termodinamika chapter 09

Upload: silvi-wildia-hariadi-pribadi

Post on 07-Aug-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/21/2019 termodinamika Chapter 09

    1/68

    Chapter 9

     Gas Power Cycles 

    Study Guide in PowerPoint

    to accompany

    Thermodynamics: An Engineering Approach, 5th edition

    by unus A! "engel and #ichael A! $oles

  • 8/21/2019 termodinamika Chapter 09

    2/68

      2

    Our study of gas power cycles will involve the study of those heat engines in which

    the working fluid remains in the gaseous state throughout the cycle. We often study

    the ideal cycle in which internal irreversibilities and complexities (the actual intake of

    air and fuel, the actual combustion process, and the exhaust of products of

    combustion among others) are removed.

    We will be concerned with how the maor parameters of the cycle affect the

    performance of heat engines. !he performance is often measured in terms of the

    cycle efficiency.

    η thnet 

    in

    Q=

  • 8/21/2019 termodinamika Chapter 09

    3/68

      "

    Carnot Cycle

    !he #arnot cycle was introduced in #hapter $ as the most efficient heat engine that

    can operate between two fixed temperatures T H  and T L. !he #arnot cycle is

    described by the following four processes.

    #arnot #ycle%rocess &escription

    '2 sothermal heat

    addition

    2" sentropic expansion

    "* sothermal heat

    reection*' sentropic

    compression

  • 8/21/2019 termodinamika Chapter 09

    4/68

      *

    +ote the processes on both the P-v  and T-s diagrams. !he areas under the process

    curves on the P-v  diagram represent the work done for closed systems. !he net

    cycle work done is the area enclosed by the cycle on the P-v  diagram. !he areas

    under the process curves on the T-s diagram represent the heat transfer for the

    processes. !he net heat added to the cycle is the area that is enclosed by the cycle

    on the T-s diagram. or a cycle we know W net - Qnet therefore, the areas enclosed on

    the P-v  and T-s diagrams are e/ual.

    η th Carnot  L

     H 

    T ,   = −1

    We often use the #arnot efficiency as a means to think about ways to improve thecycle efficiency of other cycles. One of the observations about the efficiency of both

    ideal and actual cycles comes from the #arnot efficiency0 !hermal efficiency

    increases with an increase in the average temperature at which heat is supplied to

    the system or with a decrease in the average temperature at which heat is reected

    from the system.

  • 8/21/2019 termodinamika Chapter 09

    5/68

      $

    Air-Standard Assumptions

    n our study of gas power cycles, we assume that the working fluid is air, and the air

    undergoes a thermodynamic cycle even though the working fluid in the actual power

    system does not undergo a cycle.

    !o simplify the analysis, we approximate the cycles with the following assumptions0

    1!he air continuously circulates in a closed loop and always behaves as an ideal gas.

    1 ll the processes that make up the cycle are internally reversible.

    1!he combustion process is replaced by a heataddition process from an external

    source.

    1  heat reection process that restores the working fluid to its initial state replaces the

    exhaust process.

    1!he coldairstandard assumptions apply when the working fluid is air and has

    constant specific heat evaluated at room temperature (2$o# or 33o).

  • 8/21/2019 termodinamika Chapter 09

    6/68

      4

    Terminology for Reciprocating Devices

    !he following is some terminology we need to understand for reciprocating engines5

    typically pistoncylinder devices. 6et7s look at the following figures for the definitions

    of top dead center (!), bottom dead center (8), stroke, bore, intake valve,

    exhaust valve, clearance volume, displacement volume, compression ratio, and mean

    effective pressure.

  • 8/21/2019 termodinamika Chapter 09

    7/68

      3

    !he compression ratio r  of an engine is the ratio of the maximum volume to the

    minimum volume formed in the cylinder.

    r   V 

     BDC 

    TDC 

    = =max

    min

    !he mean effective pressure (MEP ) is a fictitious pressure that, if it operated on the

    piston during the entire power stroke, would produce the same amount of net work as

    that produced during the actual cycle.

     MEP   W 

    V V 

    w

    v v

    net net  =−

      =−max min max min

  • 8/21/2019 termodinamika Chapter 09

    8/68

      9

    Otto Cycle T!e "deal Cycle for Spar#-"gnition Engines

    #onsider the automotive sparkignition power cycle.

    %rocesses

    ntake stroke

    #ompression stroke

    %ower (expansion) stroke

    :xhaust stroke

    Often the ignition and combustion process begins before the completion of the

    compression stroke. !he number of crank angle degrees before the piston reaches

    ! on the number one piston at which the spark occurs is called the engine timing.

    What are the compression ratio and timing of your engine in your car, truck, or

    motorcycle;

  • 8/21/2019 termodinamika Chapter 09

    9/68

      <

    T!e air-standard Otto cycle is the ideal cycle that approximates the sparkignition

    combustion engine.

