term order via matrices - george washington...

22
Lindsey, Hyesu, Liz Term Order Via Matrices

Upload: others

Post on 29-Dec-2019

3 views

Category:

Documents


0 download

TRANSCRIPT

Lindsey, Hyesu, Liz

Term Order Via Matrices

1) Explain how vectors/ matrices can be used to define term orders 2) Prove the resulting order is a term order

Definitions

In R[X], let ๐‘‹๐›ผ = ๐‘ฅ1๐‘Ž1๐‘ฅ2

๐‘Ž2 โ‹ฏ๐‘ฅ๐‘›๐‘Ž๐‘› and ๐‘‹๐›ฝ = ๐‘ฅ1

๐‘1๐‘ฅ2๐‘2 โ‹ฏ๐‘ฅ๐‘›

๐‘๐‘›.

Then we define ๐›ผ =

๐‘Ž1๐‘Ž2โ‹ฎ๐‘Ž๐‘›

and ๐›ฝ =

๐‘1๐‘2โ‹ฎ๐‘๐‘›

. Also, define ๐‘š ร— ๐‘› matrix

A=

๐‘ข1๐‘ข2โ‹ฎ๐‘ข๐‘š

where ๐‘ข๐‘— = (๐‘ข๐‘—1, ๐‘ข๐‘—2,โ€ฆ, ๐‘ข๐‘—๐‘›) and ๐‘š โ‰ฅ ๐‘›.

Now, we can define an order <๐‘ข in R[๐‘ฅ1, ๐‘ฅ2, โ€ฆ , ๐‘ฅ๐‘›- such that

๐‘‹๐›ผ <๐‘ข ๐‘‹๐›ฝ โŸบ A๐›ผ <๐‘ข A๐›ฝ

Example

In R x, y, z , let ๐‘‹๐›ผ=๐‘ฅ2๐‘ฆ3 and ๐‘‹๐›ฝ = ๐‘ฅ๐‘ฆ๐‘ง. Then,

๐›ผ =230 and ๐›ฝ =

111 .

Let ๐‘ข1 = 2 3 4 , ๐‘ข2 = 8 1 5 , and ๐‘ข3 = โˆ’5 11 7 . Then,

A =2 3 48 1 5โˆ’5 11 7

.

Consider

A๐›ผ =131923

and A๐›ฝ =91413

.

We see that ๐‘จ๐œท < ๐‘จ๐œถ. Thus, ๐‘ฟ๐œท < ๐‘ฟ๐œถ.

Review:

A Term Order on R[X] is a total order on the set R of power

products in R[X] such that

1) 1 < ๐‘‹๐›ผ โˆ€ ๐‘‹๐›ผโˆˆ ๐‘… ๐‘‹ , ๐‘‹๐›ผ โ‰  1;

2) If ๐‘‹๐›ผ < ๐‘‹๐›ฝ, ๐‘กโ„Ž๐‘’๐‘› ๐‘‹๐›ผ ๐‘‹๐›พ < ๐‘‹๐›ฝ ๐‘‹๐›พ , โˆ€ ๐‘‹๐›พ โˆˆ ๐‘… ๐‘‹ .

Key term orders

1) In R[X], lexicographic (lex) term order

2) In R[X], degree lexicographic (deglex) term order

3) In R[X], degree reverse lexicographic (degrevlex) term order

Key Term Orders

Lex Deglex Degrevlex

Given a linear order on the

variables,

a) The power product with

the most of the largest

variables is the largest

b) If tied, consider second

largest variable

c) etcโ€ฆ

Given a linear order on the

individual variables,

a) The power product of the

highest degree is the

largest.

b) If tied, the larger power

product is the one with

more of the largest

variable

c) If still tied, consider the

next largest variable and

so on.

