temperature dependence of reverse current of irradiated si detectors

16
Temperature dependence of reverse current of irradiated Si detectors E. Verbitskaya , V. Eremin, I. Ilyashenko Ioffe Physical-Technical Institute of Russian Academy of Sciences St. Petersburg, Russia Z. Li Brookhaven National Laboratory, Upton, NY, USA J. Härkönen, P. Luukka Helsinki Institute of Physics, CERN/PH, Geneva, Switzerland 20 RD50 Collaboration Workshop Bari, May 30-June 1, 2012 1

Upload: kisha

Post on 23-Feb-2016

29 views

Category:

Documents


0 download

DESCRIPTION

Temperature dependence of reverse current of irradiated Si detectors. E. Verbitskaya , V. Eremin, I. Ilyashenko Ioffe Physical-Technical Institute of Russian Academy of Sciences St. Petersburg, Russia Z. Li Brookhaven National Laboratory, Upton, NY, USA J. Härkönen , P. Luukka - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Temperature dependence of reverse current of irradiated Si detectors

Temperature dependence of reverse currentof irradiated Si detectors

E. Verbitskaya, V. Eremin, I. IlyashenkoIoffe Physical-Technical Institute of Russian Academy of Sciences

St. Petersburg, RussiaZ. Li

Brookhaven National Laboratory, Upton, NY, USAJ. Härkönen, P. Luukka

Helsinki Institute of Physics, CERN/PH, Geneva, Switzerland

20 RD50 Collaboration WorkshopBari, May 30-June 1, 2012

1

Page 2: Temperature dependence of reverse current of irradiated Si detectors

Outline

Motivation

♦ Model of bulk generation current based on Shockley-Read-Hall statistics♦ Parameters of investigated detectors and experimental procedure♦ Simulation of generation current of detectors irradiated by 23 GeV protons and neutrons: - single level model - two level model (PTI model with midgap levels) - alternative versions

♦ Lifetime vs. fluence dependence♦ Impact of bulk generation on E(x) profile

Conclusions

E. Verbitskaya, et al., 20 RD50 workshop, Bari, May 30 – June 1, 20122

Page 3: Temperature dependence of reverse current of irradiated Si detectors

Motivation

Goal:  Analysis of bulk generation current of irradiated detectors, impact on characteristics of irradiated detectors

Importance: bias voltage applied to p+-n or n+-p junction,power dissipation

Earlier results:

Low neutron fluence (10101012 cm-2): E-center gives the main contribution to the reverse current [E. Borchi and M. Bruzzi, NIM A 310 (1991) 273]. Agreement between calculated and measured damage coefficient was obtained. Activation energy of generation current of neutron irradiated detectors was estimated as 0.6 – 0.65 eV (our earlier data) Recent results on I(T) scaling; simulation and experiment; A. Chilingarov, RD50 notes and presentation at 18 RD50 workshop, May 2011, Liverpool

E. Verbitskaya, et al., 20 RD50 workshop, Bari, May 30 – June 1, 20123

Page 4: Temperature dependence of reverse current of irradiated Si detectors

Earlier results of RD50 collaboration

Linear fit of I(F) is a strong argument to use linear dependence of the concentration of radiation induced defects which act as generation centers on F

a = 3.7x10-17 A/cm

G. Lindström, NIM A 512 (2003) 30

E. Verbitskaya, et al., 20 RD50 workshop, Bari, May 30 – June 1, 2012 4

Page 5: Temperature dependence of reverse current of irradiated Si detectors

Modeling of bulk generation current

Modeling is based on Shockley-Read-Hall statistics

Emission rates ee,h: Generation rate:

kTEE

expkT

EEexp

NnvG

tih

ite

tithhe

kT

EEexpNve;

kTEE

expNve tvvhthhh

ctcethee

Et = Et – Ev; - carrier capture cross section, Nt – deep level concentration

G is determined by a larger energy gap

Assumption for (T): 

(T) = o(T/To)-m m = 02

(V. Abakumov, et. al., Sov. Phys. Semicond. 12 (1978) 1)

E. Verbitskaya, et al., 20 RD50 workshop, Bari, May 30 – June 1, 20125

Page 6: Temperature dependence of reverse current of irradiated Si detectors

Experimental

# radiation F, cm-2 kOhm.cm processing d, m923-D26 p 5.00E+12 1,2-3 stand. oxyd. 188923-D35 p 5.00E+13 stand. oxyd. 188923-D39 p 2.00E+14 stand. oxyd. 188921-D12 p 5.00E+12 prol.oxyd.+TD 188899-82 n 1.00E+12 1,2-3 stand. oxyd. 200899-97 n 4.20E+13 stand. oxyd. 200

899-112 n 2.30E+14 stand. oxyd. 200

Irradiated detectors

♦ T = 200400 K♦ Full depletion – bulk generation current is measured♦ Guard ring grounded

E. Verbitskaya, et al., 20 RD50 workshop, Bari, May 30 – June 1, 20126

Page 7: Temperature dependence of reverse current of irradiated Si detectors

Reverse current simulation

1. Carrier generation via single level (SL simulation)

I = evthniNgenSdexp(-Ea/kT) (T) = o(T/To)-2

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

0.0025 0.003 0.0035 0.004 0.0045 0.005 0.0055

I (a

)1/T

neutrons, SL simulation1E+12

simul.