    %rocess &escription

    '2 sentropic compression2" #onstant volume heat addition

    "* sentropic expansion

    *' #onstant volume heat reection

    !he P-v  and T-s diagrams are

  • 8/21/2019 termodinamika Chapter 09

    10/68

      '=

  • 8/21/2019 termodinamika Chapter 09

    11/68

      ''

    !hermal :fficiency of the Otto cycle0

    η thnet 

    in

    net 

    in

    in out  

    in

    out 

    in

    Q

    Q

    Q

    Q Q

    Q

    Q

    Q= = =

      −= −1

    +ow to find Qin and Qout.

     

     pply first law closed system to process 2", V  - constant.

    !hus, for constant specific heats,

    Q U 

    Q Q mC T T  

    net 

    net in v

    ,

    ,   ( )

    23 23

    23 3 2

    =

    = = −

  • 8/21/2019 termodinamika Chapter 09

    12/68

      '2

     pply first law closed system to process *', V  - constant.

    !hus, for constant specific heats,

    Q U 

    Q Q mC T T  

    Q mC T T mC T T  

    net 

    net out v

    out v v

    ,

    ,   ( )

    ( ) ( )

    41 41

    41 1 4

    1 4 4 1

    =

    = − = −

    = − − = −

    !he thermal efficiency becomes

    η th Ottoout 

    in

    v

    v

    Q

    Q

    mC T T  

    mC T T  

    ,

    ( )

    ( )

    = −

    = −   −−

    1

    1   4 1

    3 2

  • 8/21/2019 termodinamika Chapter 09

    13/68

      '"

    η th OttoT T 

    T T 

    T T T 

    T T T 

    ,

    ( )

    ( )

    ( / )

    ( / )

    = −  −

    = −  −

    1

    1

      1

    1

    4 1

    3 2

    1 4 1

    2 3 2

    >ecall processes '2 and "* are isentropic, so

    ?ince V " - V 2 and V * - V ', we see that

    or T 

    2

    1

    3

    4

    4

    1

    3

    2

    =

    =

  • 8/21/2019 termodinamika Chapter 09

    14/68

      '*

    !he Otto cycle efficiency becomes

    η th OttoT 

    T ,   = −1

      1

    2

    s this the same as the #arnot cycle efficiency;

     

    ?ince process '2 is isentropic,

    where the compression ratio is r  - V '@V 2 and

    η th Otto   k r ,   = − −1

    11

  • 8/21/2019 termodinamika Chapter 09

    15/68

      '$

    We see that increasing the compression ratio increases the thermal efficiency.

    Aowever, there is a limit on r  depending upon the fuel. uels under high temperature

    resulting from high compression ratios will prematurely ignite, causing knock.

  • 8/21/2019 termodinamika Chapter 09

    16/68

      '4

    E$ample %-&

     n Otto cycle having a compression ratio of

  • 8/21/2019 termodinamika Chapter 09

    17/68

      '3

    !he first law closed system for process 2" was shown to reduce to (your homework

    solutions must be complete that is, develop your e/uations from the application of

    the first law for each process as we did in obtaining the Otto cycle efficiency e/uation)

    Q mC T T  in v= −( )3 2

    6et qin  - Qin @ m  and m - V '@v ' 

    v  RT 

     P 

    kJ 

    kg K  K 

    kPa

    m kPa

    kJ 

    m

    kg 

    11

    1

    3

    3

    0 287 290

    95

    0875

    =

    =   ⋅

    =

    . ( )

    .

  • 8/21/2019 termodinamika Chapter 09

    18/68

      '9

      Q

    mQ

      v

    kJ 

    m

    kg 

    m

    kJ 

    kg 

    inin

    in= =

    = ⋅

    =

    1

    1

    3

    3 37 5

    0875

    38 10

    1727

    .

    .

    .

    !hen,

    T T 

     

     K 

    kJ 

    kg 

    kJ 

    kg K 

     K 

    in

    v3 2

    6984

    1727

    0718

    31037

    = +

    = +

    =

    .

    .

    .

  • 8/21/2019 termodinamika Chapter 09

    19/68

      '<

    Esing the combined gas law (F" - F2)

     P P   T 

    T  MPa3 2

    3

    2

    9 15= =   .

    %rocess "* is isentropic therefore,

    1   1 1.4 1

    34 3 3

    4

    1 1(3103.7)

    9

    1288.8

    k    k V 

    T T T K  V r 

     K 

    −   − −      = = =          

    =

  • 8/21/2019 termodinamika Chapter 09

    20/68

      2=

    %rocess *' is constant volume. ?o the first law for the closed system gives, on a

    mass basis,Q mC T T  

      Q

    mC T T 

    kJ 

    kg K  K 

    kJ 

    kg 

    out v

    out out 

    v

    = −

    = = −

    =⋅

      −

    =

    ( )

    ( )

    . ( . )

    .

    4 1

    4 1

    0 718 1288 8 290

    7171

    !he first law applied to the cycle gives (>ecall ∆ucycle - =)

    w

    kJ 

    kg 

    kJ 

    kg 

    net net in out  = = −

    = −

    =

    ( . )

    .