d) etcโ€ฆ

Given a linear order on the

variables

a) The power product of the

highest degree is the

largest

b) If tied, more of the

smallest variable gives a

smaller term

c) If still tied, more of the

next smallest variable

gives smaller terms

d) etcโ€ฆ

Lexicographical Term Order Via Matrices

1 0 โ‹ฏ 0 00 1 0 โ‹ฎ โ‹ฎ โ‹ฎ 0โ‹ฎ0

โ‹ฎ0

โ‹ฑ 00โ‹ฏ

10

001

๐‘Ž1๐‘Ž2โ‹ฎ๐‘Ž๐‘›

=

๐‘Ž1๐‘Ž2โ‹ฎ๐‘Ž๐‘›

1 0 โ‹ฏ 0 00 1 0 โ‹ฎ โ‹ฎ โ‹ฎ 0โ‹ฎ0

โ‹ฎ0

โ‹ฑ 00โ‹ฏ

10

001

๐‘1๐‘2โ‹ฎ๐‘๐‘›

=

๐‘1๐‘2โ‹ฎ๐‘๐‘›

๐‘ฅ1๐‘Ž1๐‘ฅ2

๐‘Ž2โ‹ฏ๐‘ฅ๐‘›๐‘Ž๐‘›

๐‘ฅ1๐‘1๐‘ฅ2

๐‘2โ‹ฏ๐‘ฅ๐‘›๐‘๐‘›

๐‘ฅ1 > ๐‘ฅ2> โ‹ฏ > ๐‘ฅ๐‘›

In R[๐‘ฅ1,๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›-, lex is given by the ๐‘› ร— ๐‘› identity matrix

applied to the vectors ๐›ผ and ๐›ฝ :

Degree Lexicographical Term Order

1 1 โ‹ฏ 1 11 0 0 โ‹ฏ 00 1โ‹ฎ00

0

โ‹ฎ0

0 0โ‹ฑ0โ‹ฏ

010

โ‹ฎ001

๐‘Ž1๐‘Ž2โ‹ฎ๐‘Ž๐‘›

=

๐‘Ž1 + ๐‘Ž2 +โ‹ฏ+ ๐‘Ž๐‘›๐‘Ž1๐‘Ž2โ‹ฎ๐‘Ž๐‘›

1 1 โ‹ฏ 1 11 0 0 โ‹ฏ 00 1โ‹ฎ00

0โ‹ฎ0

0 0โ‹ฑ0โ‹ฏ

010

โ‹ฎ001

๐‘1๐‘2โ‹ฎ๐‘๐‘›

=

๐‘1 + ๐‘2 +โ‹ฏ+ ๐‘๐‘›๐‘1๐‘2โ‹ฎ๐‘๐‘›

๐‘ฅ1๐‘Ž1๐‘ฅ2

๐‘Ž2โ‹ฏ๐‘ฅ๐‘›๐‘Ž๐‘›

๐‘ฅ1๐‘1๐‘ฅ2

๐‘2โ‹ฏ๐‘ฅ๐‘›๐‘๐‘›

๐‘ฅ1 > ๐‘ฅ2> โ‹ฏ > ๐‘ฅ๐‘›

In R[๐‘ฅ1,๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›-, deglex is given by the ๐‘š ร— ๐‘› matrix applied to the

vectors ๐›ผ and ๐›ฝ :

Degree Lexicographical Term Order Continuedโ€ฆ

1 1 โ‹ฏ 1 1 1 0 0 โ‹ฏ 0 0 1

โ‹ฎ 0

0โ‹ฏ

0 0โ‹ฑ0

0 1

โ‹ฎ00

๐‘Ž1๐‘Ž2โ‹ฎ๐‘Ž๐‘›

=

๐‘Ž1 + ๐‘Ž2 +โ‹ฏ+ ๐‘Ž๐‘›๐‘Ž1๐‘Ž2โ‹ฎ

๐‘Ž๐‘›โˆ’1

1 1 โ‹ฏ 1 1 1 0 0 โ‹ฏ 0 0 1

โ‹ฎ 0

0โ‹ฏ

0 0โ‹ฑ0

0 1

โ‹ฎ00

๐‘1๐‘2โ‹ฎ๐‘๐‘›

=

๐‘1 + ๐‘2 +โ‹ฏ+ ๐‘๐‘›๐‘1๐‘2โ‹ฎ

๐‘๐‘›โˆ’1

๐‘ฅ1๐‘Ž1๐‘ฅ2

๐‘Ž2โ‹ฏ๐‘ฅ๐‘›๐‘Ž๐‘›

๐‘ฅ1๐‘1๐‘ฅ2

๐‘2 โ‹ฏ๐‘ฅ๐‘›๐‘๐‘›

๐‘ฅ1 > ๐‘ฅ2> โ‹ฏ > ๐‘ฅ๐‘›

We can simplify this to an ๐‘› ร— ๐‘› matrix applied to the vectors ๐›ผ

and ๐›ฝ :

Degree Reverse Lexicographical Term Order

In R[๐‘ฅ1,๐‘ฅ2,โ€ฆ, ๐‘ฅ๐‘›-, degrevlex is given by the ๐‘š ร— ๐‘› matrix applied to

the vectors ๐›ผ and ๐›ฝ :

