the added value of thermal simulations during the design process … · 2019-06-10 · 5 w is...

19
LED Event FHI Norbert Engelberts Optimal Thermal Solutions B.V. The added value of thermal simulations during the design process of a LED Luminaire

Upload: others

Post on 12-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

LED Event FHI

Norbert Engelberts

Optimal Thermal Solutions BV

The added value of thermal

simulations during the design

process of a LED Luminaire

Overview

Copyright copy Optimal Thermal Solutions BV

bull Introduction

bull LED applications

bull Thermal Design processndash Analytically

ndash Experimentally

ndash Computional

bull Examplesndash Optimizing designing a heatsink

ndash Optimizing a board

ndash Effect of boundary conditions

bull Conclusion

2

Heat

losses

65-80

Visible

Light

20-

35

Heat

losses

12

Visible

Light

5

IR

83

Comparison Between LED and

Incandescent Lamps

bull Incandescent light bulb

bull Most of the heat transferred by infrared radiation

bull For 100 W electrical power input 5 W is light The remainder 95 W is heat

bull Filament can be between 2000 to 3000 degC

bull LED replacement light bulb

bull No radiation and convection from LED itself Only conduction

bull An equivalent LED bulb for 100 W incandescent is Pe~23 W

bull Assume 90 driver efficiency 30 LED light efficiency =gt Pdissipated ~17 W

bull LED can has a max junction temperature of 100 to 120 degC

copy Optimal Thermal Solutions BV 3

Comparison Between LED And

Incandescent Lamps

copy Optimal Thermal Solutions BV 4

Parameter Units Led versus incandescent

Pelectrical W 100 23 -77W (77 less)

Pdissipated W 95 17 -78W (82 less)

Tmax degC 2000 100 -1900degC (95 less)

Tambient degC 40 40 Not changed

Rj-ambient KW 21 35 6x better performance required

Heatsink [-] 7x7mm LPF70A

40

967 times more cooling surface

required

Verification

Methods

Approach

Summary Schematic

copy Optimal Thermal Solutions BV 5

Problem

Statement

Schematic

Properties

Assumptions

Analytical

Experimental

Solution

Numerical

Solving the problem

Analytically

Energy Balance ndash Open System

copy Optimal Thermal Solutions BV 6

Electrical

Power In Pe

Heat energy Q

Light power Pl

outin EE

QPP le

Boundary

Solving the problem

Analytically

Resistor network

copy Optimal Thermal Solutions BV 7

Pd ne Pe

Rj-brsquo

RTI

Rspreading

Hhs-amb

Solving the problem

Experimentally

copy Optimal Thermal Solutions BV 8

144degC

28degC

Void in applied

thermal grease

Result in

hotspot in COB

Corresponding

lsquounusedrsquo layer

Bad thermal interface Good thermal interface

Solving the problem

Computational Fluid Dynamics analyses

copy Optimal Thermal Solutions BV 9

bull Computational Fluid Dynamics (CFD) is an numerical method in which flow fields heat transfer and other physics are calculated in detail for an application of interest

bull CFD model or flow simulation results can be used as part of a design process to illustrate how a product or process operates This can be used to troubleshoot problems to optimize performance and to design new products

Example 1

Optimizing a heatsink

copy Optimal Thermal Solutions BV 10

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

Example 1

Optimizing the heatsink contrsquod

copy Optimal Thermal Solutions BV 11

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

HS

Example 2

Board design effect of thermal vias

Copyright copy Optimal Thermal Solutions BV 12

FR4

Vias 03-06

wall thickness 25-35um

epoxy filled copper filled

Copper

bull Carrier of standard FR4 board material 400-800-1600um

bull Thick copper on the top and on the bottom for spreading the heat

over a larger surface 35-70-05-140um and thicker

bull Add viarsquos to increase through-board conductivity

Example

Copper path

5mmx3mm

no via vias

tin filled

vias

copper

filled vias

ddrill mm 030 030 030 030

d finished hole mm 025 025 025 025

copper thickness in hole mm 0025 0025 0025 0025

Acopper mm2 00216 00216 00216 00216

Ahole mm2 00491 00491 00491 00491

l koper WmK 385 385 385 385

l hole fill WmK 03 03 50 385

Via length mm 08 08 08 08

Rcopper KW 9621 9621 9621 9621

Rhole KW 54325 54325 326 42

Rvia KW 9604 9604 7428 2940

Acomponent mm2 150 130 130 130

nvia 0 16 16 16

l FR4 WmK 03 03 03 03

RFR4 KW 1778 2051 2051 2051

Rincl Vias KW 1778 58 45 18

l eff WmK 030 1055 1356 3379

Temperature distribution

within the board

Temperature distribution

within the board amp LED

Copyright copy Optimal Thermal Solutions BV 13

bull Most heat is below die-thermal path

bull Interface to heat sink is critical because of small interface surface

area

Example 2

Board design Effect of thermal vias contrsquod

Example 3

Check effect of boundary conditions

copy Optimal Thermal Solutions BV 14

Troom 40degC

P=96W

Lamp in ceiling with poor ventilation Lamp in ceiling sufficient ventilation

Tbase 108degC

Mounting the LED lamp in a hole in the ceiling covered with insulation

material shows a temperature increase of 16degC in the heat sink base

Tbase 92degC

Example 4

Effect of orientation amp lamp

environment

copy Optimal Thermal Solutions BV 15

30 W dissipation LED COB application

Tested heat sink in free air The COB is within

specification

But what is the performance in a recessed ceiling

Example 4

Recessed Ceiling

copy Optimal Thermal Solutions BV 16

How could one lsquodefinersquo a recessed ceiling

Example could be the UL 1993 6rdquo test box

Physical example

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 2: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Overview

