techref_cableconstants[1].pdf

Upload: rafat-thong

Post on 13-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/26/2019 TechRef_CableConstants[1].pdf

    1/21

    D I g S I L E N T T e c h n i c a lD o c u m e n t a t i o n

    Cable Systems

  • 7/26/2019 TechRef_CableConstants[1].pdf

    2/21

    C a b l e S y s t e m s

    Rev. Nr. Author Date Reviewed by Date PF Version

    01 F. Fernndez 15.04.2010 14.0.516

    02 F.Fernndez 02.03.2011 14.1.0

    DIgSILENT GmbH

    Heinrich-Hertz-Strasse 9

    D-72810 Gomaringen

    Tel.: +49 7072 9168 - 0

    Fax: +49 7072 9168- 88

    http://www.digsilent.de

    e-mail: [email protected]

    Cable Systems

    Published by

    DIgSILENT GmbH, Germany

    Copyright 2005. All rights

    reserved. Unauthorised copying

    or publishing of this or any part

    of this document is prohibited.

    07 Mrz 2011

  • 7/26/2019 TechRef_CableConstants[1].pdf

    3/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    Table of Contents

    1. Introduction ................................................................................................................................... 4

    2. Definition of the cable system....................................................................................................... 5

    1.1 The single core cable type (TypCab) ........................................................................................................ 5

    1.1.1 Filling factor of conducting layers ........................................................................................................ 5

    1.1.2 Temperature coefficient ..................................................................................................................... 6

    1.2 The cable system type (TypCabsys) ......................................................................................................... 6

    3. Calculation of electrical parameters ............................................................................................. 7

    1.3 Internal Impedance ................................................................................................................................ 8

    1.4 Internal Admittance ................................................................................................................................ 9

    1.5 Semiconducting layers .......................................................................................................................... 10

    1.6 Parallel Single-Core Cables .................................................................................................................... 10

    1.6.1 Impedance ..................................................................................................................................... 10

    1.6.2 Admittance ..................................................................................................................................... 11

    1.7 Pipe Type Cable ................................................................................................................................... 12

    1.7.1 Impedance ..................................................................................................................................... 12

    1.7.2 Admittance ..................................................................................................................................... 13

    5. Input Parameters ........................................................................................................................ 16

    6. Calculation Results ...................................................................................................................... 18

    7. References ................................................................................................................................... 21

  • 7/26/2019 TechRef_CableConstants[1].pdf

    4/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    1.Introduction

    This document describes the definition of a cable system in terms of its geometry, the properties of the

    conducting, semi-conducting and insulating layers, installation characteristics (buried directly underground, in a

    pipe). Besides it details calculation of its frequency-dependent electrical parameters.

    The definition of a frequency-dependent cable system success in PowerFactorywith help of two type objects: a

    single core cable type TypCabwhich describes the constructive characteristics of the cable and a cable system

    type TypCabsys, which defines the coupling between phases, i.e. the coupling between the single core cables in a

    multiphase/multi-circuit cable system.

    A built-in cable constants function in the cable system type calculates then the frequency-dependent electrical

    parameters (impedance and admittance matrices). The function can handle coaxial cables consisting of a core,

    sheath and armour directly undergrounded or installed in pipes (pipe-type cables). This function can be started in

    a stand-alone case from the Calculate button on the edit dialog of the cable system, in which case the results

    are printed to the output windows, or be automatically called by any simulation function in PowerFactory, eg.

    when running a frequency scan or when adjusting the model for an electromagnetic transient simulation.

    Finally, the reader should notice that this cable system type supports the definition of the cable in terms of

    geometrical data; is the cable to be defined in terms of electrical data, the reader is referred to[1] where the

    general line/cable element (ElmLne) is used instead.

  • 7/26/2019 TechRef_CableConstants[1].pdf

    5/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    2.Definition of the cable system

    1.1

    The single core cable type (TypCab)

    The single core cable type TypCabsupports up to three tubular conducting layers in coaxial arrangement, i.e.

    core, sheath and armour, separated by three insulating layers.Figure 1 shows the typical layout of a HV AC single

    core cable. The model also supports the definition of a core-outer and insulation-outer semiconducting layer.