1 1 โ‹ฏ 1 10 0 โ‹ฏ 0 โˆ’1 0 โ‹ฏ โ‹ฎ 0โˆ’1

0โˆ’10

0 โˆ’1โ‹ฐ0โ‹ฏ

0โ‹ฎ0

0โ‹ฎ00

๐‘Ž1๐‘Ž2โ‹ฎ๐‘Ž๐‘›

=

๐‘Ž1 + ๐‘Ž2 +โ‹ฏ+ ๐‘Ž๐‘›โˆ’๐‘Ž๐‘›โˆ’๐‘Ž๐‘›โˆ’1

โ‹ฎโˆ’๐‘Ž1

1 1 โ‹ฏ 1 10 0 โ‹ฏ 0 โˆ’1 0 โ‹ฏ โ‹ฎ 0โˆ’1

0โˆ’10

0 โˆ’1โ‹ฐ0โ‹ฏ

0โ‹ฎ0

0โ‹ฎ00

๐‘1๐‘2โ‹ฎ๐‘๐‘›

=

๐‘1 + ๐‘2 +โ‹ฏ+ ๐‘๐‘›โˆ’๐‘๐‘›โˆ’๐‘๐‘›โˆ’1

โ‹ฎโˆ’๐‘1

๐‘ฅ1๐‘Ž1๐‘ฅ2

๐‘Ž2โ‹ฏ๐‘ฅ๐‘›๐‘Ž๐‘›

๐‘ฅ1๐‘1๐‘ฅ2

๐‘2โ‹ฏ๐‘ฅ๐‘›๐‘๐‘›

๐‘ฅ1 > ๐‘ฅ2> โ‹ฏ > ๐‘ฅ๐‘›

Degree Reverse Lexicographical Term Order Continuedโ€ฆ

We can simplify this to an ๐‘› ร— ๐‘› matrix applied to the vectors ๐›ผ and ๐›ฝ :

1 1 โ‹ฏ 1 10 0 โ‹ฏ 0 โˆ’10 โ‹ฏ โ‹ฎ 0

0โˆ’1

0 โˆ’1โ‹ฐ0

0 โ‹ฏ

0โ‹ฎ0

๐‘Ž1๐‘Ž2โ‹ฎ๐‘Ž๐‘›

=

๐‘Ž1 + ๐‘Ž2 +โ‹ฏ+ ๐‘Ž๐‘›โˆ’๐‘Ž๐‘›โˆ’๐‘Ž๐‘›โˆ’1

โ‹ฎโˆ’๐‘Ž2

1 1 โ‹ฏ 1 10 0 โ‹ฏ 0 โˆ’10 โ‹ฏ โ‹ฎ 0

0โˆ’1

0 โˆ’1โ‹ฐ0

0 โ‹ฏ

0โ‹ฎ0

๐‘1๐‘2โ‹ฎ๐‘๐‘›

=

๐‘1 + ๐‘2 +โ‹ฏ+ ๐‘๐‘›โˆ’๐‘๐‘›โˆ’๐‘๐‘›โˆ’1

โ‹ฎโˆ’๐‘2

๐‘ฅ1๐‘Ž1๐‘ฅ2

๐‘Ž2โ‹ฏ๐‘ฅ๐‘›๐‘Ž๐‘›

๐‘ฅ1๐‘1๐‘ฅ2

๐‘2โ‹ฏ๐‘ฅ๐‘›๐‘๐‘›

๐‘ฅ1 > ๐‘ฅ2> โ‹ฏ > ๐‘ฅ๐‘›

Properties of order <๐‘ข

1. Transitive relations: If ๐‘‹๐›ผ <๐‘ข ๐‘‹๐›ฝ and ๐‘‹๐›ฝ <๐‘ข ๐‘‹๐›พ , then ๐‘‹๐›ผ <๐‘ข

๐‘‹๐›พ โˆ€ ๐‘‹๐›ผ , ๐‘‹๐›ฝ , and ๐‘‹๐›พ.

2. If ๐‘‹๐›ผ <๐‘ข ๐‘‹๐›ฝ then ๐‘‹๐›พ๐‘‹๐›ผ <๐‘ข ๐‘‹๐›พ๐‘‹๐›ฝ โˆ€ ๐‘‹๐›ผ , ๐‘‹๐›ฝ , and ๐‘‹๐›พ .

3. If the vectors ๐‘ข1, ๐‘ข2, โ€ฆ , ๐‘ข๐‘š span โ„š๐‘›, then the order, <๐‘ข, is a total

order.