Copyright copy Optimal Thermal Solutions BV

bull Introduction

bull LED applications

bull Thermal Design processndash Analytically

ndash Experimentally

ndash Computional

bull Examplesndash Optimizing designing a heatsink

ndash Optimizing a board

ndash Effect of boundary conditions

bull Conclusion

2

Heat

losses

65-80

Visible

Light

20-

35

Heat

losses

12

Visible

Light

5

IR

83

Comparison Between LED and

Incandescent Lamps

bull Incandescent light bulb

bull Most of the heat transferred by infrared radiation

bull For 100 W electrical power input 5 W is light The remainder 95 W is heat

bull Filament can be between 2000 to 3000 degC

bull LED replacement light bulb

bull No radiation and convection from LED itself Only conduction

bull An equivalent LED bulb for 100 W incandescent is Pe~23 W

bull Assume 90 driver efficiency 30 LED light efficiency =gt Pdissipated ~17 W

bull LED can has a max junction temperature of 100 to 120 degC

copy Optimal Thermal Solutions BV 3

Comparison Between LED And

Incandescent Lamps

copy Optimal Thermal Solutions BV 4

Parameter Units Led versus incandescent

Pelectrical W 100 23 -77W (77 less)

Pdissipated W 95 17 -78W (82 less)

Tmax degC 2000 100 -1900degC (95 less)

Tambient degC 40 40 Not changed

Rj-ambient KW 21 35 6x better performance required

Heatsink [-] 7x7mm LPF70A

40

967 times more cooling surface

required

Verification

Methods

Approach

Summary Schematic

copy Optimal Thermal Solutions BV 5

Problem

Statement

Schematic

Properties

Assumptions

Analytical

Experimental

Solution

Numerical

Solving the problem

Analytically

Energy Balance ndash Open System

copy Optimal Thermal Solutions BV 6

Electrical

Power In Pe

Heat energy Q

Light power Pl

outin EE

QPP le

Boundary

Solving the problem

Analytically

Resistor network

copy Optimal Thermal Solutions BV 7

Pd ne Pe

Rj-brsquo

RTI

Rspreading

Hhs-amb

Solving the problem

Experimentally

copy Optimal Thermal Solutions BV 8

144degC

28degC

Void in applied

thermal grease

Result in

hotspot in COB

Corresponding

lsquounusedrsquo layer

Bad thermal interface Good thermal interface

Solving the problem

Computational Fluid Dynamics analyses

copy Optimal Thermal Solutions BV 9

bull Computational Fluid Dynamics (CFD) is an numerical method in which flow fields heat transfer and other physics are calculated in detail for an application of interest

bull CFD model or flow simulation results can be used as part of a design process to illustrate how a product or process operates This can be used to troubleshoot problems to optimize performance and to design new products

Example 1

Optimizing a heatsink

copy Optimal Thermal Solutions BV 10

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

Example 1

Optimizing the heatsink contrsquod

copy Optimal Thermal Solutions BV 11

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

HS

Example 2

Board design effect of thermal vias

Copyright copy Optimal Thermal Solutions BV 12

FR4

Vias 03-06

wall thickness 25-35um

epoxy filled copper filled

Copper

bull Carrier of standard FR4 board material 400-800-1600um

bull Thick copper on the top and on the bottom for spreading the heat

over a larger surface 35-70-05-140um and thicker

bull Add viarsquos to increase through-board conductivity

Example

Copper path

5mmx3mm

no via vias

tin filled

vias

copper

filled vias

ddrill mm 030 030 030 030

d finished hole mm 025 025 025 025

copper thickness in hole mm 0025 0025 0025 0025

Acopper mm2 00216 00216 00216 00216

Ahole mm2 00491 00491 00491 00491

l koper WmK 385 385 385 385

l hole fill WmK 03 03 50 385

Via length mm 08 08 08 08

Rcopper KW 9621 9621 9621 9621

Rhole KW 54325 54325 326 42

Rvia KW 9604 9604 7428 2940

Acomponent mm2 150 130 130 130

nvia 0 16 16 16

l FR4 WmK 03 03 03 03

RFR4 KW 1778 2051 2051 2051

Rincl Vias KW 1778 58 45 18

l eff WmK 030 1055 1356 3379

Temperature distribution

within the board

Temperature distribution

within the board amp LED

Copyright copy Optimal Thermal Solutions BV 13

bull Most heat is below die-thermal path

bull Interface to heat sink is critical because of small interface surface

area

Example 2

Board design Effect of thermal vias contrsquod

Example 3

Check effect of boundary conditions

copy Optimal Thermal Solutions BV 14

Troom 40degC

P=96W

Lamp in ceiling with poor ventilation Lamp in ceiling sufficient ventilation

Tbase 108degC

Mounting the LED lamp in a hole in the ceiling covered with insulation

material shows a temperature increase of 16degC in the heat sink base

Tbase 92degC

Example 4

Effect of orientation amp lamp

environment

copy Optimal Thermal Solutions BV 15

30 W dissipation LED COB application

Tested heat sink in free air The COB is within

specification

But what is the performance in a recessed ceiling

Example 4

Recessed Ceiling

copy Optimal Thermal Solutions BV 16

How could one lsquodefinersquo a recessed ceiling

Example could be the UL 1993 6rdquo test box

Physical example

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 3: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Heat

losses

65-80

Visible

Light

20-

35

Heat

losses

12

Visible

Light

5

IR

83

Comparison Between LED and

Incandescent Lamps

bull Incandescent light bulb

bull Most of the heat transferred by infrared radiation

bull For 100 W electrical power input 5 W is light The remainder 95 W is heat

bull Filament can be between 2000 to 3000 degC

bull LED replacement light bulb

bull No radiation and convection from LED itself Only conduction

bull An equivalent LED bulb for 100 W incandescent is Pe~23 W

bull Assume 90 driver efficiency 30 LED light efficiency =gt Pdissipated ~17 W

bull LED can has a max junction temperature of 100 to 120 degC

copy Optimal Thermal Solutions BV 3

Comparison Between LED And

Incandescent Lamps

copy Optimal Thermal Solutions BV 4

Parameter Units Led versus incandescent

Pelectrical W 100 23 -77W (77 less)

Pdissipated W 95 17 -78W (82 less)

Tmax degC 2000 100 -1900degC (95 less)