    Figure 1: Cross section of a single core cable including the core, sheath and armour.

    Error! Reference source not found.in section5 shows the complete list of input parameters including units,

    ange and the symbol used in this document. Hover the mouse pointer over the input parameters in the edit

    dialog of TypCabto display the name of the input parameter. This is the name listed in the first column of the

    table.

    The input data in the edit dialog of TypCabis organized according to lyers, i.e. the conducting, insulation and

    semiconducting layers, if available. Use TypCabto enter all the geometrical data defining the cross section of the

    single core cable and the properties of all constitutive materials.

    1.1.1Filling factor of conducting layers

    To account for the compacting ratio of the cross section of the conducting layers (stranded conductors, shaped

    compact, etc.) the users can enter a filling factor Cf.. This filling factor is related with the dc resistance of the

    cable by the following equation:

    2 21

    [ / ] 10DCf

    R km cmr q C

    where rand q are the outer and inner radius of the conducting layer respectively.

    The user chooses the input parameter between the filling factor in % or the DC resistance in ohm/km by clicking

    the selection arrow ; note that one of them is always greyed out indicating its dependency on the other one.

  • 7/26/2019 TechRef_CableConstants[1].pdf

    6/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    1.1.2Temperature coefficient

    If the temperature dependency of line/cables option is enabled in the load flow calculation, the resistivity of theconducting layers is adjusted by the following equation

    20 1 20T C T

    where is the temperature coefficient of resistance. The resistivities and temperature coefficient of common

    metals are given inTable 1 for reference.

    Table 1: Resistivities and temperature coefficient of resistance

    MaterialResistivity at 20 C

    [.cm]

    Temperature coefficient at 20C

    [1/C]

    Aluminum 2.83 0.0039

    Copper, hard drawn 1.77 0.00382

    Copper, annealed 1.72 0.00393

    Brass 6.4-8.4 0.0020

    Iron 10 0.0050

    Silver 1.59 0.0038

    Steel 12-88 0.001-0.005

    1.2

    The cable system type (TypCabsys)

    The cable system type TypCabsysis used to complete the definition of a cable system. It defines the coupling

    between phases, i.e. the coupling between the single core cables in a multiphase/multi-circuit cable system. As in

    general the cables are laid close together this coupling has to be taken into account.

    Among other factors, this coupling depends on how the cables are laid. The PowerFactory model supports

    following two options:

    Parallel single-core cables: the cables are grounded direct into ground. This is normally the case of

    underground HV AC cables.

    Pipe-Type cables: the cables are drawn into a pipe, usually made of steel, and the pipe laid into

    ground. This is in widespread use in submarine cables.

    The input parameter Buried: Direct in ground/in Pipe lets the user choose between both models. In case of

    pipe-type cables additionally data is required for the pipe. The complete list of input parameters is shown inTable

    3 in section5.

    The cable system type also defines the bonding conditions of the sheath and armours when available.

  • 7/26/2019 TechRef_CableConstants[1].pdf

    7/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    3.Calculation of electrical parameters

    The calculation of the impedance and admittance of the cable is based on the cable constants equations

    formulated by A. Ametani[3] and underlies the following assumptions:

    Coaxial arrangement of the conducting and insulating layers inside the single core cable

    Single core cables inside the pipe are concentric with respect to the pipe

    Each conducting layer of the cable has constant permeability. Furthermore, conducting layers are non-

    magnetic so that the cable model does not account for current-dependent saturation effects

    Displacement currents and dielectric losses of the insulating layers are negligible.

    A general formulation of the series impedance and shunt admittance of the cable is given by:

    x U Z I (1)

    x I Y U (2)

    where [ ]U and [ ]I are the voltage and currents vectors at a distance x along the cable.

    The dimension of [ ]Z and [ ]Y depends on the total number of cables in the system and the total number of

    layers per single core cable. For instance in a three phase cable system with three conducting layers per single

    core cable (core, sheath and armour) the dimension of the [ ]Z (i.e. [ ]Y ) results 9 (=3 phases x 1 single core

    cable/phase x 3 conducting layers/cable).

    [ ]Z and [ ]Y are symmetric square matrices that can be expressed in the following terms:

    0I P CZ Z Z Z Z (3)

    1

    0I P C

    Y s P

    P P P P P

    (4)

    where [ ]P is a potential coefficient matrix and s the Laplaces operator (complex frequency).