4. If the vectors ๐‘ข1, ๐‘ข2, โ€ฆ , ๐‘ข๐‘š span โ„š๐‘›, then the order, <๐‘ข, is a term

order if and only if for all i, the first ๐‘ข๐‘— such that ๐‘ข๐‘—๐‘– โ‰  0 satisfies ๐‘ข๐‘—๐‘– > 0.

Proof of Property 2): If ๐‘‹๐›ผ <๐‘ข ๐‘‹๐›ฝ then ๐‘‹๐›พ๐‘‹๐›ผ <๐‘ข ๐‘‹๐›พ๐‘‹๐›ฝ โˆ€ ๐‘‹๐›ผ , ๐‘‹๐›ฝ , and ๐‘‹๐›พ.

Proof: Suppose ๐‘‹๐›ผ <๐‘ข ๐‘‹๐›ฝ. Then ๐ด๐›ผ <๐‘ข ๐ด๐›ฝ . Multiply ๐‘‹๐›ผ by ๐‘‹๐›พ, and get

๐‘‹๐›พ๐‘‹๐›ผ = ๐‘‹๐›พ+๐›ผ .

Then, A(๐›พ + ๐›ผ ) = ๐ด๐›พ + ๐ด๐›ผ .

Since ๐ด๐›ผ <๐‘ข ๐ด๐›ฝ , ๐ด๐›พ + ๐ด๐›ผ <๐‘ข ๐ด๐›พ + ๐ด๐›ฝ = A ๐›พ + ๐›ฝ .

Hence, by the definition of the order <๐‘ข,

๐‘‹๐›พ๐‘‹๐›ผ = ๐‘‹๐›พ+๐›ผ <๐‘ข ๐‘‹๐›พ+๐›ฝ= ๐‘‹๐›พ๐‘‹๐›ฝ .

โˆด ๐‘‹๐›พ๐‘‹๐›ผ <๐‘ข ๐‘‹๐›พ๐‘‹๐›ฝ .

โˆŽ

Proof of Property 3)

If the vectors ๐‘ข1, ๐‘ข2, โ€ฆ , ๐‘ข๐‘š span โ„š๐‘›, then the order <๐‘ข, is a total order.

Proof: Suppose ๐‘ข1, ๐‘ข2, โ€ฆ , ๐‘ข๐‘š span โ„š๐‘›. Then m โ‰ฅ ๐‘›.

โŸธ Assume ๐‘‹๐›ผ = ๐‘‹๐›ฝ. This implies ๐›ผ = ๐›ฝ . Then for any ๐‘š ร— ๐‘› matrix

๐ด, ๐ด๐›ผ = ๐ด๐›ฝ .

โˆดthe order of ๐‘‹๐›ผ = the order of ๐‘‹๐›ฝ.

Definition of Total Order: The order of ๐‘‹๐›ผ = the order ๐‘‹๐›ฝ โŸบ ๐‘‹๐›ผ = ๐‘‹๐›ฝ.

Proof of Property 3) continuedโ€ฆ

(โŸน) Suppose the order of ๐‘‹๐›ผ = the order of ๐‘‹๐›ฝ. Then ๐ด๐›ผ = ๐ด๐›ฝ .

Case 1: If ๐‘š = ๐‘›, then there exist ๐ดโˆ’1 by the Invertible Matrix Theorem. So

๐ด๐›ผ = ๐ด๐›ฝ โŸน ๐ดโˆ’1๐ด๐›ผ = ๐ดโˆ’1๐ด๐›ฝ โŸน ๐›ผ = ๐›ฝ . Therefore, ๐‘‹๐›ผ = ๐‘‹๐›ฝ.

Case 2: If ๐‘š > ๐‘›, then there exist ๐‘› ร— ๐‘› matrix ๐ต = ,๐‘ฃ 1, ๐‘ฃ 2, โ€ฆ , ๐‘ฃ ๐‘›] where

{๐‘ฃ 1, ๐‘ฃ 2, โ€ฆ , ๐‘ฃ ๐‘›+ โŠ† *๐‘ข1, ๐‘ข2, โ€ฆ , ๐‘ข๐‘š+ and whose rows are from the rows of ๐ด. Then,

๐ด๐›ผ = ๐ด๐›ฝ โŸน ๐ต๐›ผ = ๐ต๐›ฝ , and since ๐ต is an ๐‘› ร— ๐‘› matrix, by IMT, ๐ตโˆ’1 exists. Hence,

B๐›ผ = ๐ต๐›ฝ โŸน ๐ตโˆ’1 ๐ต๐›ผ = ๐ตโˆ’1๐ต๐›ฝ โŸน ๐›ผ = ๐›ฝ . Therefore, ๐‘‹๐›ผ = ๐‘‹๐›ฝ.