Tambient degC 40 40 Not changed

Rj-ambient KW 21 35 6x better performance required

Heatsink [-] 7x7mm LPF70A

40

967 times more cooling surface

required

Verification

Methods

Approach

Summary Schematic

copy Optimal Thermal Solutions BV 5

Problem

Statement

Schematic

Properties

Assumptions

Analytical

Experimental

Solution

Numerical

Solving the problem

Analytically

Energy Balance ndash Open System

copy Optimal Thermal Solutions BV 6

Electrical

Power In Pe

Heat energy Q

Light power Pl

outin EE

QPP le

Boundary

Solving the problem

Analytically

Resistor network

copy Optimal Thermal Solutions BV 7

Pd ne Pe

Rj-brsquo

RTI

Rspreading

Hhs-amb

Solving the problem

Experimentally

copy Optimal Thermal Solutions BV 8

144degC

28degC

Void in applied

thermal grease

Result in

hotspot in COB

Corresponding

lsquounusedrsquo layer

Bad thermal interface Good thermal interface

Solving the problem

Computational Fluid Dynamics analyses

copy Optimal Thermal Solutions BV 9

bull Computational Fluid Dynamics (CFD) is an numerical method in which flow fields heat transfer and other physics are calculated in detail for an application of interest

bull CFD model or flow simulation results can be used as part of a design process to illustrate how a product or process operates This can be used to troubleshoot problems to optimize performance and to design new products

Example 1

Optimizing a heatsink

copy Optimal Thermal Solutions BV 10

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

Example 1

Optimizing the heatsink contrsquod

copy Optimal Thermal Solutions BV 11

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

HS

Example 2

Board design effect of thermal vias

Copyright copy Optimal Thermal Solutions BV 12

FR4

Vias 03-06

wall thickness 25-35um

epoxy filled copper filled

Copper

bull Carrier of standard FR4 board material 400-800-1600um

bull Thick copper on the top and on the bottom for spreading the heat

over a larger surface 35-70-05-140um and thicker

bull Add viarsquos to increase through-board conductivity

Example

Copper path

5mmx3mm

no via vias

tin filled

vias

copper

filled vias

ddrill mm 030 030 030 030

d finished hole mm 025 025 025 025

copper thickness in hole mm 0025 0025 0025 0025

Acopper mm2 00216 00216 00216 00216

Ahole mm2 00491 00491 00491 00491

l koper WmK 385 385 385 385

l hole fill WmK 03 03 50 385

Via length mm 08 08 08 08

Rcopper KW 9621 9621 9621 9621

Rhole KW 54325 54325 326 42

Rvia KW 9604 9604 7428 2940

Acomponent mm2 150 130 130 130

nvia 0 16 16 16

l FR4 WmK 03 03 03 03

RFR4 KW 1778 2051 2051 2051

Rincl Vias KW 1778 58 45 18

l eff WmK 030 1055 1356 3379

Temperature distribution

within the board

Temperature distribution

within the board amp LED

Copyright copy Optimal Thermal Solutions BV 13

bull Most heat is below die-thermal path

bull Interface to heat sink is critical because of small interface surface

area

Example 2

Board design Effect of thermal vias contrsquod

Example 3

Check effect of boundary conditions

copy Optimal Thermal Solutions BV 14

Troom 40degC

P=96W

Lamp in ceiling with poor ventilation Lamp in ceiling sufficient ventilation

Tbase 108degC

Mounting the LED lamp in a hole in the ceiling covered with insulation

material shows a temperature increase of 16degC in the heat sink base

Tbase 92degC

Example 4

Effect of orientation amp lamp

environment

copy Optimal Thermal Solutions BV 15

30 W dissipation LED COB application

Tested heat sink in free air The COB is within

specification

But what is the performance in a recessed ceiling

Example 4

Recessed Ceiling

copy Optimal Thermal Solutions BV 16

How could one lsquodefinersquo a recessed ceiling

Example could be the UL 1993 6rdquo test box

Physical example

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 4: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Comparison Between LED And

Incandescent Lamps

copy Optimal Thermal Solutions BV 4

Parameter Units Led versus incandescent

Pelectrical W 100 23 -77W (77 less)

Pdissipated W 95 17 -78W (82 less)

Tmax degC 2000 100 -1900degC (95 less)

Tambient degC 40 40 Not changed

Rj-ambient KW 21 35 6x better performance required

Heatsink [-] 7x7mm LPF70A

40

967 times more cooling surface

required

Verification

Methods

Approach

Summary Schematic

copy Optimal Thermal Solutions BV 5

Problem

Statement

Schematic

Properties

Assumptions

Analytical

Experimental

Solution

Numerical

Solving the problem

Analytically

Energy Balance ndash Open System

copy Optimal Thermal Solutions BV 6

Electrical

Power In Pe

Heat energy Q

Light power Pl

outin EE

QPP le

Boundary

Solving the problem

Analytically

Resistor network

copy Optimal Thermal Solutions BV 7

Pd ne Pe

Rj-brsquo

RTI

Rspreading

Hhs-amb

Solving the problem

Experimentally

copy Optimal Thermal Solutions BV 8

144degC

28degC

Void in applied

thermal grease

Result in

hotspot in COB

Corresponding

lsquounusedrsquo layer

Bad thermal interface Good thermal interface

Solving the problem

Computational Fluid Dynamics analyses

copy Optimal Thermal Solutions BV 9

bull Computational Fluid Dynamics (CFD) is an numerical method in which flow fields heat transfer and other physics are calculated in detail for an application of interest

bull CFD model or flow simulation results can be used as part of a design process to illustrate how a product or process operates This can be used to troubleshoot problems to optimize performance and to design new products