    The matrices with subscript I account for the internal impedance and admittance respectively and matrices withsubscript O for the earth or air return path. In case if a pipe enclosure cable the matrices with subscript CandPdefine the impedance and admittance of the pipe; these matrices becoming zero if the cable is laid directlyunderground. In the next sub-chapters we will discuss the physical meaning of these sub-matrices and the

    formulas used to calculate them.

    Following naming convention is used in this document:

    Subscript I accounts for the internal impedance, subscript O for the earth or air return path and

    subscripts Cand Pfor the pipe enclosure if available.

    Subscripts ,c s and a (lower case) are used for core, sheath and armour in cable layer equations

  • 7/26/2019 TechRef_CableConstants[1].pdf

    8/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    Subscripts ,i j and krefer to the cables in the system (typically three cables in a three phase cable

    system).

    1.3Internal Impedance

    The internal impedance is associated to the longitudinal voltage drop due to the magnetic field inside the single

    core cable and it is given by the following equation:

    c cc cs ca c c

    s sc ss sa s I s

    a ac as aa a a

    U Z Z Z I I

    x U Z Z Z I Z I

    U Z Z Z I I

    (5)

    where the layer internal impedances in (5) are defined in terms of coaxial loop impedances as follow:

    11 12 22 23 33

    12 22 23 33

    23 33

    22 23 33

    33

    2 2

    2

    2

    cc

    cs sc

    ca ac sa as

    ss

    aa

    Z Z Z Z Z Z

    Z Z Z Z Z Z

    Z Z Z Z Z Z

    Z Z Z Z

    Z Z

    (6)

    The impedances with subscript 1,2 and 3 are referred as loop impedances. For instance11

    Z is the impedance of

    the inner most loop of concentric tubular conductors and therefore that of the loop core-sheath.

    11 , / , ,

    22 , / , ,

    33 , ,

    12 21 ,

    23 32 ,

    c OUT c s INS s IN

    s OUT s a INS a IN

    a OUT a INS

    s MUTUAL

    a MUTUAL

    Z Z Z Z

    Z Z Z Z

    Z Z Z

    Z Z Z

    Z Z Z

    (7)

    The impedance of the tubular conductors are found with the modified Bessel functions with tube= c, sand a

    respectively:

    , 0 1 0 1

    , 0 1 0 1

    ,

    ( ) ( ) ( ) ( )2

    ( ) ( ) ( ) ( )2

    2

    tube IN

    tube OUT

    tube MUTUAL

    mZ I mq K mr K mq I mrqD

    mZ I mr K mq K mr I mq

    qD

    ZqrD

    (8)

    where

  • 7/26/2019 TechRef_CableConstants[1].pdf

    9/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    1 1 1 1( ) ( ) ( ) ( )D I mr K mq I mq K mr (9)

    1jmp

    (10)

    The parameter m is the reciprocal of the depth of penetration p and are both frequency-dependent complex

    values.

    INSZ accounts for the longitudinal voltage drop due to the magnetic filed in the insulating layers. For the general

    case of non-concentric tubular conductors it results:

    2

    0 ln 12

    kINS

    i k

    q diZ j

    r q

    (11)

    and in the case of concentric tubular conductors 0id and (11) reduces to

    0 ln2

    kINS

    i

    qZ j

    r

    1.4

    Internal Admittance

    The internal admittance matrix is associated to the capacitive coupling and dielectric losses due to the insulating

    layers within the single core cable. The capacitance and dielectric losses of each insulating layers is given by:

    02 1

    ln

    ri

    i

    i i

    CPr

    q

    G C tg

    (12)

    withi

    Pthe potential coefficient of the insulating layer.

    Assuming that the single core cable consist of three layers, hence the insulation between core and sheath, sheath

    and armour and outermost insulating layer of the single core cable, it follows:

    c s a s a a

    I s a s a a

    a a a

    P P P P P P

    P P P P P P

    P P P

    (13)

    1I

    I

    CP

    (14)

    I I IY G j C (15)

  • 7/26/2019 TechRef_CableConstants[1].pdf

    10/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    1.5

    Semiconducting layers

    The model supports the definition of a semiconducting layer on the conductors outer surface and the insulationsouter surface. These semiconducting layers mainly influence the admittance of the insulation. Their effect on the

    impedance of the conductor is rather minor and therefore not considered by the moment in the model.