โˆด the order <๐‘ข, is a total order.

โˆŽ

Proof of Property 4) If the vectors ๐‘ข1, ๐‘ข2, โ€ฆ , ๐‘ข๐‘š span โ„š๐‘›, then the order, <๐‘ข, is a term order if and

only if for all i, the first ๐‘ข๐‘— such that ๐‘ข๐‘—๐‘– โ‰  0 satisfies ๐‘ข๐‘—๐‘– > 0.

Proof: Suppose ๐‘ข1, ๐‘ข2, โ€ฆ , ๐‘ข๐‘š span โ„š๐‘›. Then, for each column, there exist at least one

nonzero element. Let ๐‘ข๐‘—๐‘– be the first non-zero entry of the ith column. So ๐‘ข๐‘—๐‘– โ‰  0.

Note that

1 = ๐‘‹0 โŸน 0 =0โ‹ฎ0 and ๐‘‹๐‘’ ๐‘– โŸน ๐‘’ ๐‘– =

0โ‹ฎ010โ‹ฎ0

.

A Term Order on R[X]

0) A total order on the set R of power products in R[X] such that

1) 1 < ๐‘‹๐›ผ โˆ€ ๐‘‹๐›ผโˆˆ ๐‘… ๐‘‹ , ๐‘‹๐›ผ โ‰  1;

2) If ๐‘‹๐›ผ < ๐‘‹๐›ฝ, ๐‘กโ„Ž๐‘’๐‘› ๐‘‹๐›ผ ๐‘‹๐›พ < ๐‘‹๐›ฝ ๐‘‹๐›พ, โˆ€ ๐‘‹๐›พ โˆˆ ๐‘… ๐‘‹

(Property 3 Done!)

(Property 2 Done!)

โ‡ฆ Only need to show

Proof of Property 4) continuedโ€ฆ

Recall, A=

๐‘ข1๐‘ข2โ‹ฎ๐‘ข๐‘š

.

Note that โˆ€ ๐‘— = 1,2,โ€ฆ ,๐‘š ๐‘ข๐‘—0 = 0, and ๐‘ข๐‘—๐‘’๐‘– = ๐‘ข๐‘—๐‘– โ‰  0.

That is, A0 =

0โ‹ฎ00โ‹ฎ0

and ๐ด๐‘’ ๐‘– =

0โ‹ฎ0๐‘ข๐‘—๐‘–โ‹ฎ

๐‘ข๐‘š๐‘–

Proof of Property 4) continuedโ€ฆ (โŸน) Now, suppose the order <๐‘ข is a term order.

Then, 1 <๐‘ข ๐‘‹๐‘’ ๐‘– and so

A0 =

0โ‹ฎ00โ‹ฎ0

<๐‘ข ๐ด๐‘’ ๐‘– =

0โ‹ฎ0๐‘ข๐‘—๐‘–โ‹ฎ

๐‘ข๐‘š๐‘–

โˆด 0 < ๐‘ข๐‘—๐‘–.

Proof of Property 4) continuedโ€ฆ (โŸธ) Suppose ๐‘ข๐‘—๐‘–>0. Then

A0 =

0โ‹ฎ00โ‹ฎ0

<๐‘ข ๐ด๐‘’ ๐‘– =

0โ‹ฎ0๐‘ข๐‘—๐‘–โ‹ฎ

๐‘ข๐‘š๐‘–

,

which implies 1 <๐‘ข ๐‘‹๐‘’ ๐‘– .

By Transitivity, we know that all power products have greater order than 1.

โˆด <๐‘ข is a term order.

โˆŽ

Objectives Accomplished! 1) Explain how vectors/ matrices can be used to define term orders

2) Prove the resulting order is a term order

References An Introduction to Gro bner Bases, William W. Adams, Phillippe

Loustaunau, Graduate Studies in Mathematics, vol.3 (p18-p24)

Term Ordering on the Polynomial Ring, Lorenzo Robbiano,

Genova, Italy, 1985, (p513-p517)

Algorithms in Singular, Hans Schonemann, Computer Science

Journal of Moldova, vol4, no3.(12), 1996 (p315-341)

Thank you!