Example 1

Optimizing a heatsink

copy Optimal Thermal Solutions BV 10

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

Example 1

Optimizing the heatsink contrsquod

copy Optimal Thermal Solutions BV 11

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

HS

Example 2

Board design effect of thermal vias

Copyright copy Optimal Thermal Solutions BV 12

FR4

Vias 03-06

wall thickness 25-35um

epoxy filled copper filled

Copper

bull Carrier of standard FR4 board material 400-800-1600um

bull Thick copper on the top and on the bottom for spreading the heat

over a larger surface 35-70-05-140um and thicker

bull Add viarsquos to increase through-board conductivity

Example

Copper path

5mmx3mm

no via vias

tin filled

vias

copper

filled vias

ddrill mm 030 030 030 030

d finished hole mm 025 025 025 025

copper thickness in hole mm 0025 0025 0025 0025

Acopper mm2 00216 00216 00216 00216

Ahole mm2 00491 00491 00491 00491

l koper WmK 385 385 385 385

l hole fill WmK 03 03 50 385

Via length mm 08 08 08 08

Rcopper KW 9621 9621 9621 9621

Rhole KW 54325 54325 326 42

Rvia KW 9604 9604 7428 2940

Acomponent mm2 150 130 130 130

nvia 0 16 16 16

l FR4 WmK 03 03 03 03

RFR4 KW 1778 2051 2051 2051

Rincl Vias KW 1778 58 45 18

l eff WmK 030 1055 1356 3379

Temperature distribution

within the board

Temperature distribution

within the board amp LED

Copyright copy Optimal Thermal Solutions BV 13

bull Most heat is below die-thermal path

bull Interface to heat sink is critical because of small interface surface

area

Example 2

Board design Effect of thermal vias contrsquod

Example 3

Check effect of boundary conditions

copy Optimal Thermal Solutions BV 14

Troom 40degC

P=96W

Lamp in ceiling with poor ventilation Lamp in ceiling sufficient ventilation

Tbase 108degC

Mounting the LED lamp in a hole in the ceiling covered with insulation

material shows a temperature increase of 16degC in the heat sink base

Tbase 92degC

Example 4

Effect of orientation amp lamp

environment

copy Optimal Thermal Solutions BV 15

30 W dissipation LED COB application

Tested heat sink in free air The COB is within

specification

But what is the performance in a recessed ceiling

Example 4

Recessed Ceiling

copy Optimal Thermal Solutions BV 16

How could one lsquodefinersquo a recessed ceiling

Example could be the UL 1993 6rdquo test box

Physical example

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 5: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Verification

Methods

Approach

Summary Schematic

copy Optimal Thermal Solutions BV 5

Problem

Statement

Schematic

Properties

Assumptions

Analytical

Experimental

Solution

Numerical

Solving the problem

Analytically

Energy Balance ndash Open System

copy Optimal Thermal Solutions BV 6

Electrical

Power In Pe

Heat energy Q

Light power Pl

outin EE

QPP le

Boundary

Solving the problem

Analytically

Resistor network

copy Optimal Thermal Solutions BV 7

Pd ne Pe

Rj-brsquo

RTI

Rspreading

Hhs-amb

Solving the problem

Experimentally

copy Optimal Thermal Solutions BV 8

144degC

28degC

Void in applied

thermal grease

Result in

hotspot in COB

Corresponding

lsquounusedrsquo layer

Bad thermal interface Good thermal interface

Solving the problem

Computational Fluid Dynamics analyses

copy Optimal Thermal Solutions BV 9

bull Computational Fluid Dynamics (CFD) is an numerical method in which flow fields heat transfer and other physics are calculated in detail for an application of interest

bull CFD model or flow simulation results can be used as part of a design process to illustrate how a product or process operates This can be used to troubleshoot problems to optimize performance and to design new products

Example 1

Optimizing a heatsink

copy Optimal Thermal Solutions BV 10

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

Example 1

Optimizing the heatsink contrsquod

copy Optimal Thermal Solutions BV 11

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

HS

Example 2

Board design effect of thermal vias

Copyright copy Optimal Thermal Solutions BV 12

FR4

Vias 03-06

wall thickness 25-35um

epoxy filled copper filled

Copper

bull Carrier of standard FR4 board material 400-800-1600um

bull Thick copper on the top and on the bottom for spreading the heat

over a larger surface 35-70-05-140um and thicker

bull Add viarsquos to increase through-board conductivity

Example

Copper path

5mmx3mm

no via vias

tin filled

vias

copper

filled vias

ddrill mm 030 030 030 030

d finished hole mm 025 025 025 025

copper thickness in hole mm 0025 0025 0025 0025

Acopper mm2 00216 00216 00216 00216

Ahole mm2 00491 00491 00491 00491

l koper WmK 385 385 385 385

l hole fill WmK 03 03 50 385

Via length mm 08 08 08 08

Rcopper KW 9621 9621 9621 9621

Rhole KW 54325 54325 326 42

Rvia KW 9604 9604 7428 2940

Acomponent mm2 150 130 130 130

nvia 0 16 16 16

l FR4 WmK 03 03 03 03

RFR4 KW 1778 2051 2051 2051

Rincl Vias KW 1778 58 45 18

l eff WmK 030 1055 1356 3379

Temperature distribution

within the board

Temperature distribution

within the board amp LED

Copyright copy Optimal Thermal Solutions BV 13

bull Most heat is below die-thermal path

bull Interface to heat sink is critical because of small interface surface

area

Example 2

Board design Effect of thermal vias contrsquod

Example 3

Check effect of boundary conditions

copy Optimal Thermal Solutions BV 14

Troom 40degC

P=96W

Lamp in ceiling with poor ventilation Lamp in ceiling sufficient ventilation

Tbase 108degC

Mounting the LED lamp in a hole in the ceiling covered with insulation

material shows a temperature increase of 16degC in the heat sink base

Tbase 92degC

Example 4

Effect of orientation amp lamp

environment

copy Optimal Thermal Solutions BV 15

30 W dissipation LED COB application

Tested heat sink in free air The COB is within

specification

But what is the performance in a recessed ceiling

Example 4

Recessed Ceiling

copy Optimal Thermal Solutions BV 16

How could one lsquodefinersquo a recessed ceiling

Example could be the UL 1993 6rdquo test box

Physical example

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 6: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Solving the problem

