tek gas 1 akamigas

59
Phase Behaviour dan Characteristics Gas

Upload: fvirnado

Post on 03-Dec-2015

231 views

Category:

Documents


8 download

DESCRIPTION

file periminyakan

TRANSCRIPT

Page 1: Tek Gas 1 akamigas

Phase Behaviour dan Characteristics Gas

Page 2: Tek Gas 1 akamigas

Single-component system

Page 3: Tek Gas 1 akamigas

Two-component system

Page 4: Tek Gas 1 akamigas

Two-component system

Page 5: Tek Gas 1 akamigas

Multi-component system

Page 6: Tek Gas 1 akamigas

Temperature

Pre

ssu

re liquid

gas

C

Cricondenbar

Cricondentherm

Definitions:

Cricondenbar: the pressure above which two phases can no longer exist.

Cricondentherm: the temperature above which two phases do not exist

Additional points:

Phase Diagram (Basic Definitions)

Page 7: Tek Gas 1 akamigas
Page 8: Tek Gas 1 akamigas

Phase Diagram (Basic Definitions)

Temperature

Pre

ssu

re

liquid

gas

100% liquid(0% gas)

80%60%

40%

20%

C

0% liquid(100% gas)

Pressure Temperature Plane

Definitions:

1. Bubble-point line: the point where the first bubble is formed during pressure decrease at constant temperature.

2. Dew-point line: the point where the first liquid drop is formed during pressure increase at constant temperature.

Note: Pure-component system can be regarded as a special case of two-component system where two-phase region shrinks to form a line.

Critical point: the point where the bubble-point line meets the dew-point line

Page 9: Tek Gas 1 akamigas

Temperature

Pre

ssu

re

Single phaseliquid

gas

CB

ub

ble

-po

int

(pre

ssu

re)

line

Dew

-po

int

(pre

ssu

re)

line

Single phaseGas

Phase Diagram (Basic Concepts)

Page 10: Tek Gas 1 akamigas

Temperature

Pre

ssu

re liquid

gas

C

“Retrograde condensation”

Liq

uid

-mixtu

re-gas

Path A Path B Definitions:

Retrograde condensation: phenomenon that the dew point line is crossed (i.e., from gas phase to liquid) as pressure decreases rather than increases.

Because this is the reverse of normal behaviour, it is called “retro”.

Basic definitions (cont.)

Page 11: Tek Gas 1 akamigas

Reservoir Classification Oil reservoir

In general Tres<Tc of reservoir fluid

Gas reservoir In general,

Tres>Tc of reservoir fluid (hydrocarbon systems)

Page 12: Tek Gas 1 akamigas

Oil Reservoir

Under-saturated oil reservoir initial reservoir

pressure, pi > the bubble-point pressure, pb of the reservoir fluid

Saturated oil reservoir pi = pb

Gas-cap reservoir or two phase reservoir pi < pb

Note The appropriate quality

line gives the ratio of volume of liquid (oil) to volume of gas

Page 13: Tek Gas 1 akamigas

Gas ReservoirDry gas reservoir

initial reservoir temperature higher than cricondentherm temperature (light components)

even at low pressure (separator) and temperature, fluid is 100% gas

Wet gas reservoir initial reservoir temperature

higher than cricondentherm temperature

But even at low pressure (separator) and temperature, some gas condensate to liquid

Retrograde gas-condensate reservoir Reservoir temperature lies

between Tc and Tcri (Tc<Tr<Tcr)

Near critical gas-condensate Reservoir temperature is

nearly equal to critical temperature of fluid (Tr ~Tc)

Page 14: Tek Gas 1 akamigas

Dry-gas reservoir

Page 15: Tek Gas 1 akamigas

Wet-gas reservoir

Page 16: Tek Gas 1 akamigas

Retrograde-gas condensate reservoir

Page 17: Tek Gas 1 akamigas

Volatile-oil reservoir

Page 18: Tek Gas 1 akamigas

Black-oil reservoir

Page 19: Tek Gas 1 akamigas

Typical Hydrocarbon Mixture Compositions (mol %)