    The capacitance and conductance of the tubular semiconducting layer is given by the following equations:

    01

    2ln /

    SC rSC

    SC SC

    Cr q

    2 1

    ln /SC

    SC SC SC

    Gr q

    where rSCand qSC are the outer and inner radius of the tubular semiconducting layer respectively, rSC the

    relative permittivity and SC the resistivity.

    Hence the equivalent admittance of the insulation under consideration of the semiconducting layers is calculated

    in the following form:

    1 1 1

    iIns IL SC G G G

    1 1 1

    iIns IL SC C C C

    1.6

    Parallel Single-Core Cables

    1.6.1Impedance

    Lets assume being , ,i j kthree parallel single core cables each of them consisting of core, sheath and armour.

    Eq. (1) can be expanded as:

    ,

    ,

    ,

    0, 0, 0,

    0, 0,

    0,

    0 0

    0

    :. ...

    : . ...

    i I ii

    j I jj

    k I kk

    ii ij ik i

    jj jk j

    kk

    U Z

    x U Z

    U Z

    Z Z Z I

    Z Z I

    Z

    k

    I

    (16)

  • 7/26/2019 TechRef_CableConstants[1].pdf

    11/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    where0,sZ and 0,mZ are the self and mutual earth-return impedance matrices of the cable system given

    as:

    , , ,

    0, , , ,

    , , ,

    , ,

    e s e s e s

    s e s e s e s

    e s e s e s

    Z Z Z

    Z Z Z Z s jj kk ll

    Z Z Z

    (17)

    , , ,

    0, , , .

    , , ,

    , ,

    e m e m e m

    m e m e m e m

    e m e m e m

    Z Z Z

    Z Z Z Z m jk kl lj

    Z Z Z

    (18)

    ,e mZ is the mutual earth-return impedance between two parallel cables ,i j given by:

    0, 0 0e jk ik ik ik ik Z j K m d K m D P jQ

    (19)

    and ik ik P jQ the terms of the Carsons serie (see[6] for further reference).

    ,e sZ is the self earth-return impedance of the single core cable. Its value is obtained from (19) by replacing d

    with R, D with 2h and h+y with 2h.

    1.6.2

    AdmittanceAs the cable is directly laid underground and the earth surrounding the cable being assumed an equipotential

    surface, there is no capacitive coupling effect among the single core cables. It follows then that 0P in (4)and therefore the admittance matrix of the cable results:

    ,

    ,

    ,

    1

    0 0

    0 0

    0 0

    I i

    I I j

    I k

    P

    P P P

    P

    Y P

    (20)

    i i

    j j

    k k

    I U

    x I Y U

    I U

    (21)

    and the submatrices in the main diagonal according to (13).

  • 7/26/2019 TechRef_CableConstants[1].pdf

    12/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    1.7

    Pipe Type Cable

    1.7.1

    Impedance

    Assuming again a system of three single core cables , ,i j keach of them consisting of core, sheath and armour,

    equation (3) can be expanded as follows for the case of a pipe type cable:

    ,

    ,

    ,

    , , ,

    , ,

    ,

    0 0 0

    0 0

    :. ... 0

    0 0 0 0

    0

    0

    : . ... 0

    0 0 0 0

    i I ii

    j I jj

    k I kk

    p

    P ii P ij P ik

    P jj P jk

    P kk

    U Z

    U Zx

    U Z

    U

    Z Z Z

    Z Z

    Z

    1 1 1 2

    1 1 2

    1 2

    2 2 2 3

    0 0 0 0

    0 0 0

    0 0

    0 0 0 0

    : . ...

    : . ...