Analytically

Energy Balance ndash Open System

copy Optimal Thermal Solutions BV 6

Electrical

Power In Pe

Heat energy Q

Light power Pl

outin EE

QPP le

Boundary

Solving the problem

Analytically

Resistor network

copy Optimal Thermal Solutions BV 7

Pd ne Pe

Rj-brsquo

RTI

Rspreading

Hhs-amb

Solving the problem

Experimentally

copy Optimal Thermal Solutions BV 8

144degC

28degC

Void in applied

thermal grease

Result in

hotspot in COB

Corresponding

lsquounusedrsquo layer

Bad thermal interface Good thermal interface

Solving the problem

Computational Fluid Dynamics analyses

copy Optimal Thermal Solutions BV 9

bull Computational Fluid Dynamics (CFD) is an numerical method in which flow fields heat transfer and other physics are calculated in detail for an application of interest

bull CFD model or flow simulation results can be used as part of a design process to illustrate how a product or process operates This can be used to troubleshoot problems to optimize performance and to design new products

Example 1

Optimizing a heatsink

copy Optimal Thermal Solutions BV 10

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

Example 1

Optimizing the heatsink contrsquod

copy Optimal Thermal Solutions BV 11

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

HS

Example 2

Board design effect of thermal vias

Copyright copy Optimal Thermal Solutions BV 12

FR4

Vias 03-06

wall thickness 25-35um

epoxy filled copper filled

Copper

bull Carrier of standard FR4 board material 400-800-1600um

bull Thick copper on the top and on the bottom for spreading the heat

over a larger surface 35-70-05-140um and thicker

bull Add viarsquos to increase through-board conductivity

Example

Copper path

5mmx3mm

no via vias

tin filled

vias

copper

filled vias

ddrill mm 030 030 030 030

d finished hole mm 025 025 025 025

copper thickness in hole mm 0025 0025 0025 0025

Acopper mm2 00216 00216 00216 00216

Ahole mm2 00491 00491 00491 00491

l koper WmK 385 385 385 385

l hole fill WmK 03 03 50 385

Via length mm 08 08 08 08

Rcopper KW 9621 9621 9621 9621

Rhole KW 54325 54325 326 42

Rvia KW 9604 9604 7428 2940

Acomponent mm2 150 130 130 130

nvia 0 16 16 16

l FR4 WmK 03 03 03 03

RFR4 KW 1778 2051 2051 2051

Rincl Vias KW 1778 58 45 18

l eff WmK 030 1055 1356 3379

Temperature distribution

within the board

Temperature distribution

within the board amp LED

Copyright copy Optimal Thermal Solutions BV 13

bull Most heat is below die-thermal path

bull Interface to heat sink is critical because of small interface surface

area

Example 2

Board design Effect of thermal vias contrsquod

Example 3

Check effect of boundary conditions

copy Optimal Thermal Solutions BV 14

Troom 40degC

P=96W

Lamp in ceiling with poor ventilation Lamp in ceiling sufficient ventilation

Tbase 108degC

Mounting the LED lamp in a hole in the ceiling covered with insulation

material shows a temperature increase of 16degC in the heat sink base

Tbase 92degC

Example 4

Effect of orientation amp lamp

environment

copy Optimal Thermal Solutions BV 15

30 W dissipation LED COB application

Tested heat sink in free air The COB is within

specification

But what is the performance in a recessed ceiling

Example 4

Recessed Ceiling

copy Optimal Thermal Solutions BV 16

How could one lsquodefinersquo a recessed ceiling

Example could be the UL 1993 6rdquo test box

Physical example

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 7: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Solving the problem

Analytically

Resistor network

copy Optimal Thermal Solutions BV 7

Pd ne Pe

Rj-brsquo

RTI

Rspreading

Hhs-amb

Solving the problem

Experimentally

copy Optimal Thermal Solutions BV 8

144degC

28degC

Void in applied

thermal grease

Result in

hotspot in COB

Corresponding

lsquounusedrsquo layer

Bad thermal interface Good thermal interface

Solving the problem

Computational Fluid Dynamics analyses

copy Optimal Thermal Solutions BV 9

bull Computational Fluid Dynamics (CFD) is an numerical method in which flow fields heat transfer and other physics are calculated in detail for an application of interest

bull CFD model or flow simulation results can be used as part of a design process to illustrate how a product or process operates This can be used to troubleshoot problems to optimize performance and to design new products

