tensor book

29
Mathematical Engineering Tensor Algebra and Tensor Analysis for Engineers With Applications to Continuum Mechanics von Mikhail Itskov 1. Auflage Springer 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 642 30878 9 Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG

Upload: vishwajit

Post on 28-Sep-2015

235 views

Category:

Documents


0 download

DESCRIPTION

tensor

TRANSCRIPT

  • Mathematical Engineering

    Tensor Algebra and Tensor Analysis for Engineers

    With Applications to Continuum Mechanics

    vonMikhail Itskov

    1. Auflage

    Springer 2012

    Verlag C.H. Beck im Internet:www.beck.de

    ISBN 978 3 642 30878 9

    Zu Inhaltsverzeichnis

    schnell und portofrei erhltlich bei beck-shop.de DIE FACHBUCHHANDLUNG

  • Chapter 2Vector and Tensor Analysis in Euclidean Space

    2.1 Vector- and Tensor-Valued Functions, DifferentialCalculus

    In the following we consider a vector-valued function x .t/ and a tensor-valuedfunction A .t/ of a real variable t . Henceforth, we assume that these functions arecontinuous such that

    limt!t0

    x .t/ x .t0/ D 0; limt!t0

    A .t/ A .t0/ D 0 (2.1)

    for all t0 within the definition domain. The functions x .t/ and A .t/ are calleddifferentiable if the following limits

    dxdt

    D lims!0

    x .t C s/ x .t/s

    ;dAdt

    D lims!0

    A .t C s/ A .t/s

    (2.2)

    exist and are finite. They are referred to as the derivatives of the vector- and tensor-valued functions x .t/ and A .t/, respectively.

    For differentiable vector- and tensor-valued functions the usual rules of differen-tiation hold.

    1. Product of a scalar function with a vector- or tensor-valued function:

    ddt

    u .t/ x .t/ D dudt

    x .t/ C u .t/ dxdt

    ; (2.3)

    ddt

    u .t/ A .t/ D dudt

    A .t/ C u .t/ dAdt

    : (2.4)2. Mapping of a vector-valued function by a tensor-valued function:

    ddt

    A .t/ x .t/ D dAdt

    x .t/ C A .t/ dxdt

    : (2.5)

    M. Itskov, Tensor Algebra and Tensor Analysis for Engineers, Mathematical Engineering,DOI 10.1007/978-3-642-30879-6 2, Springer-Verlag Berlin Heidelberg 2013

    35

  • 36 2 Vector and Tensor Analysis in Euclidean Space

    3. Scalar product of two vector- or tensor-valued functions:

    ddt

    x .t/ y .t/ D dxdt

    y .t/ C x .t/ dydt

    ; (2.6)

    ddt

    A .t/ W B .t/ D dAdt

    W B .t/ C A .t/ W dBdt

    : (2.7)4. Tensor product of two vector-valued functions:

    ddt

    x .t/ y .t/ D dxdt

    y .t/ C x .t/ dydt

    : (2.8)

    5. Composition of two tensor-valued functions:

    ddt

    A .t/ B .t/ D dAdt

    B .t/ C A .t/ dBdt

    : (2.9)

    6. Chain rule:ddt

    x u .t/ D dxdu

    dudt

    ;ddt

    A u .t/ D dAdu

    dudt

    : (2.10)7. Chain rule for functions of several arguments:

    ddt

    x u .t/ ,v .t/ D @x@u

    dudt

    C @x@v

    dvdt

    ; (2.11)

    ddt

    A u .t/ ,v .t/ D @A@u

    dudt

    C @A@v

    dvdt

    ; (2.12)

    where @=@u denotes the partial derivative. It is defined for vector and tensorvalued functions in the standard manner by

    @x .u,v/

    @uD lim

    s!0x .u C s,v/ x .u,v/

    s; (2.13)

    @A .u,v/@u

    D lims!0

    A .u C s,v/ A .u,v/s

    : (2.14)

    The above differentiation rules can be verified with the aid of elementary differentialcalculus. For example, for the derivative of the composition of two second-ordertensors (2.9) we proceed as follows. Let us define two tensor-valued functions by

    O1 .s/ D A .t C s/ A .t/s

    dAdt

    ; O2 .s/ D B .t C s/ B .t/s

    dBdt

    : (2.15)

    Bearing the definition of the derivative (2.2) in mind we have

    lims!0 O1 .s/ D 0; lims!0 O2 .s/ D 0:

  • 2.2 Coordinates in Euclidean Space, Tangent Vectors 37

    Then,

    ddt

    A .t/ B .t/ D lims!0

    A .t C s/ B .t C s/ A .t/ B .t/s

    D lims!0

    1

    s

    A .t/ C s dA

    dtC sO1 .s/

    B .t/ C s dB

    dtC sO2 .s/

    A .t/ B .t/

    D lims!0

    dAdt

    C O1 .s/

    B .t/ C A .t/dB

    dtC O2 .s/

    C lims!0 s

    dAdt

    C O1 .s/

    dBdt

    C O2 .s/

    D dAdt

    B .t/ C A .t/ dBdt

    :

    2.2 Coordinates in Euclidean Space, Tangent Vectors

    Definition 2.1. A coordinate system is a one to one correspondence betweenvectors in the n-dimensional Euclidean space En and a set of n real num-bers .x1; x2; : : : ; xn/. These numbers are called coordinates of the correspondingvectors.

    Thus, we can write

    xi D xi .r/ , r D r x1; x2; : : : ; xn ; (2.16)where r 2 En and xi 2 R .i D 1; 2; : : : ; n/. Henceforth, we assume that thefunctions xi D xi .r/ and r D r x1; x2; : : : ; xn are sufficiently differentiable.Example 2.1. Cylindrical coordinates in E3. The cylindrical coordinates (Fig. 2.1)are defined by

    r D r .'; z; r/ D r cos 'e1 C r sin 'e2 C ze3 (2.17)

    andr D

    q.r e1/2 C .r e2/2; z D r e3;

    ' D8