    1727 717 4

    1009 6

  • 8/21/2019 termodinamika Chapter 09

    21/68

      2'

    !he thermal efficiency is

    η th Ottonet 

    in

    w

    kJ 

    kg 

    kJ 

    kg or 

    ,

    .

    . .

    = =

    =

    1009 6

    1727

    0 585 58 5%

    !he mean effective pressure is

    max min max min

    1 2 1 2 1 1

    3

    3

    (1 / ) (1 1/ )

    1009.6

    12981

    0.875 (1 )9

    net net  

    net net net  

    W w MEP 

    V V v v

    w w w

    v v v v v v r  

    kJ 

    m kPakg kPa

    m   kJ 

    kg 

    = =− −

    = = =− − −

    = =

  • 8/21/2019 termodinamika Chapter 09

    22/68

      22

    !he back work ratio is (can you show that this is true;)

    2 112 2 1

    exp 34 3 4 3 4

    ( ) ( )

    ( ) ( )

    0.225 22.5%

    !om"   v

    v

    w   C T T u T T  BWR

    w u C T T T T  

    or 

    −∆ −= = = =

    −∆ − −

    =Air-Standard Diesel Cycle

    !he airstandard &iesel cycle is the ideal cycle that approximates the &iesel

    combustion engine

    %rocess &escription'2 sentropic compression

    2" #onstant pressure heat addition

    "* sentropic expansion

    *' #onstant volume heat reection

    !he P-v  and T-s diagrams are

  • 8/21/2019 termodinamika Chapter 09

    23/68

      2"

  • 8/21/2019 termodinamika Chapter 09

    24/68

      2*

    T!ermal efficiency of t!e Diesel cycle 

    η th Die#e$ net 

    in

    out 

    in

    Q

    Q

    Q,   = = −1

    +ow to find Qin and Qout. 

     pply the first law closed system to process 2", P  - constant.

    !hus, for constant specific heats

    Q U P V V  Q Q mC T T mR T T  

    Q mC T T  

    net 

    net in v

    in "

    ,

    ,

    ( )( ) ( )

    ( )

    23 23 2 3 2

    23 3 2 3 2

    3 2

    = + −= = − + −

    = −

  • 8/21/2019 termodinamika Chapter 09

    25/68

      2$

     pply the first law closed system to process *', V  - constant (ust as we did for the

    Otto cycle)

    !hus, for constant specific heats

    Q U 

    Q Q mC T T  Q mC T T mC T T  

    net 

    net out v

    out v v

    ,

    ,   ( )( ) ( )

    41 41

    41 1 4

    1 4 4 1

    =

    = − = −= − − = −

    !he thermal efficiency becomes

    η th Die#e$ out 

    in

    v

     "

    Q

    Q

    mC T T  

    mC T T  

    ,

    ( )

    ( )

    = −

    = −  −

    1

    1   4 1

    3 2

  • 8/21/2019 termodinamika Chapter 09

    26/68

      24

    η th Die#e$ v

     "

    C T T 

    C T T 

    T T T 

    T T T 

    ,

    ( )

    ( )

    ( / )

    ( / )

    = −  −

    = −  −

    1

    1

      1 1

    1

    4 1

    3 2

    1 4 1

    2 3 2

    What is T "@T 2 ;

     PV 

     PV 

    T  P P 

    V r !

    3 3

    3

    2 2

    2

    3 2

    3

    2

    3

    2

    = =

    = =

      where

    where r c  is called the cutoff ratio, defined as V " @V 2, and is a measure of the duration

    of the heat addition at constant pressure. ?ince the fuel is inected directly into the

    cylinder, the cutoff ratio can be related to the number of degrees that the crank

    rotated during the fuel inection into the cylinder.

  • 8/21/2019 termodinamika Chapter 09

    27/68

      23

    What is T *@T ' ;

     PV 

     PV 

    T V V 

     P 

     P 

    4 4

    4

    1 1

    1

    4 1

    4

    1

    4

    1

    = =

    =

      where

    >ecall processes '2 and "* are isentropic, so

     PV PV PV PV k k k k  1 1 2 2 4 4 3 3= =  and

    ?ince V * - V ' and P " - P 2, we divide the second e/uation by the first e/uation andobtain

    !herefore,

  • 8/21/2019 termodinamika Chapter 09

    28/68

      29

    η th Die#e$ 

    !

    !

    !

    !

    T T T 

    T T T 

    k r 

    ,

    ( / )

    ( / )

    ( )

    ( )

    = −  −

    = −  −

    = −  −

    −−

    1  1 1

    1

    1

      1 1

    1

    1  1 1

    1

    1 4 1

    2 3 2

    1

    2

    1

    What happens as r c  goes to '; ?ketch the P-v  diagram for the &iesel cycle and showr c  approaching ' in the limit.

    %

    v

    When r G ' for a fixed r 8ut

  • 8/21/2019 termodinamika Chapter 09

    29/68

      2<

    η η th Die#e$ th Otto, ,<   r r  Die#e$ Otto>   η η th Die#e$ th Otto, ,>When r 

    c  G ' for a fixed r , . 8ut,

    since , .

