current levels desired to create the curve (10C, 20C, 40C and 50C rise)

• Values for copper resistivity are from IPC‐TM‐650 2.5.4.1aValues for copper resistivity are from IPC TM 650 2.5.4.1a

4. Board material thermal conductivity (kx, ky and kz), specific heat and density• Values used for the FR4 material are from IPC‐2152

5. Thermal Software used is Adam‐Research, Thermal Risk Management (TRM) Software (Another capable software tool is ANSYS IcePak)Software (Another capable software tool is ANSYS IcePak)

Page 15: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

Technology Specific Design Chart Process

IPC‐2152 Conductor Data

Run Multiple Trace Size Cases in Technology Specific Design using the IPC Configuration 

Boundaries

Add Circuitry Layers to the TSD Thermal Model 

and Run all Cases

Create a Thermal Model of the IPC 2152 

Scale the IPC‐2152 Thermal Model to  Add the 1‐oz Copper 

Plane and Rerun all the Model of the IPC‐2152 configuration

fi d

Match the Technology Specific Design (TSD)

Plane and Rerun all the Trace Size Cases

Define Boundary Conditions, Convection 

and Radiation Environment, using the 

IPC‐2152  model

Define Technology Specific Design (TSD)

Create New Design Charts

Page 16: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152
Page 17: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152
Page 18: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

Summary/Conclusions• Technology specific design charts offer a significant improvement over existing design guidelines.design guidelines.

• This process required approximately a week to create a set of design charts.

• Testing is recommended to help define the final convective coefficients used for creating new chartscreating new charts.

• Testing all board configurations for all environments and mounting configurations is not practical.

• Technology specific design charts  developed using data from IPC 2152 create a • Technology specific design charts, developed using data from IPC‐2152 create a sound foundation for a cost saving methodology to have better information for preliminary design and layout decisions.

• Now you have a much better way to estimate trace sizing and manage power l f b d h l dlosses as a part of your power budget in your thermal design.

Page 19: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

Mike [email protected]

8  303‐359‐3280 

Page 20: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

IPC‐TM‐650 2.5.4.1a ConfigurationModels were run for a 10C, 20C, 40C and 50C rise.

50C cases

10 mil wide, 1‐oz copper 20 mil wide, 1‐oz copper

40 mil wide, 1‐oz copper 80 mil wide, 1‐oz copper

Page 21: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

Return

Page 22: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

Standardize Specific Design• Standardize the specific design

Th  t   t b   i d  f  th  • The traces must be sized  for the application that new charts are to be developed.• This impacts the trace power

• This case uses two‐inch (50 8mm) • This case uses two‐inch (50.8mm) long traces• 1‐oz, four different widths, 10, 20, 40 

and 80 mil wide traces.• A single model for each individual 

10 mil wide, 1‐oz, 10c rise

trace• Multiple trace power levels 

representing 10C, 20C, 40C and50C temperature rise were modeled.

• The traces ran slightly higher due to The traces ran slightly higher due to edge effects.

10 mil wide, 1‐oz, 50c rise

Page 23: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

Return

Page 24: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

Example Model

Board Description• Double sided PWB• 1‐oz copper top and bottom• 0.06” thick FR4• Board top and Board Bottom black p

circuitry is the only copper in the PWB.

Layer 1   Copper thickness = 0.0014

Layer 2   Copper thickness = 0.0014DIELECTRIC (0.06)

Page 25: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

Example Model 2

• 1‐oz Copper plane added to the center of the bottom half of the PWBReturn

1‐oz copper planeLayer 1   Copper thickness = 0.0014 inch

Layer 2  DIELECTRIC  0.03 inch FR4Layer 3   Copper thickness = 0.0013 inch

Layer 4 DIELECTRIC  0.015 inch FR4

Layer 5   Copper Plane thickness = 0.0013 inchLayer 6  DIELECTRIC  0.015 inch FR4