    C C C C

    C C C

    C C

    C C C C

    i

    j

    k

    Z Z Z Z

    Z Z Z

    Z Z

    Z Z Z Z

    IZ Z Z Z

    IZ Z Z

    IZ Z

    Z Z Z Z

    pI

    (22)

    PZ defines the self and mutual impedances of the pipe-return path of the single core cables. A submatrix is

    given by:

    , , ,

    , , , ,

    , , ,

    P ij P ij P ij

    P ij P ij P ij P ij

    P ij P ij P ij

    Z Z Z

    Z Z Z Z

    Z Z Z

    (23)

    Self impedance of the with pipe-return path for the i-th cable ( )i j :

  • 7/26/2019 TechRef_CableConstants[1].pdf

    13/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    2

    00, '

    11

    2

    2

    n

    r r niP ii

    n r n n

    K mq K mqdZ j

    mqK mq q n K mq mqK mq

    (24)

    Mutal impedance between the i-thand thej-thcables with common pipe-return path ( )i j :

    00,

    2 21

    2 '1

    ln2 2 cos

    2 1cos

    P ij r

    i j i j ij

    n

    i j r n

    ij

    n r n n

    K mqqZ j

    mqK mqd d d d

    d d K mqn

    q n K mq mqK mq n

    (25)

    CZ s the connection impedance matrix between the pipe inner and outer surfaces. The submatrix1CZ ,

    2CZ and

    3CZ are given by:

    1 1 1

    1 1 1 1

    1 1 1

    C C C

    C C C C

    C C C

    Z Z Z

    Z Z Z Z

    Z Z Z

    (26)

    where1C

    Z ,2CZ and 3CZ are calculated using equations (8) to (11) for the impedance of tubular conductors

    and tubebeing the pipe as follows:

    1 , , ,

    2 , , ,

    3 , ,

    2C pipe OUT pipe INS pipe MUTUAL

    C pipe OUT pipe INS pipe MUTUAL

    C pipe OUT pipe INS

    Z Z Z Z

    Z Z Z Z

    Z Z Z

    (27)

    Finally,0Z represent the impedance of the earth return-path of the pipe. The diagonal submatrix 0Z is

    given by:

    0 0 0

    0 0 0 0

    0 0 0

    Z Z Z

    Z Z Z Z

    Z Z Z

    (28)

    where0

    Z is the self earth return impedance of the pipe according to eq (19).

    1.7.2Admittance

    The admittance follows the general definition in terms of the potential coefficient matrix as follows:

  • 7/26/2019 TechRef_CableConstants[1].pdf

    14/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    ,

    ,

    ,

    , , ,

    , ,

    ,

    0 0 0

    0 0: . ... 0

    0 0 0 0

    0

    0

    : . ... 0

    0 0 0 0

    : . ...

    I ii

    I jj

    I kk

    P ii P ij P ik

    P jj P jk

    P kk

    C C C C

    C C C

    C C

    C C C

    P

    PPP

    P P P

    P P

    P

    P P P P

    P P P

    P P

    P P P P

    C

    (29)

    where

    ,

    1,

    ,

    0 0 0

    0 0 0

    0 0 0

    0 0 0 0

    I i

    I j

    I k

    G

    GY j P

    G

    (30)

    i i

    j j

    k k

    p p

    I U

    I Ux Y

    I U

    I U

    (31)

    Note in (30) that dielectric losses of the pipe are not being considered.

    Each of the,I iiP submatrices of IP is the internal potential coefficient matrix of the single core cable

    according to (20).

    PP is the pipe internal potential coefficient matrix and defines the capacitive coupling between the outermostlayer of the single core cables and the pipe and hence the dielectric medium between the cables and the pipe.

    Each of the submatrices,P ij

    P of PP is a matrix with equal elements given in the following form:

  • 7/26/2019 TechRef_CableConstants[1].pdf

    15/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    , , ,

    , , , ,

    , , ,

    P ij P ij P ij

    P ij P ij P ij P ij

    P ij P ij P ij

    P P P

    P P P P

    P P P

    (32)

    with

    2

    0

    1ln 1

    2

    iii

    r i

    dqP

    R q

    (33)

    22 210

    1 1ln cos

    2 2 cos

    n

    i j

    ij ij

    nr i j i j ij

    d dqP

    n qd d d d

    (34)

    CP is the potential coefficient matrix between the pipe inner and outer surfaces and hence the capacitance dueto the dielectric layer surrounding the pipe. A submatrix and the last column and row elements are given by:

    C C C

    C C C C

    C C C

    P P P

    P P P P

    P P P

    (35)

    0

    1ln

    2C

    r

    rP

    q

    (36)

    It is assumed in the model that the pipe is underground. Therefore the outer surface of the insulating layer

    surrounding the pipe is in direct contact with the earth (equipotential surface with U=0). Hence no additional

    capacitive effect exists between the insulating layer of the pipe and ground.