    'rayton Cycle

    !he 8rayton cycle is the airstandard ideal cycle approximation for the gasturbine

    engine. !his cycle differs from the Otto and &iesel cycles in that the processes

    making the cycle occur in open systems or control volumes. !herefore, an open

    system, steadyflow analysis is used to determine the heat transfer and work for thecycle.

    We assume the working fluid is air and the specific heats are constant and will

    consider the coldairstandard cycle.

  • 8/21/2019 termodinamika Chapter 09

    30/68

      "=

    T!e closed cycle gas-turine engine

  • 8/21/2019 termodinamika Chapter 09

    31/68

      "'

    %rocess &escription

    '2 sentropic compression (in a

    compressor)

    2" #onstant pressure heat addition

    "* sentropic expansion (in a turbine)

    *' #onstant pressure heat reection

    !he T-s and P-v  diagrams are

  • 8/21/2019 termodinamika Chapter 09

    32/68

      "2

    Thermal e%%iciency o% the $rayton cycle

    η th Bra%tonnet 

    in

    out 

    in

    Q

    Q

    Q,   = = −1

    +ow to find Qin and Q

    out.

     pply the conservation of energy to process 2" for P  - constant (no work), steady

    flow, and neglect changes in kinetic and potential energies.

       

     E E 

    m h Q m h

    in out  

    in

    =

    + =2 2 3 3!he conservation of mass gives

    m m

    m m m

    in out  == =2 3

    or constant specific heats, the heat added per unit mass flow is

       ( )

        ( )

      ( )

    Q m h h

    Q mC T T  

      Q

    m C T T 

    in

    in "

    in

    in

     "

    = −

    = −

    = = −

    3 2

    3 2

    3 2

    f f f f ( 7

  • 8/21/2019 termodinamika Chapter 09

    33/68

      ""

    !he conservation of energy for process *' yields for constant specific heats (let7s

    take a minute for you to get the following result)

       ( )

        ( )

      ( )

    Q m h h

    Q mC T T  

      Q

    mC T T 

    out 

    out "

    out out 

     "

    = −

    = −

    = = −

    4 1

    4 1

    4 1

    !he thermal efficiency becomes

    η th Bra%tonout 

    in

    out 

    in

     "

     "

    Q

    Q

    C T T 

    C T T 

    ,

    ( )

    ( )

    = − = −

    = −  −

    1 1

    1  4 1

    3 2

    η th Bra%ton T T T T 

    T T T 

    T T T 

    , ( )( )

    ( / )

    ( / )

    = −   −−

    = −  −

    1

    1  1

    1

    4 1

    3 2

    1 4 1

    2 3 2

    > ll ' 2 d " * i t i

  • 8/21/2019 termodinamika Chapter 09

    34/68

      "*

    >ecall processes '2 and "* are isentropic, so

    ?ince P " - P 2 and P * - P ', we see that

    3 32 4

    1 4 1 2

    or T T T T 

    T T T T  = =

    !he 8rayton cycle efficiency becomes

    η th Bra%tonT 

    T ,   = −1   1

    2

    s this the same as the #arnot cycle efficiency;

    ?ince process '2 is isentropic,

    h th ti i P @P d

  • 8/21/2019 termodinamika Chapter 09

    35/68

      "$

    where the pressure ratio is r  p - P 2@P ' and

    η th Bra%ton "

    k k r 

    , ( )/= −   −1

    11

    E$tra Assignment 

    :valuate the 8rayton cycle efficiency by determining the net work directly from the

    turbine work and the compressor work. #ompare your result with the above

    expression. +ote that this approach does not re/uire the closed cycle assumption.

    E l % )

  • 8/21/2019 termodinamika Chapter 09

    36/68

      "4

    E$ample %-)

    !he ideal airstandard 8rayton cycle operates with air entering the compressor at

  • 8/21/2019 termodinamika Chapter 09

    37/68

      "3

    or constant specific heats, the compressor work per unit mass flow is

       ( )

        ( )

      ( )

    W m h h

    W mC T T  

    wW 

    mC T T 

    !om"

    !om" "

    !om"

    !om"

     "

    = −

    = −

    = = −

    2 1

    2 1

    2 1

    ?ince the compressor is isentropic

    w C T T= ( )

  • 8/21/2019 termodinamika Chapter 09

    38/68

      "9

    w C T T  

    kJ 

    kg K  K 

    kJ 

    kg 

    !om" "= −

    =⋅

      −

    =

    ( )

    . ( . )

    .

    2 1

    1005 492 5 295

    19815

    !he conservation of energy for the turbine, process "*, yields for constant specific

    heats (let7s take a minute for you to get the following result)

       ( )

        ( )

      ( )

    W m h h

    W mC T T  

    w  W 

    mC T T 

    tur&

    tur& "

    tur&tur&

     "

    = −

    = −

    = = −

    3 4

    3 4

    3 4

    ?ince process "* is isentropic

    ?ince P - P and P - P we see that

  • 8/21/2019 termodinamika Chapter 09

    39/68

      "<

    ?ince P " - P 2 and P * - P ', we see that

    ( 1) /

    4

    3

    ( 1) /(1.4 1)/1.4

    4 3

    1

    1 11100 659.1

    6

    k k 

     "

    k k 

     "

    T r 

    T T K K  r 

    −−

     =     

     

         = = =            

    w C T T    kJ 

    kg K  K 

    kJ kg 

    tur& "= − = ⋅  −

    =

    ( ) . ( . )

    .