C1 88.7

C2

C3

i-C4

n-C4i-C5

n-C5

C6

C7+

6.0

3.0

0.5

0.8

0.3

0.3

0.2

0.2

96.303.00

0.40

0.07

0.10

0.02

0.02

0.02

0.00

72.710.0

6.0

1.0

1.5

0.8

1.0

2.0

5.0

66.79.0

6.0

0.8

2.5

0.8

1.2

2.0

11.0

52.65.0

3.5

0.7

1.1

0.4

0.4

0.9

27.9

DryGas

WetGas

RetrogradeGas Cond.

VolatileOil

BlackOil

Component

plus inorganics: N2, CO2, H2O, H2S

Page 20: Tek Gas 1 akamigas

Field Identification

BlackOil

VolatileOil

RetrogradeGas

WetGas

DryGas

InitialProducingGas/LiquidRatio, scf/STB

<1750 1750 to3200

> 3200 > 15,000* 100,000*

Initial Stock-Tank LiquidGravity, API

< 45 > 40 > 40 Up to 70 NoLiquid

Color of Stock-Tank Liquid

Dark Colored LightlyColored

WaterWhite

NoLiquid

*For Engineering Purposes

Page 21: Tek Gas 1 akamigas

Karakteristik Gas Ideal Gas Law Pada tekanan rendah, gas mengikuti persamaan Gas Ideal:

PV = nRT

Dimana: R = Universal gas constant , 10,732 psia cuft/lb-mole oR n = number of moles of the gas = m/M m = mass of gas; lb M = Molecular weight of gas lbm/lb-mol Standard conditions are generally defined as 14.7 psia and 60oF. 1 mole of any ideal gas at standard conditions occupies a volume of 379 Cu. ft. or 22.4 litres

Page 22: Tek Gas 1 akamigas

Real Gas Persamaan gas ideal umumnya hanya berlaku untuk gas yang mendekati kondisi atmosfir. Gas di reservoir terdiri dari berbagai macam komposisi gas dan tekanan serta temperatur

tinggi; sehingga persamaan gas ideal tidak berlaku lagi. Persamaan gas nyata merupakan koreksi terhadap persamaan gas ideal

PV = z n RT.

Dimana

Page 23: Tek Gas 1 akamigas

Sifat Fisik Gas Alam

Gas alam merupakan campuran gas dimana unsur utamanya adalah metana; terdiri dari gas hidrokarbon dan impurities.

Impurities adalah gas yang bukan hidrokarbon seperti : CO2, H2S, N2 dsb

Sifat fisik gas alam antara lain adalah: - Berat Molekul - Densitas - Specific Gravity - Faktor Deviasi gas - Viscositas Gas - Compressibilitas gas - Gas Formation Volume Factor dan Expansion Factor - Water Vapor Content - Two phase System

- API Gravity - Gas Gravity - Z factor

Page 24: Tek Gas 1 akamigas

Berat Molekul gas

Berat Molekul gas dapat ditentukan berdasarkan persamaan:

Ma = Berat molekul gas campuran Yi = Fraksi mol gas – i Mi = Berat molekul gas –i

Contoh:

Berat molekul gas diatas adalah 17.083 lbm/lb-mol.

Page 25: Tek Gas 1 akamigas

Densitas dan Specific Gravity Gas

Berdasarkan persamaan gas nyata : PV = n Z RT ; dimana n = m/M

Jadi PV = m ZRT/M Sedangkan densitas adalah m/V; sehingga dari persamaan diatas :

Page 26: Tek Gas 1 akamigas

Faktor Deviasi Gas, Z

Pengukuran Z1. Di laboratorium 2. Grafik korelasi dan persamaan

Page 27: Tek Gas 1 akamigas

Pengukuran Z di laboratorium

Page 28: Tek Gas 1 akamigas

Penentuan Z berdasarkan Grafik Korelasi / Persamaan

Penentuan Z berdasarkan Grafik Korelasi / Persamaan memerlukan faktor pseudo reduced pressure (Ppr) dan pseudo reduced temperature (Tpr) .