  • 7/26/2019 TechRef_CableConstants[1].pdf

    16/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    5.Input Parameters

    Table 2: Input parameter of the single core cable type (TypCab)

    Name Description Unit Range Default Symbol

    loc_name Nameuline Rated voltage kV x>=0 0 UtypCon Shape of the core CompactdiaCon Outer diameter of the core mm x>=0 5 r

    diaTube Inner diameter of the core mm x>=0 0 q

    cHasEl Exists: use this flag to enable/disable the conducting layers 1rho Resistivity (20C) of the conducting layers cm x>0 1.7241

    my Relative Permeability of the conducting layers 1r

    cThEl Thickness of the conducting layers mm 2.5

    Cf Filling factor of the conducting layers % x>0 andx=0 0.00393

    cHasIns Exists: use this flag to enable/disable the correspondinginsulation layers

    1

    tand Dielectric Loss Factor of the insulating layer, i.e. tg of the

    insulation. Set this value to zero to neglect insulation losses.

    0.02

    epsr Relative Permittivity of the insulating layer 3r

    thIns Thickness of the insulating layer mm x>=0 1cHasSc Exists: use this flag to enable/disable the semiconducting

    layers0

    rhoSc Resistivity of the semiconducting layer cm x>0 1000000

    mySc Relative permeability of the semiconducting layer 1 ,r SC epsrSc Relative permittivity of the semiconducting layer 3

    ,r SC

    thSc Thickness of the semiconducting layer mm x>=0 1tmax Max. Operational Temperature C x>=0 80rtemp Max. End Temperature C x>0 80

    Ithr Rated Short-Time (1s) Current kA x>=0 0diaCab Overall Cable Diameter mm 15

  • 7/26/2019 TechRef_CableConstants[1].pdf

    17/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    Table 3: Input parameter of the cable system (TypCabsys)

    Name Description Unit Range Default Symbolloc_name Name

    frnom Nom. Frequency Hz 50

    rhoEarth Resistivity of the earth return path .m x>0 100

    cGearth Conductivity of the earth return path = inverse of the earth

    resistivity.

    S/cm 100

    iopt_bur To specify is the cable is laid direct in ground (parallel single core

    cables) or in a pipe (pipe-type cable)

    gnd

    nlcir Number of circuits defining the cable system x>=1 1

    pcab_c Single core cable type: select from the library the single core

    cable type (TypCab) of each circuit

    TypCab

    nphas Number of phases 3

    dInom Rated current kA 1red Reduced: assert this option to automatically bond the sheaths

    and armours of the cable. This operation will reduced the Z/Y

    matrices of the cable to nphas x nphas.

    0

    bond Assert this option to cross bond the sheaths 0

    xy_c Coordinate of Line Circuits: enter the coordinates of the single

    core cables in the cable systems. Cables buried direct

    underground have positive Y-distances with respect to the

    ground surface. For pipe type cables, X- and Y-coordinates are

    referred to the center of the pipe.

    m 0

    dep_pipe Depth of the center of the pipe (parameter only required for

    pipe-type cables).

    m x>=0 0

    rad_pipe Outer Radius of the pipe m x>0 0.1

    th_pipe Thickness of the pipe mm x>=0 0

    th_ins Thickness of the pipe outer insulation mm x>0 1

    rho_pipe Resistivity of the pipe .cm x>0 20

    my_pipe Relative permeability of the pipe x>0 1

    epsr_fil Relative permittivity of the filling material (insulating material

    between the single core cables and the pipe)

    x>0 1

    epsr_ins Relative permittivity of the pipe outer cover. Se x>0 1

  • 7/26/2019 TechRef_CableConstants[1].pdf

    18/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    6.Calculation Results

    The cable constants function in stand-alone mode can be started from the Calculate button on the edit dialog of

    the cable system type TypCabsys. Then PowerFactoryprints the resulting impedance and admittance matrices to

    the output windows.