    3 4   1 005 1100 659 1

    4425

    We have already shown the heat supplied to the cycle per unit mass flow in process

    2" is  

       

    ( ) . ( . )

    .

    m m m

    m h Q m h

      Q

    mh h

    C T T   kJ 

    kg K  K 

    kJ 

    kg 

    in

    inin

     "

    2 3

    2 2 3 3

    3 2

    3 2   1005 1100 492 5

    609 6

    = =

    + =

    = = −

    = − =⋅

      −

    =

    !he net work done by the cycle is

  • 8/21/2019 termodinamika Chapter 09

    40/68

      *=

    !he net work done by the cycle is

    w w w

    kJ 

    kg kJ 

    kg 

    net tur& !om"= −

    = −

    =

    ( . . )

    .

    4425 19815

    244 3

    !he cycle efficiency becomes

    η th Bra%ton net 

    in

    w

    kJ 

    kg 

    kJ 

    kg 

    or 

    ,

    .

    .

    .

    =

    = =244 3

    609 6

    0 40 40%

    !he back work ratio is defined as

  • 8/21/2019 termodinamika Chapter 09

    41/68

      *'

    !he back work ratio is defined as

     BWR  w

    w

    w

    w

    kJ 

    kg 

    kJ 

    kg 

    in

    out 

    !om"

    tur&

    = =

    = =19815

    4425

    0448.

    .

    .

    +ote that T * - 4$

  • 8/21/2019 termodinamika Chapter 09

    42/68

      *2

    6etCs take a closer look at the effect of the pressure ratio on the net work done.

    w w w

    C T T C T T  

    C T T T C T T T  

    C T r 

    C T r 

    net tur& !om"

     " "

     " "

     "

     "

    k k    " "

    k k 

    = −

    = − − −

    = − − −

    = − − −−−

    ( ) ( )

    ( / ) ( / )

    ( ) ( )( ) /

    ( )/

    3 4 2 1

    3 4 3 1 2 1

    3 1 1

    1

    1 1

    11

    1

    +ote that the net work is *ero when

  • 8/21/2019 termodinamika Chapter 09

    43/68

      *"

    +ote that the net work is *ero when/( 1)

    3

    1

    1

    k k 

     " "

    T r an' r  

    −  

    = =     

    or fixed T " and T ', the pressure ratio that makes the work a maximum is obtained

    from0'w

    'r 

    net 

     "

    = 0

    !his is easier to do if we let X  - r  p(k ')@k 

    w C T  ( 

    C T ( net " "= − − −3 11   1 1( ) ( )

    'w

    '( C T ( C T  net   " "= − − − − =

    −3

    2

    10 1 1 0 0[ ( ) ] [ ]

    ?olving for X 

    !hen the r that makes the work a maximum for the constant property case and fixed

  • 8/21/2019 termodinamika Chapter 09

    44/68

      **

    !hen, the r  p that makes the work a maximum for the constant property case and fixed

    T " and T ' is

    or the ideal 8rayton cycle, show that the following results are true.

    1When r  p = r  p, max work, T * - T 21When r  p < r  p, max work, T * G T 21When r  p > r  p, max work, T * H T 2

    !he following is a plot of net work per unit mass and the efficiency for the aboveexample as a function of the pressure ratio.

    0 2 4 6 8 10 12 14 16 18 20 22

    120

    140

    160

    180

    200

    220

    240

    260

    280

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0.55

    0.60

    Pratio

      w  n  e   t

       k   J   /   k  g

     

       t   h ,   B  r  a  y   t  o  n

    T1 = 22C

    P1 = 95 kPa

    T3 = 1100 K 

     t = c = 100%

    rp,a!

     

    Regenerative 'rayton Cycle

  • 8/21/2019 termodinamika Chapter 09

    45/68

      *$

    Regenerative 'rayton Cycle

    or the 8rayton cycle, the turbine exhaust temperature is greater than the

    compressor exit temperature. !herefore, a heat exchanger can be placed between

    the hot gases leaving the turbine and the cooler gases leaving the compressor. !his

    heat exchanger is called a regenerator or recuperator. !he sketch of the regenerative8rayton cycle is shown below.