Example 1

Optimizing a heatsink

copy Optimal Thermal Solutions BV 10

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

Example 1

Optimizing the heatsink contrsquod

copy Optimal Thermal Solutions BV 11

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

HS

Example 2

Board design effect of thermal vias

Copyright copy Optimal Thermal Solutions BV 12

FR4

Vias 03-06

wall thickness 25-35um

epoxy filled copper filled

Copper

bull Carrier of standard FR4 board material 400-800-1600um

bull Thick copper on the top and on the bottom for spreading the heat

over a larger surface 35-70-05-140um and thicker

bull Add viarsquos to increase through-board conductivity

Example

Copper path

5mmx3mm

no via vias

tin filled

vias

copper

filled vias

ddrill mm 030 030 030 030

d finished hole mm 025 025 025 025

copper thickness in hole mm 0025 0025 0025 0025

Acopper mm2 00216 00216 00216 00216

Ahole mm2 00491 00491 00491 00491

l koper WmK 385 385 385 385

l hole fill WmK 03 03 50 385

Via length mm 08 08 08 08

Rcopper KW 9621 9621 9621 9621

Rhole KW 54325 54325 326 42

Rvia KW 9604 9604 7428 2940

Acomponent mm2 150 130 130 130

nvia 0 16 16 16

l FR4 WmK 03 03 03 03

RFR4 KW 1778 2051 2051 2051

Rincl Vias KW 1778 58 45 18

l eff WmK 030 1055 1356 3379

Temperature distribution

within the board

Temperature distribution

within the board amp LED

Copyright copy Optimal Thermal Solutions BV 13

bull Most heat is below die-thermal path

bull Interface to heat sink is critical because of small interface surface

area

Example 2

Board design Effect of thermal vias contrsquod

Example 3

Check effect of boundary conditions

copy Optimal Thermal Solutions BV 14

Troom 40degC

P=96W

Lamp in ceiling with poor ventilation Lamp in ceiling sufficient ventilation

Tbase 108degC

Mounting the LED lamp in a hole in the ceiling covered with insulation

material shows a temperature increase of 16degC in the heat sink base

Tbase 92degC

Example 4

Effect of orientation amp lamp

environment

copy Optimal Thermal Solutions BV 15

30 W dissipation LED COB application

Tested heat sink in free air The COB is within

specification

But what is the performance in a recessed ceiling

Example 4

Recessed Ceiling

copy Optimal Thermal Solutions BV 16

How could one lsquodefinersquo a recessed ceiling

Example could be the UL 1993 6rdquo test box

Physical example

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 8: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Solving the problem

Experimentally

copy Optimal Thermal Solutions BV 8

144degC

28degC

Void in applied

thermal grease

Result in

hotspot in COB

Corresponding

lsquounusedrsquo layer

Bad thermal interface Good thermal interface

Solving the problem

Computational Fluid Dynamics analyses

copy Optimal Thermal Solutions BV 9

bull Computational Fluid Dynamics (CFD) is an numerical method in which flow fields heat transfer and other physics are calculated in detail for an application of interest

bull CFD model or flow simulation results can be used as part of a design process to illustrate how a product or process operates This can be used to troubleshoot problems to optimize performance and to design new products

Example 1

Optimizing a heatsink

copy Optimal Thermal Solutions BV 10

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

Example 1

Optimizing the heatsink contrsquod

copy Optimal Thermal Solutions BV 11

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

HS

Example 2

Board design effect of thermal vias

Copyright copy Optimal Thermal Solutions BV 12

FR4

Vias 03-06

wall thickness 25-35um

epoxy filled copper filled

Copper

bull Carrier of standard FR4 board material 400-800-1600um

bull Thick copper on the top and on the bottom for spreading the heat

over a larger surface 35-70-05-140um and thicker

bull Add viarsquos to increase through-board conductivity

Example

Copper path

5mmx3mm

no via vias

tin filled

vias

copper

filled vias

ddrill mm 030 030 030 030

d finished hole mm 025 025 025 025

copper thickness in hole mm 0025 0025 0025 0025

Acopper mm2 00216 00216 00216 00216

Ahole mm2 00491 00491 00491 00491

l koper WmK 385 385 385 385

l hole fill WmK 03 03 50 385

Via length mm 08 08 08 08

Rcopper KW 9621 9621 9621 9621

Rhole KW 54325 54325 326 42

Rvia KW 9604 9604 7428 2940

Acomponent mm2 150 130 130 130

nvia 0 16 16 16

l FR4 WmK 03 03 03 03

RFR4 KW 1778 2051 2051 2051

Rincl Vias KW 1778 58 45 18

l eff WmK 030 1055 1356 3379

Temperature distribution

within the board

Temperature distribution

within the board amp LED

Copyright copy Optimal Thermal Solutions BV 13

bull Most heat is below die-thermal path

bull Interface to heat sink is critical because of small interface surface

area

Example 2

Board design Effect of thermal vias contrsquod

Example 3

Check effect of boundary conditions

copy Optimal Thermal Solutions BV 14

Troom 40degC

P=96W

Lamp in ceiling with poor ventilation Lamp in ceiling sufficient ventilation

Tbase 108degC

Mounting the LED lamp in a hole in the ceiling covered with insulation

material shows a temperature increase of 16degC in the heat sink base

Tbase 92degC

Example 4

Effect of orientation amp lamp

environment

copy Optimal Thermal Solutions BV 15

30 W dissipation LED COB application

Tested heat sink in free air The COB is within

specification

But what is the performance in a recessed ceiling

Example 4

Recessed Ceiling

copy Optimal Thermal Solutions BV 16

How could one lsquodefinersquo a recessed ceiling

Example could be the UL 1993 6rdquo test box

Physical example

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 9: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Solving the problem

Computational Fluid Dynamics analyses

copy Optimal Thermal Solutions BV 9

bull Computational Fluid Dynamics (CFD) is an numerical method in which flow fields heat transfer and other physics are calculated in detail for an application of interest

bull CFD model or flow simulation results can be used as part of a design process to illustrate how a product or process operates This can be used to troubleshoot problems to optimize performance and to design new products