Ppr dan Tpr didefinisikan sebagai

Sedang Tpc dan Ppc didefinisikan sebagai:

Page 29: Tek Gas 1 akamigas
Page 30: Tek Gas 1 akamigas
Page 31: Tek Gas 1 akamigas

Apabila komposisi gas tidak diketahui, Tpc dan Ppc dapat ditentukan dari grafik dibawah ini:

Page 32: Tek Gas 1 akamigas
Page 33: Tek Gas 1 akamigas

Apabila kadar impurities > 5 %

Page 34: Tek Gas 1 akamigas
Page 35: Tek Gas 1 akamigas

Contoh

Page 36: Tek Gas 1 akamigas
Page 37: Tek Gas 1 akamigas
Page 38: Tek Gas 1 akamigas
Page 39: Tek Gas 1 akamigas
Page 40: Tek Gas 1 akamigas

Compressibilitas

Page 41: Tek Gas 1 akamigas
Page 42: Tek Gas 1 akamigas
Page 43: Tek Gas 1 akamigas
Page 44: Tek Gas 1 akamigas

Viskositas Gas

Korelasi yang umum digunakan adalah korelasi Carr, Kobayashi

dan Burrows.

Page 45: Tek Gas 1 akamigas
Page 46: Tek Gas 1 akamigas
Page 47: Tek Gas 1 akamigas
Page 48: Tek Gas 1 akamigas

Contoh:

Tentukanlah viskositas gas reservoir pada kondisi P = 2500 psia dan T = 180 oF.

Page 49: Tek Gas 1 akamigas
Page 50: Tek Gas 1 akamigas
Page 51: Tek Gas 1 akamigas
Page 52: Tek Gas 1 akamigas

Gas Formation Volume Factor (Bg)

The gas formation volume factor (Bg) is defined as the volume of gas in the reservoir divided by the volume of gas at standard conditions.

Bg = (reservoir gas volume)/(standard conditions gas volume).

Page 53: Tek Gas 1 akamigas
Page 54: Tek Gas 1 akamigas

Gas Formation Volume Factor (Bg)

Page 55: Tek Gas 1 akamigas

Jika Tekanan reservoir = 2900 psia dan Temperatur reservoir = 190 oF; tentukanlah: SG, Z, Viskositas Gas, Cg dan Bg

Komponen Fraksi MolC1 0,784C2 0,028C3 0,007i-C4 0,0008n-C4 0,0005i-C5 0,0008n-C5 0,0003C6 0,0006N2 0,005CO2 0,021H2S 0,152

Page 56: Tek Gas 1 akamigas

Dari suatu reservoir gas diketahui SG gas = 0.7 dan terdapat impurities H2S = 5 % mole dan CO2 = 12 % mole.

Jika Tekanan reservoir = 2900 psia dan Temperatur reservoir = 190 oF; tentukanlah:

SG, Z, Viskositas Gas, Cg dan Bg

Page 57: Tek Gas 1 akamigas

Real Gas

PV = Z n RT

Page 58: Tek Gas 1 akamigas

Persamaan Van der Walls

Page 59: Tek Gas 1 akamigas

Standard Units of Defined Calorific ValuesBarrel of Oil Equivalent (b.o.e.) : a hypothetical “barrel of oil” with an average heat content of 5.8 x 106 Btu gross. Ton of Oil Equivalent (t.o.e.) : a hypothetical “ton of oil” with an average heat content of 43 x 106 Btu gross. Metric Tonne Coal Equivalent (m.t.c.e.) : a hypothetical “metric tonne of coal” with an average heat content of 27.337 x 106 Btu gross, i.e. ( 12,400 Btu/lb x 2204.62 ).

Std. Fuel Units ft3 Natural Gas m3 Natural Gas

1 b.o.e. 5,800 155.50

1 t.o.e. 43,000 1152.82

1 m.t.c.e. 27,337 732.90

1 ton fuel oil equiv. 41,400 1109.92

Natural Gas Equivalents of Various Fuels