4.2E+13

simul.

2.3E+14

simul.

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

0.0025 0.003 0.0035 0.004 0.0045 0.005 0.0055

I (a

)

1/T

protons, SL simulation

5E+12

simul.

5E+13

simul.

2E+14

simul.

7E. Verbitskaya, et al., 20 RD50 workshop, Bari, May 30 – June 1, 2012

Fp (cm-2) 5x1012 5x1013 2x1014 Feq (cm-2) 3.1x1012 3.1x1013 1.24x1014 Ec - Et (eV) 0.65 0.65 0.65 e (cm2) 1x10-13 1x10-13 1x10-13 Ngen (cm-3) 1.35x1013 1.4x1014 5.3x1014

F (cm-2) 1x1012 4.2x1013 2.3x1014 Ec - Et (eV) 0.65 0.65 0.65 e (cm2) 5x10-14 7x10-14 1x10-13 Ngen (cm-3) 1.6x1011 1.5x1014 1x1015

Page 8: Temperature dependence of reverse current of irradiated Si detectors

Reverse current simulation

1. Carrier generation via single level (SL simulation)

0.0E+00

2.0E+14

4.0E+14

6.0E+14

8.0E+14

1.0E+15

1.2E+15

0.E+00 1.E+14 2.E+14 3.E+14

Nge

n (c

m-3

)

Feq (cm-2)

protons

protons eq.

neutrons

Ngen vs. fluence dependence

Linear dependence of Ngen vs. F agrees with data on I(F)

8E. Verbitskaya, et al., 20 RD50 workshop, Bari, May 30 – June 1, 2012

Page 9: Temperature dependence of reverse current of irradiated Si detectors

Reverse current simulation

2. Carrier generation via two levels (TL simulation) – two independent processes

NDA/NDD = 1.2; kDD = 1

Contributions to current from DD and DA are close

DD: Ev + 0.48 eV; DA: Ec – (0.5250.005) eV – midgap levels used in all PTI simulations and fits

NDA/NDD = 2; kDD = 0.5

Contribution from DA prevails(at F≥1013 cm-2)

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0.0025 0.003 0.0035 0.004 0.0045 0.005 0.0055

I (A

)

1/T

protons, TL simulation

5E+12

simul.

5E+13

simul.

2E+14

simul.

9E. Verbitskaya, et al., 20 RD50 workshop, Bari, May 30 – June 1, 2012

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

0.0025 0.003 0.0035 0.004 0.0045 0.005 0.0055

I (A

)

1/T

neutrons, TL simulation

1E+12

simul.

4.2E+13

simul.

2.3E+14

simul.

Page 10: Temperature dependence of reverse current of irradiated Si detectors

Parameters of two level simulation

protons

neutrons Generation via two midgap levels, DDs and DAs, adequately describes temperature dependence of reverse current

Generation rate is determined by a larger energy gape – sensitive for DDh – sensitive for DA

E. Verbitskaya, et al., 20 RD50 workshop, Bari, May 30 – June 1, 201210

Fp (cm-2) 5x1012 5x1013 2x1014 Feq (cm-2) 3.1x1012 3.1x1013 1.24x1014 DD DA DD DA DD DA Et-Ev (eV) 0.48 0.6 0.48 0.595 0.48 0.595 Ec-Et (eV) 0.64 0.52 0.64 0.525 0.64 0.525 e (cm2) 1x10-14 1.5x10-14 1x10-14 1x10-14 1x10-14 1x10-14 h (cm2) 1.4x10-14 1x10-14 1.4x10-14 1x10-14 1.4x10-14 1x10-14 Nt (cm-3) 5x1012 6x1012 5x1013 6x1013 2x1014 2.4x1014

F (cm-2) 1x1012 4.2x1013 2.3x1014 DD DA DD DA DD DA Et-Ev (eV) 0.48 0.6 0.48 0.59 0.48 0.59 Ec-Et (eV) 0.64 0.52 0.64 0.53 0.64 0.53 e (cm2) 1x10-15 1x10-14 1x10-14 1x10-14 1.4x10-14 1x10-14 h (cm2) 1x10-14 4x10-16 1x10-14 1.2x10-14 1x10-14 3x10-14 Nt (cm-3) 5x1011 1x1012 8.4x1012 4.2x1013 1.15x1014 2.3x1014

Page 11: Temperature dependence of reverse current of irradiated Si detectors

Reverse current simulation

3. Neutrons, F = 1x1012 cm-2 Additional generation level?

3rd level: DA2, Ec – 0.43 eV

kDD = 0.5NDA1/NDD = 1 NDA2/NDA1 = 5

Contribution from DA2 prevails - agrees with [E. Borchi and M. Bruzzi, NIM A 310 (1991) 273]