Example 1

Optimizing a heatsink

copy Optimal Thermal Solutions BV 10

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

Example 1

Optimizing the heatsink contrsquod

copy Optimal Thermal Solutions BV 11

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

HS

Example 2

Board design effect of thermal vias

Copyright copy Optimal Thermal Solutions BV 12

FR4

Vias 03-06

wall thickness 25-35um

epoxy filled copper filled

Copper

bull Carrier of standard FR4 board material 400-800-1600um

bull Thick copper on the top and on the bottom for spreading the heat

over a larger surface 35-70-05-140um and thicker

bull Add viarsquos to increase through-board conductivity

Example

Copper path

5mmx3mm

no via vias

tin filled

vias

copper

filled vias

ddrill mm 030 030 030 030

d finished hole mm 025 025 025 025

copper thickness in hole mm 0025 0025 0025 0025

Acopper mm2 00216 00216 00216 00216

Ahole mm2 00491 00491 00491 00491

l koper WmK 385 385 385 385

l hole fill WmK 03 03 50 385

Via length mm 08 08 08 08

Rcopper KW 9621 9621 9621 9621

Rhole KW 54325 54325 326 42

Rvia KW 9604 9604 7428 2940

Acomponent mm2 150 130 130 130

nvia 0 16 16 16

l FR4 WmK 03 03 03 03

RFR4 KW 1778 2051 2051 2051

Rincl Vias KW 1778 58 45 18

l eff WmK 030 1055 1356 3379

Temperature distribution

within the board

Temperature distribution

within the board amp LED

Copyright copy Optimal Thermal Solutions BV 13

bull Most heat is below die-thermal path

bull Interface to heat sink is critical because of small interface surface

area

Example 2

Board design Effect of thermal vias contrsquod

Example 3

Check effect of boundary conditions

copy Optimal Thermal Solutions BV 14

Troom 40degC

P=96W

Lamp in ceiling with poor ventilation Lamp in ceiling sufficient ventilation

Tbase 108degC

Mounting the LED lamp in a hole in the ceiling covered with insulation

material shows a temperature increase of 16degC in the heat sink base

Tbase 92degC

Example 4

Effect of orientation amp lamp

environment

copy Optimal Thermal Solutions BV 15

30 W dissipation LED COB application

Tested heat sink in free air The COB is within

specification

But what is the performance in a recessed ceiling

Example 4

Recessed Ceiling

copy Optimal Thermal Solutions BV 16

How could one lsquodefinersquo a recessed ceiling

Example could be the UL 1993 6rdquo test box

Physical example

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 10: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Example 1

Optimizing a heatsink

copy Optimal Thermal Solutions BV 10

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

Example 1

Optimizing the heatsink contrsquod

copy Optimal Thermal Solutions BV 11

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

HS

Example 2

Board design effect of thermal vias

Copyright copy Optimal Thermal Solutions BV 12

FR4

Vias 03-06

wall thickness 25-35um

epoxy filled copper filled

Copper

bull Carrier of standard FR4 board material 400-800-1600um

bull Thick copper on the top and on the bottom for spreading the heat

over a larger surface 35-70-05-140um and thicker

bull Add viarsquos to increase through-board conductivity

Example

Copper path

5mmx3mm

no via vias

tin filled

vias

copper

filled vias

ddrill mm 030 030 030 030

d finished hole mm 025 025 025 025

copper thickness in hole mm 0025 0025 0025 0025

Acopper mm2 00216 00216 00216 00216

Ahole mm2 00491 00491 00491 00491

l koper WmK 385 385 385 385

l hole fill WmK 03 03 50 385

Via length mm 08 08 08 08

Rcopper KW 9621 9621 9621 9621

Rhole KW 54325 54325 326 42

Rvia KW 9604 9604 7428 2940

Acomponent mm2 150 130 130 130

nvia 0 16 16 16

l FR4 WmK 03 03 03 03

RFR4 KW 1778 2051 2051 2051

Rincl Vias KW 1778 58 45 18

l eff WmK 030 1055 1356 3379

Temperature distribution

within the board

Temperature distribution

within the board amp LED

Copyright copy Optimal Thermal Solutions BV 13

bull Most heat is below die-thermal path

bull Interface to heat sink is critical because of small interface surface

area

Example 2

Board design Effect of thermal vias contrsquod

Example 3

Check effect of boundary conditions

copy Optimal Thermal Solutions BV 14

Troom 40degC

P=96W

Lamp in ceiling with poor ventilation Lamp in ceiling sufficient ventilation

Tbase 108degC

Mounting the LED lamp in a hole in the ceiling covered with insulation

material shows a temperature increase of 16degC in the heat sink base

Tbase 92degC

Example 4

Effect of orientation amp lamp

environment

copy Optimal Thermal Solutions BV 15

30 W dissipation LED COB application

Tested heat sink in free air The COB is within

specification

But what is the performance in a recessed ceiling

Example 4

Recessed Ceiling

copy Optimal Thermal Solutions BV 16

How could one lsquodefinersquo a recessed ceiling

Example could be the UL 1993 6rdquo test box

Physical example

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 11: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Example 1

Optimizing the heatsink contrsquod

copy Optimal Thermal Solutions BV 11

16 fins 2 mm

16 fins 5 mm 16 fins 7 mm 16 fins 10 mm

16 fins 3 mm 16 fins 4 mm

HS

Example 2

Board design effect of thermal vias

Copyright copy Optimal Thermal Solutions BV 12

FR4

Vias 03-06

wall thickness 25-35um

epoxy filled copper filled

Copper

bull Carrier of standard FR4 board material 400-800-1600um

bull Thick copper on the top and on the bottom for spreading the heat

over a larger surface 35-70-05-140um and thicker

bull Add viarsquos to increase through-board conductivity

Example

Copper path

5mmx3mm

no via vias

tin filled

vias

copper

filled vias

ddrill mm 030 030 030 030

d finished hole mm 025 025 025 025

copper thickness in hole mm 0025 0025 0025 0025

Acopper mm2 00216 00216 00216 00216

Ahole mm2 00491 00491 00491 00491

l koper WmK 385 385 385 385

l hole fill WmK 03 03 50 385

Via length mm 08 08 08 08

Rcopper KW 9621 9621 9621 9621

Rhole KW 54325 54325 326 42

Rvia KW 9604 9604 7428 2940

Acomponent mm2 150 130 130 130

nvia 0 16 16 16

l FR4 WmK 03 03 03 03

RFR4 KW 1778 2051 2051 2051

Rincl Vias KW 1778 58 45 18

l eff WmK 030 1055 1356 3379

Temperature distribution

within the board

Temperature distribution

within the board amp LED

Copyright copy Optimal Thermal Solutions BV 13

bull Most heat is below die-thermal path

bull Interface to heat sink is critical because of small interface surface

area

Example 2

Board design Effect of thermal vias contrsquod

Example 3

Check effect of boundary conditions

copy Optimal Thermal Solutions BV 14

Troom 40degC

P=96W

Lamp in ceiling with poor ventilation Lamp in ceiling sufficient ventilation

Tbase 108degC

Mounting the LED lamp in a hole in the ceiling covered with insulation

material shows a temperature increase of 16degC in the heat sink base

Tbase 92degC

Example 4

Effect of orientation amp lamp

environment

copy Optimal Thermal Solutions BV 15

30 W dissipation LED COB application

Tested heat sink in free air The COB is within

specification

But what is the performance in a recessed ceiling

Example 4

Recessed Ceiling

copy Optimal Thermal Solutions BV 16

How could one lsquodefinersquo a recessed ceiling

Example could be the UL 1993 6rdquo test box

Physical example

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 12: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