  • 8/21/2019 termodinamika Chapter 09

    46/68

      *4

    We define the regenerator effectiveness

    εregen as the ratio of the heat transferred to

    the compressor gases in the regenerator to the maximum possible heat transfer to

    the compressor gases.

    h h

    h h h h

    h h

    h h

    regen a!t 

    regen

    regen

    regen a!t 

    regen

    ,

    , max

    ,

    , max

    = −

    = − = −

    = =   −−

    5 2

    5 2 4 2

    5 2

    4 2

    ε 

    or ideal gases using the coldairstandard assumption with constant specific heats

  • 8/21/2019 termodinamika Chapter 09

    47/68

      *3

    or ideal gases using the cold air standard assumption with constant specific heats,

    the regenerator effectiveness becomes

    5 2

    4 2

    regen

    T T 

    T T ε 

    −≅

    Esing the closed cycle analysis and treating the heat addition and heat reection as

    steadyflow processes, the regenerative cycle thermal efficiency is

    η th regenout 

    in

    h hh h

    ,   = −

    = −   −−

    1

    1   6 1

    3 5

    +otice that the heat transfer occurring within the regenerator is not included in the

    efficiency calculation because this energy is not heat transferred across the cycle

    boundary.

     ssuming an ideal regenerator εregen - ' and constant specific heats, the thermalefficiency becomes (take the time to show this on your own)

  • 8/21/2019 termodinamika Chapter 09

    48/68

      *9

    When does the efficiency of the airstandard 8rayton cycle e/ual the efficiency of the

    airstandard regenerative 8rayton cycle; f we set ηth,8rayton - ηth,regen then

    >ecall that this is the pressure ratio that maximiIes the net work for the simple

    8rayton cycle and makes T * - T 2. What happens if the regenerative 8rayton cycle

    operates at a pressure ratio larger than this value;

    or fixed T " and T ', pressure ratios greater than this value cause T * to be less than

  • 8/21/2019 termodinamika Chapter 09

    49/68

      *<

    " ', p g *T 2, and the regenerator is not effective.

    What happens to the net work when a regenerator is added;

    What happens to the heat supplied when a regenerator is added;

    !he following shows a plot of the regenerative 8rayton cycle efficiency as a function

    of the pressure ratio and minimum to maximum temperature ratio, T '@T ".

    E$ample %-+ Regenerative 'rayton Cycle

  • 8/21/2019 termodinamika Chapter 09

    50/68

      $=

    E$ample % + Regenerative 'rayton Cycle

     ir enters the compressor of a regenerative gasturbine engine at '== k%a and "== D

    and is compressed to 9== k%a. !he regenerator has an effectiveness of 4$ percent,

    and the air enters the turbine at '2== D. or a compressor efficiency of 3$ percent

    and a turbine efficiency of 94 percent, determine(a) !he heat transfer in the regenerator.

    (b) !he back work ratio.

    (c) !he cycle thermal efficiency.

    #ompare the results for the above cycle with the ones listed below that have the

    same common data as re/uired. !he actual cycles are those for which the turbineand compressor isentropic efficiencies are less than one.

    (a) !he actual cycle with no regeneration, ε - =.(b) !he actual cycle with ideal regeneration, ε - '.=.(c) !he ideal cycle with regeneration, ε - =.4$.(d) !he ideal cycle with no regeneration, ε - =.(e) !he ideal cycle with ideal regeneration, ε - '.=.

    We assume air is an ideal gas with constant specific heats, that is, we use the cold

    airstandard assumption.

    !he cycle schematic is the same as above and the T-s diagram showing the effects of

  • 8/21/2019 termodinamika Chapter 09

    51/68

      $'

    !he cycle schematic is the same as above and the T s diagram showing the effects of

    compressor and turbine efficiencies is below.

    s

       T

     '== k%a

    9== k%a

    T-s Diagram for ,as Tur(ine it! Regeneration

    &

    )s)a

    .

    +

    /s

    /a

    0

     

    Summary of Results

  • 8/21/2019 termodinamika Chapter 09

    52/68

      $2

    Summary of Results 

    !"#$e "pe 'a$ 'a$ 'a$ dea$ dea$ dea$

    εreen

    0.00 0.65 1.00 0.00 0.65 1.00

    η#omp

    0.75 0.75 0.75 1.00 1.00 1.00

    η'r*

    0.86 0.86 0.86 1.00 1.00 1.00

    in +/+ 578.3 504.4 464.6 659.9 582.2 540.2

    w#omp

     +/+ 326.2 326.2 326.2 244.6 244.6 244.6

    w'r*

     +/+ 464.6 464.6 464.6 540.2 540.2 540.2

    w#omp

    /w'r*

      0.70 0.70 0.70 0.453 0.453 0.453

    ηh

    24.0% 27.5% 29.8% 44.8% 50.8% 54.7%

    Compressor analysis

  • 8/21/2019 termodinamika Chapter 09

    53/68

      $"

    p y

    !he isentropic temperature at compressor exit is( 1) /

    2 2

    1 1

    ( 1) /

    (1.4 1)/1.422 1

    1

    800300 ( ) 543.4

    100

    k k 

     #

    k k 

     #

    T    P 

    T P 

     P kPaT T K K  

     P kPa

     =

           

    = = =    

    !o find the actual temperature at compressor exit, T 2a, we apply the compressor

    efficiency

    η 

    η 

    !om"

    i#en !om"

    a!t !om"

     #

    a

     #

    a

    a

    !om"

     #

    w

    w

    h h

    h h

    T T 

    T T 

    T T T T  

     K K 

     K 

    = =  −

    −  ≅

      −−

    = + −

    = + −

    =

    ,

    ,

    ( )

    .(543. )

    .