    It follows an extract of the output window for a 132 kV, 3-phase cable system, 630 mm2, directly underground.

    The first two matrices correspond to the unreduced layer impedances and admittances in phase components;

    cores first, followed by sheaths. Cables are in the same order as the input. Rows follow real and imaginary part.

    DIgSI/info - Layer Impedance Matrix (R+jX) in Ohm/km

    1:R(1) 2:R(2) 3:R(3) 4:R(1) 5:R(2) 6:R(3)

    1:R(1) 7.66524e-002 4.90955e-002 4.90948e-002 4.90991e-002 4.90955e-002 4.90948e-002

    1:X(1) 6.57078e-001 4.22839e-001 3.79288e-001 5.88752e-001 4.22839e-001 3.79288e-001

    2:R(2) 4.90955e-002 7.66524e-002 4.90955e-002 4.90955e-002 4.90991e-002 4.90955e-002

    2:X(2) 4.22839e-001 6.57078e-001 4.22839e-001 4.22839e-001 5.88752e-001 4.22839e-001

    3:R(3) 4.90948e-002 4.90955e-002 7.66524e-002 4.90948e-002 4.90955e-002 4.90991e-002

    3:X(3) 3.79288e-001 4.22839e-001 6.57078e-001 3.79288e-001 4.22839e-001 5.88752e-001

    4:R(1) 4.90991e-002 4.90955e-002 4.90948e-002 3.78537e-001 4.90955e-002 4.90948e-002

    4:X(1) 5.88752e-001 4.22839e-001 3.79288e-001 5.87900e-001 4.22839e-001 3.79288e-001

    5:R(2) 4.90955e-002 4.90991e-002 4.90955e-002 4.90955e-002 3.78537e-001 4.90955e-002

    5:X(2) 4.22839e-001 5.88752e-001 4.22839e-001 4.22839e-001 5.87900e-001 4.22839e-001

    6:R(3) 4.90948e-002 4.90955e-002 4.90991e-002 4.90948e-002 4.90955e-002 3.78537e-001

    6:X(3) 3.79288e-001 4.22839e-001 5.88752e-001 3.79288e-001 4.22839e-001 5.87900e-001

    Self and mutual impedances of the cores

    Self and mutual impedances of the sheathsMutual impedances

    between cores and sheaths

  • 7/26/2019 TechRef_CableConstants[1].pdf

    19/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    DIgSI/info - Layer Admittance Matrix (G+jB) in uS/km

    1:G(1) 2:G(2) 3:G(3) 4:G(1) 5:G(2) 6:G(3)

    1:G(1) 0.00000e+000 0.00000e+000 0.00000e+000 -0.00000e+000 0.00000e+000 0.00000e+000

    1:B(1) 5.17257e+001 0.00000e+000 0.00000e+000 -5.17257e+001 0.00000e+000 0.00000e+000

    2:G(2) 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 -0.00000e+000 0.00000e+000

    2:B(2) 0.00000e+000 5.17257e+001 0.00000e+000 0.00000e+000 -5.17257e+001 0.00000e+000

    3:G(3) 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 -0.00000e+000

    3:B(3) 0.00000e+000 0.00000e+000 5.17257e+001 0.00000e+000 0.00000e+000 -5.17257e+001

    4:G(1) -0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

    4:B(1) -5.17257e+001 0.00000e+000 0.00000e+000 5.85832e+002 0.00000e+000 0.00000e+000

    5:G(2) 0.00000e+000 -0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

    5:B(2) 0.00000e+000 -5.17257e+001 0.00000e+000 0.00000e+000 5.85832e+002 0.00000e+000

    6:G(3) 0.00000e+000 0.00000e+000 -0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

    6:B(3) 0.00000e+000 0.00000e+000 -5.17257e+001 0.00000e+000 0.00000e+000 5.85832e+002

    The next two matrices are the impedances and admittances in symmetrical components in 0-1-2 sequence. Idem

    before, cores come first followed by the sheaths. Cables are in the same order as the input. Rows follow real and

    imaginary part.