HS

Example 2

Board design effect of thermal vias

Copyright copy Optimal Thermal Solutions BV 12

FR4

Vias 03-06

wall thickness 25-35um

epoxy filled copper filled

Copper

bull Carrier of standard FR4 board material 400-800-1600um

bull Thick copper on the top and on the bottom for spreading the heat

over a larger surface 35-70-05-140um and thicker

bull Add viarsquos to increase through-board conductivity

Example

Copper path

5mmx3mm

no via vias

tin filled

vias

copper

filled vias

ddrill mm 030 030 030 030

d finished hole mm 025 025 025 025

copper thickness in hole mm 0025 0025 0025 0025

Acopper mm2 00216 00216 00216 00216

Ahole mm2 00491 00491 00491 00491

l koper WmK 385 385 385 385

l hole fill WmK 03 03 50 385

Via length mm 08 08 08 08

Rcopper KW 9621 9621 9621 9621

Rhole KW 54325 54325 326 42

Rvia KW 9604 9604 7428 2940

Acomponent mm2 150 130 130 130

nvia 0 16 16 16

l FR4 WmK 03 03 03 03

RFR4 KW 1778 2051 2051 2051

Rincl Vias KW 1778 58 45 18

l eff WmK 030 1055 1356 3379

Temperature distribution

within the board

Temperature distribution

within the board amp LED

Copyright copy Optimal Thermal Solutions BV 13

bull Most heat is below die-thermal path

bull Interface to heat sink is critical because of small interface surface

area

Example 2

Board design Effect of thermal vias contrsquod

Example 3

Check effect of boundary conditions

copy Optimal Thermal Solutions BV 14

Troom 40degC

P=96W

Lamp in ceiling with poor ventilation Lamp in ceiling sufficient ventilation

Tbase 108degC

Mounting the LED lamp in a hole in the ceiling covered with insulation

material shows a temperature increase of 16degC in the heat sink base

Tbase 92degC

Example 4

Effect of orientation amp lamp

environment

copy Optimal Thermal Solutions BV 15

30 W dissipation LED COB application

Tested heat sink in free air The COB is within

specification

But what is the performance in a recessed ceiling

Example 4

Recessed Ceiling

copy Optimal Thermal Solutions BV 16

How could one lsquodefinersquo a recessed ceiling

Example could be the UL 1993 6rdquo test box

Physical example

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 13: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Temperature distribution

within the board

Temperature distribution

within the board amp LED

Copyright copy Optimal Thermal Solutions BV 13

bull Most heat is below die-thermal path

bull Interface to heat sink is critical because of small interface surface

area

Example 2

Board design Effect of thermal vias contrsquod

Example 3

Check effect of boundary conditions

copy Optimal Thermal Solutions BV 14

Troom 40degC

P=96W

Lamp in ceiling with poor ventilation Lamp in ceiling sufficient ventilation

Tbase 108degC

Mounting the LED lamp in a hole in the ceiling covered with insulation

material shows a temperature increase of 16degC in the heat sink base

Tbase 92degC

Example 4

Effect of orientation amp lamp

environment

copy Optimal Thermal Solutions BV 15

30 W dissipation LED COB application

Tested heat sink in free air The COB is within

specification

But what is the performance in a recessed ceiling

Example 4

Recessed Ceiling

copy Optimal Thermal Solutions BV 16

How could one lsquodefinersquo a recessed ceiling

Example could be the UL 1993 6rdquo test box

Physical example

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 14: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Example 3

Check effect of boundary conditions

copy Optimal Thermal Solutions BV 14

Troom 40degC

P=96W

Lamp in ceiling with poor ventilation Lamp in ceiling sufficient ventilation

Tbase 108degC

Mounting the LED lamp in a hole in the ceiling covered with insulation

material shows a temperature increase of 16degC in the heat sink base

Tbase 92degC

Example 4

Effect of orientation amp lamp

environment

copy Optimal Thermal Solutions BV 15

30 W dissipation LED COB application

Tested heat sink in free air The COB is within

specification

But what is the performance in a recessed ceiling

Example 4

Recessed Ceiling

copy Optimal Thermal Solutions BV 16

How could one lsquodefinersquo a recessed ceiling

Example could be the UL 1993 6rdquo test box

Physical example

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 15: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Example 4

Effect of orientation amp lamp

environment

copy Optimal Thermal Solutions BV 15

30 W dissipation LED COB application

Tested heat sink in free air The COB is within

specification

But what is the performance in a recessed ceiling

Example 4

Recessed Ceiling

copy Optimal Thermal Solutions BV 16

How could one lsquodefinersquo a recessed ceiling

Example could be the UL 1993 6rdquo test box

Physical example

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 16: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Example 4

Recessed Ceiling

copy Optimal Thermal Solutions BV 16

How could one lsquodefinersquo a recessed ceiling

Example could be the UL 1993 6rdquo test box

Physical example

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 17: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Example 4

Results

copy Optimal Thermal Solutions BV 17

Power

[W]

LPF80

A50

Free

[K]

LPF80

A50

UL6

[K]

Differe

nce

[K]

30 61 99 38

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 18: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Conclusion

Copyright copy Optimal Thermal Solutions BV 18

bull Thermal simulation will give insight in the full 3D thermal behavior of the luminaireled in the solidand the fluid

bull Easy to do what if then analyses to make the right decisions during the design

bull Avoid costly and time consuming experimentaltests

bull Reduce of design risk come to the most optimaldesign reduces costs

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19

Page 19: The added value of thermal simulations during the design process … · 2019-06-10 · 5 W is light. The remainder, 95 W, is heat. • Filament can be between 2000 to 3000 °C •

Thank you

Norbert P Engelberts

Optimal Thermal Solutions BV

nengelbertsots-eucom

+31 35 632 1751

+31 65 230 2258

wwwots-eucom

Copyright copy Optimal Thermal Solutions BV 19