    2 1

    2 1

    2 1

    2 1

    2 1 2 1

    1

    300  1

    0 754 300

    624 6

    ?ince the compressor is adiabatic and has steadyflow

  • 8/21/2019 termodinamika Chapter 09

    54/68

      $*

    p y

    2 1 2 1( )

    1.005 (624.6 300) 326.2

    !om" a " aw h h C T T  

    kJ kJ   K 

    kg K kg  

    = − = −

    = − =

    ⋅Turine analysis

    !he conservation of energy for the turbine, process "*, yields for constant specific

    heats (let7s take a minute for you to get the following result)

     

     ( )     ( )

      ( )

    W m h hW mC T T  

    w  W 

    mC T T 

    tur& a

    tur& " a

    tur&tur&

     " a

    = −= −

    = = −

    3 4

    3 4

    3 4

    ?ince P " - P 2 and P * - P ', we can find the isentropic temperature at the turbine exit.

  • 8/21/2019 termodinamika Chapter 09

    55/68

      $$

    " 2 * '

    ( 1) /

    4 4

    3 3

    ( 1) /

    (1.4 1)/1.444 3

    3

    1001200 ( ) 662.5800

    k k 

     #

    k k 

     #

    T P 

    T P 

     P kPaT T K K   P kPa

     =   

     

     = = =    

    !o find the actual temperature at turbine exit, T *a, we apply the turbine efficiency.

    η 

    η 

    tur&

    a!t tur&

    i#en tur&

    a

     #

    a

     #

    a tur& #

    a

    w

    w

    h h

    h h

    T T 

    T T 

    T T T T  

     K K 

     K T 

    = =

      −

    −   ≅

      −

    −= − −= − −= >

    ,

    ,

    ( )

    . ( . )

    .

    3 4

    3 4

    3 4

    3 4

    4 3 3 4

    2

    1200 0 86 1200 662 5

    737 7

    !he turbine work becomes

  • 8/21/2019 termodinamika Chapter 09

    56/68

      $4

    w h h C T T  

    kJ 

    kg K  K 

    kJ 

    kg 

    tur& a " a= − = −

    =⋅

      −

    =

    3 4 3 4

    1 005 1200 737 7

    464 6

    ( )

    . ( . )

    .

    !he back work ratio is defined as

     BWR  w

    w

    w

    wkJ 

    kg 

    kJ 

    kg 

    in

    out 

    !om"

    tur&

    = =

    = =3262

    464 6

    0 70

    .

    .

    .

    Regenerator analysis

  • 8/21/2019 termodinamika Chapter 09

    57/68

      $3

    !o find T $, we apply the regenerator effectiveness.

    ε 

    ε 

    regena

    a a

    a regen a a

    T T 

    T T T T T T  

     K K 

     K 

    ≅  −

    −= + −

    = + −=

    5 2

    4 2

    5 2 4 2

    624 6 0 65 737 7 624 6

    6981

    ( )

    . . ( . . )

    .

    !o find the heat transferred from the turbine exhaust gas to the compressor exit gas,

  • 8/21/2019 termodinamika Chapter 09

    58/68

      $9

       

    ( )

    . ( . . )

    .

    m h Q m h

    m m m

    Q

    mh h

    C T T 

    kJ kg K 

     K 

    kJ 

    kg 

    a a regen

    a

    regen

    regen

    a

     " a

    2 2 5 5

    2 5

    5 2

    5 2

    1005 6981 624 6

    739

    + =

    = =

    = = −

    = −

    = ⋅   −

    =

    apply the steadyflow conservation of energy to the compressor gas side of the

    regenerator.

    Esing qregen, we can determine the turbine exhaust gas temperature at the regenerator

  • 8/21/2019 termodinamika Chapter 09

    59/68

      $<

    4 4 6 6

    4 6

    4 6 4 6

    6 4

    ( )

    73.9

    737.7

    1.005

    664.2

    a a regen

    a

    regen

    regen a " a

    regen

    a

     "

    m h Q m h

    m m m

    Q h h C T T  

    m

    kJ 

      kg T T K 

    kJ C kg K 

     K 

    = +

    = =

    = = − = −

    = − = −

    ⋅=

    && &

    & & &

    &

    &

    Es g qregen, e ca de e e e u b e e aus gas e pe a u e a e ege e a o

    exit.

    1eat supplied to cycle

  • 8/21/2019 termodinamika Chapter 09

    60/68

      4=

     pply the steadyflow conservation of energy to the heat exchanger for process $".

    We obtain a result similar to that for the simple 8rayton cycle.

    h h C T T  

    kJ 

    kg K  K 

    kJ 

    kg 

    in "

    = − = −

    =⋅

      −

    =

    3 5 3 5

    1 005 1200 6981

    504 4

    ( )

    . ( . )

    .