11

E. Verbitskaya, et al., 20 RD50 workshop, Bari, May 30 – June 1, 2012

DD DA1 DA2 Et-Ev (eV) 0.48 0.6 0.69 Ec-Et (eV) 0.64 0.52 0.43 e (cm2) 1.2x10-15 1x10-15 1x10-15 h (cm2) 1x10-15 1.1x10-15 3x10-15 Nt (cm-3) 5x1011 5x1011 5x1012

Page 12: Temperature dependence of reverse current of irradiated Si detectors

Generation lifetime vs. F

Ibgen = eniVol/tgen; Ibgen = aFVol

tgen = (eni /a)F-1

tgen 15ttr

12E. Verbitskaya, et al., 20 RD50 workshop, Bari, May 30 – June 1, 2012

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E+11 1.0E+12 1.0E+13 1.0E+14 1.0E+15 1.0E+16F eq (cm-2)

t gen

, ttr

(s)

tau_gen

tau_tr_e

tau_tr_h

tgen = 4.32x107/Feq

ttr_e = 3.1x106/Feq

ttr_h = 2.9x106/Feq

Feq = 1x1015 cm-2

tgen = 40 nsttr_e,h ≈ 3 ns

I. Mandić, et al., NIM A 612 2010) 474

be = 3.2x10-16 cm2s-1; be = 3.5x10-16 cm2s-1

Trapping: all levels contribute to t since pulse signal is measured withinq = 25 ns that is far less than detrapping time constant for larger energy gap (at RT) Generation: only midgap levels contribute

Page 13: Temperature dependence of reverse current of irradiated Si detectors

Whether DLs with Ea ~ 0.4 eV can affect Igen (occupancy of DLs vs. T)

Feq ~ 1014 cm-2 DLs: DD, DA, VV-

NVV = 1x1014 cm-3 NVV = 1x1016 cm-3

NVV = 1x1017 cm-3

In plots: concentration of charged DLs and total Neff

-6.E+12

-4.E+12

-2.E+12

0.E+00

2.E+12

0 50 100 150 200 250 300 350

Ndd

+, N

da-,

Nef

f (cm

-3)

T (K)

DD(0.48eV)

DA(V-V)

DA(0.53eV)

Neff

-4.E+12

-2.E+12

0.E+00

2.E+12

0 50 100 150 200 250 300 350

Ndd

+, N

da-,

Nef

f (cm

-3)

T (K)

DD(0.48eV)

DA(V-V)

DA(0.53eV)

Neff

-4.E+12

-2.E+12

0.E+00

2.E+12

0 50 100 150 200 250 300 350

Ndd

+, N

da-,

Nef

f (cm

-3)

T (K)

DD(0.48eV)

DA(V-V)

DA(0.53eV)

Neff

Deep levels with Ea ~ 0.4 eV (VV, Ci-Oi) hardly affect I(T) dependence

13E. Verbitskaya, et al., 20 RD50 workshop, Bari, May 30 – June 1, 2012

DLs with Ea ~ 0.4 eV affect:♦ space charge region depth (at very high F);♦ trapping time constant

Page 14: Temperature dependence of reverse current of irradiated Si detectors

Impact of Igen on E(x) profile

Key parameters for adequate E(x) description: deep levels and generation current

Impact of Igen – double peak (DP) E(x) Simulation without current – no DP E(x)

0.0E+00

1.0E+04

2.0E+04

3.0E+04

4.0E+04

5.0E+04

6.0E+04

0 0.005 0.01 0.015 0.02 0.025 0.03

E (V

/cm

)

x (cm)

293K, current

293K, no current

253K, current

253K, no current

Igen is important parameter since it gives correct E(x) reference to other characteristics (CCE, tdr)

Alternative approach: Generation may be considered via lifetime – suggested by Delhi University group

14E. Verbitskaya, et al., 20 RD50 workshop, Bari, May 30 – June 1, 2012

Page 15: Temperature dependence of reverse current of irradiated Si detectors

Conclusions

Single level model of I(T): Activation energy of bulk generation current Ea is 0.65 eV independent on proton/neutron fluence Concentration of effective generation level is proportional to Feq

Two level model of I(T): Two midgap levels, DDs and DAs, describe I(T) dependence of generation current Contribution of DAs to the generation current prevails in neutron irradiated detectors whereas in proton irradiated detectors both constituents are close

Generation lifetime is significantly larger than trapping lifetime

Bulk generation current gives adequate description of irradiated detector characteristics

15E. Verbitskaya, et al., 20 RD50 workshop, Bari, May 30 – June 1, 2012

Page 16: Temperature dependence of reverse current of irradiated Si detectors

Acknowledgments

This work was made in the framework of RD50 collaboration and supported in part by:

• Fundamental Program of Russian Academy of Sciences on collaboration with CERN, • RF President Grant # SS-3008.2012.2 • U.S. Department of Energy, Contract No. DE-AC02 -98CH10886

Thank you for attention!

16E. Verbitskaya, et al., 20 RD50 workshop, Bari, May 30 – June 1, 2012