Layer 7   Copper thickness = 0 0014 inch

TRM Model with 1‐oz Copper PlaneLayer 7   Copper thickness = 0.0014 inch

Stack‐up with Plane

Page 26: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

T l

80 mil traceTop layer

Trace layer40C vs 45C resulting fromadding top and bottom g player circuitry

Bottom layer

Page 27: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

Return

Page 28: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

10mil, 10C Pwr, 1oz Int Plane, Air

Trace Temperaturep6.4C rise 

Top Layer Layer 3, Trace Layer Bottom Layer

IPC‐2221 Temperature Rise = 63.7C rise, 88.7CIPC 2152 Temperature Rise   8 3C rise  33 2C

10‐mil wide0 0013 inch thick Cu IPC‐2152 Temperature Rise = 8.3C rise, 33.2C

MCP‐1630 Design Baseline = 10C rise, 35CMCP‐1630 Circuitry = 8.3C rise, 33.3CMCP‐1630 Design wPlane = 6.4C rise, 31.4C

0.0013‐inch thick Cu13 sq‐mils0.959 amps

Page 29: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

20mil, 10C Pwr, 1oz Int Plane, Air

Trace Temperaturep5.4C rise 

Top Layer Layer 3, Trace Layer Bottom Layer

IPC‐2221 Temperature Rise = 50.2C rise, 75.2CIPC 2152 Temperature Rise   8 6C rise  33 6C

20‐mil wide0 0013 inch thick Cu IPC‐2152 Temperature Rise = 8.6C rise, 33.6C

MCP‐1630 Design Baseline = 10C rise, 35CMCP‐1630 Circuitry = 7.8C rise, 32.8CMCP‐1630 Design wPlane = 5.4C rise, 30.4C

0.0013‐inch thick Cu26 sq‐mils1.426 amps

Page 30: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

20mil, 50C Pwr, 1oz Int Plane, Air

Trace Temperature27.3C rise 

Top Layer Layer 3, Trace Layer Bottom Layer

IPC‐2221 Temperature Rise = 291.7C rise, 316.7CIPC 2152 Temperature Rise   41 3C rise  66 3C

20‐mil wide0 0013 inch thick Cu IPC‐2152 Temperature Rise = 41.3C rise, 66.3C

MCP‐1630 Design Baseline = 50C rise, 75CMCP‐1630 Circuitry = 39.2C rise, 64.2CMCP‐1630 Design wPlane = 27.3C rise, 52.3C

0.0013‐inch thick Cu26 sq‐mils3.094 amps

Page 31: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

80mil, 10C Pwr, 1oz Int Plane, Air

Top Layer Layer 3, Trace Layer Bottom Layer

IPC‐2221 Temperature Rise = 31.1C rise, 56.1CIPC 2152 Temperature Rise   9 3C rise  34 3C

80‐mil wide0 0013 inch thick Cu IPC‐2152 Temperature Rise = 9.3C rise, 34.3C

MCP‐1630 Design Baseline = 10C rise, 35CMCP‐1630 Circuitry = 7.5C rise, 32.5CMCP‐1630 Design wPlane = 4.7C rise, 29.7C

0.0013‐inch thick Cu104 sq‐mils3.156 amps

Page 32: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

80mil, 50C Pwr, 1oz Int Plane, AirReturn

Top Layer Layer 3, Trace Layer Bottom Layer

IPC‐2221 Temperature Rise = 172.6C rise, 197.6CIPC 2152 Temperature Rise   39 9C rise  64 9C

80‐mil wide0 0013 inch thick Cu IPC‐2152 Temperature Rise = 39.9C rise, 64.9C

MCP‐1630 Design Baseline = 50C rise, 35CMCP‐1630 Circuitry = 37.48C rise, 32.5CMCP‐1630 Design wPlane = 23.3C rise, 48.3C

0.0013‐inch thick Cu104 sq‐mils6.71 amps

Page 33: Technology Specific, Current Capacity Design Chartsthermalnews.com/images/ThermalManagementLLC.pdfTechnology Specific, Current Carrying Capacity Design Charts An Extension of IPC‐2152

For your information: The charts below illustrate all the data sets generated during the creation of IPC‐2152

Return

For your information: The charts below illustrate all the data sets generated during the creation of IPC 2152Contact Thermal Management LLC for more information on this database, www.thermalman.com.