    Cycle t!ermal efficiency

    !he net work done by the cycle is 

    (464.6 326.2) 138.4

    net tur& !om"w w w

    kJ kJ  

    kg kg  

    = −

    = − =

    !he cycle efficiency becomes

  • 8/21/2019 termodinamika Chapter 09

    61/68

      4'

    η th Bra%tonnet 

    in

    w

    kJ 

    kg 

    kJ 

    kg 

    or 

    ,

    .

    .

    . .

    =

    = =1384

    504 4

    0 274 27 4%

    Jou are encouraged to complete the calculations for the other values found in the

    summary table.

    Ot!er 2ays to "mprove 'rayton Cycle Performance

  • 8/21/2019 termodinamika Chapter 09

    62/68

      42

    ntercooling and reheating are two important ways to improve the performance of the

    8rayton cycle with regeneration.

    !he !s diagram for this cycle is shown below. ?ketch the %v diagram.

  • 8/21/2019 termodinamika Chapter 09

    63/68

      4"

    v

    %

    "ntercooling

  • 8/21/2019 termodinamika Chapter 09

    64/68

      4*

    "ntercooling

    When using multistage compression, cooling the working fluid between the stages will

    reduce the amount of compressor work re/uired. !he compressor work is reduced

    because cooling the working fluid reduces the average specific volume of the fluid

    and thus reduces the amount of work on the fluid to achieve the given pressure rise.

    !o determine the intermediate pressure at which intercooling should take place to

    minimiIe the compressor work, we follow the approach shown in #hapter 3.

    or the adiabatic, steadyflow compression process, the work input to the compressorper unit mass is

    4 32 4

    1 31 2

     - -!om"w v 'P v 'P v 'P v 'P  + +∫ ∫ ∫ ∫  =

    or the isentropic compression process

    k k

  • 8/21/2019 termodinamika Chapter 09

    65/68

      4$

    [ ]

    2 2 1 1 4 4 3 3

    2 1 4 3

    1 2 1 3 4 3

    ( 1) /( 1) /

    2 41 3

    1 3

     - ( ) ( )1 1

    ( ) ( )

    1 1

    ( / 1) ( / 1)1

    1 11

    !om"

    k k k k 

    k k w P v Pv P v P v

    k k 

    k kR R T T T T 

    k k k 

     R T T T T T T k 

    k P P  R T T 

    k P P 

    −−

    − + −

    = − + −

    = − + −

                 = − + −                      

    +otice that the fraction kR/(k-' ) = C  p.

    #an you obtain this relation another way; Aint0 apply the first law to processes '*.

    or twostage compression, let7s assume that intercooling takes place at constant

    d th b l d t th i l t t t f th

  • 8/21/2019 termodinamika Chapter 09

    66/68

      44

    pressure and the gases can be cooled to the inlet temperature for the compressor,

    such that P " - P 2 and T " - T '.

    !he total work supplied to the compressor becomes

    !o find the unknown pressure P 2 that gives the minimum work input for fixed

    compressor inlet conditions T ', P ', and exit pressure P *, we set

    'w P 

    'P 

    !om" ( )2

    20=

    !his yields

  • 8/21/2019 termodinamika Chapter 09

    67/68

      43

     P P P 2 1 4=

    or, the pressure ratios across the two compressors are e/ual.

     P 

     P 

     P 

     P 

     P 

     P 2

    1

    4

    2

    4

    3= =

    ntercooling is almost always used with regeneration. &uring intercooling the

    compressor final exit temperature is reduced therefore, more heat must be supplied

    in the heat addition process to achieve the maximum temperature of the cycle.

    >egeneration can make up part of the re/uired heat transfer.

    !o supply only compressed air, using intercooling re/uires less work input. !he next

    time you go to a home supply store where air compressors are sold, check the larger

    air compressors to see if intercooling is used. or the larger air compressors, the

    compressors are made of two pistoncylinder chambers. !he intercooling heat

    exchanger is often a pipe with a attached fins that connects the large pistoncylinderchamber with the smaller pistoncylinder chamber. ?ometimes the fly wheel used to

    drive the compressor has fan type blades a spokes to increase air flow across the

    compressor and heat exchanger pipe to improve the intercooling effect.

    E$tra Assignment

  • 8/21/2019 termodinamika Chapter 09

    68/68

    Obtain the expression for the compressor total work by applying conservation of

    energy directly to the low and highpressure compressors.

    Re!eating

    When using multistage expansion through two or more turbines, reheating

    between stages will increase the net work done (it also increases the

    re/uired heat input). !he regenerative 8rayton cycle with reheating was shown

    above.

    !he optimum intermediate pressure for reheating is the one that maximiIes the

    turbine work. ollowing the development given above for intercooling and assuming

    reheating to the highpressure turbine inlet temperature in a constant pressure

    steadyflow process, we can show the optimum reheat pressure to be

     P P P 7 6 9=or the pressure ratios across the two turbines are e/ual.

     P 

    P

     P 

    P

     P 

    P

    6

    7

    7

    9

    8

    9

    = =