    DIgSI/info - 012 Impedance Matrix (R+jX) in Ohm/km

    1:R(0) 2:R(1) 3:R(2) 4:R(0) 5:R(1) 6:R(2)

    1:R(0) 1.74843e-001 1.25721e-002 -1.25724e-002 1.47290e-001 1.25721e-002 -1.25724e-002

    1:X(0) 1.47372e+000 -7.25883e-003 -7.25838e-003 1.40540e+000 -7.25883e-003 -7.25838e-003

    2:R(1) -1.25724e-002 2.75571e-002 -2.51443e-002 -1.25724e-002 3.81014e-006 -2.51443e-002

    2:X(1) -7.25838e-003 2.48756e-001 1.45177e-002 -7.25838e-003 1.80430e-001 1.45177e-002

    3:R(2) 1.25721e-002 2.51448e-002 2.75571e-002 1.25721e-002 2.51448e-002 3.81014e-006

    3:X(2) -7.25883e-003 1.45168e-002 2.48756e-001 -7.25883e-003 1.45168e-002 1.80430e-001

    4:R(0) 1.47290e-001 1.25721e-002 -1.25724e-002 4.76728e-001 1.25721e-002 -1.25724e-002

    4:X(0) 1.40540e+000 -7.25883e-003 -7.25838e-003 1.40454e+000 -7.25883e-003 -7.25838e-003

    5:R(1) -1.25724e-002 3.81014e-006 -2.51443e-002 -1.25724e-002 3.29442e-001 -2.51443e-002

    5:X(1) -7.25838e-003 1.80430e-001 1.45177e-002 -7.25838e-003 1.79578e-001 1.45177e-002

    6:R(2) 1.25721e-002 2.51448e-002 3.81014e-006 1.25721e-002 2.51448e-002 3.29442e-001

    6:X(2) -7.25883e-003 1.45168e-002 1.80430e-001 -7.25883e-003 1.45168e-002 1.79578e-001

  • 7/26/2019 TechRef_CableConstants[1].pdf

    20/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    DIgSI/info - 012 Admittance Matrix (G+jB) in uS/km

    1:G(0) 2:G(1) 3:G(2) 4:G(0) 5:G(1) 6:G(2)

    1:G(0) 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

    1:B(0) 5.17257e+001 0.00000e+000 0.00000e+000 -5.17257e+001 0.00000e+000 0.00000e+000

    2:G(1) 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

    2:B(1) 0.00000e+000 5.17257e+001 3.55271e-015 0.00000e+000 -5.17257e+001 -3.55271e-015

    3:G(2) 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

    3:B(2) 0.00000e+000 3.55271e-015 5.17257e+001 0.00000e+000 -3.55271e-015 -5.17257e+001

    4:G(0) 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

    4:B(0) -5.17257e+001 0.00000e+000 0.00000e+000 5.85832e+002 0.00000e+000 0.00000e+000

    5:G(1) 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

    5:B(1) 0.00000e+000 -5.17257e+001 -3.55271e-015 0.00000e+000 5.85832e+002 5.68434e-014

    6:G(2) 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000

    6:B(2) 0.00000e+000 -3.55271e-015 -5.17257e+001 0.00000e+000 5.68434e-014 5.85832e+002

  • 7/26/2019 TechRef_CableConstants[1].pdf

    21/21

    T a b l e o f C o n t e n t s

    C a b l e S y s t e m s

    7.References

    [1] Schaums Outline Series, Electric Power Systems, McGraw-Hill, 1990

    [2]

    DIgSILENT PowerFactoryTechnical Reference Overhead Lines and CablesModels, 2009

    [3] A.Ametani, A general formulation of impedance and admittance of cables, IEEE Transaction on Power

    Apparatus and Systems, Vol. PAS-99, No. 3 May/June 1980.

    [4]

    IEC 60071: International Standard Insulation Coordination, 8th Edition, 2006.

    [5]

    IEEE Working Group on Estimating the Lightning Performance of Transmission Lines. IEEE WG Report.

    Estimating the Lightning Performance of Transmission Lines II-Updates of Analytical Models, IEEE Trans.

    PWRD, Vol 8,1993, pp 1254-1267.

    [6] DIgSILENT PowerFactoryTechnical Reference Overhead Lines Constants, 2009