the black hole stability problem · 2011. 6. 16. · background estimates spin remarks references...

38
Background Estimates Spin Remarks References The black hole stability problem Lars Andersson Albert Einstein Institute joint work with Steffen Aksteiner, Pieter Blue, Jean-Philippe Nicolas Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 1 / 42

Upload: others

Post on 02-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Background Estimates Spin Remarks References

    The black hole stability problem

    Lars Andersson

    Albert Einstein Institute

    joint work with Steffen Aksteiner, Pieter Blue, Jean-Philippe Nicolas

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 1 / 42

  • Background Estimates Spin Remarks References

    Outline

    1 Background

    2 Estimates

    3 Higher spin fields

    4 Concluding remarks

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 2 / 42

  • Background Estimates Spin Remarks References

    Kerr

    The Kerr solution describes a rotating black holeparameters a,M, 0 ≤ |a| ≤ M; aM = angular momentum.a = 0 ⇒ Schwarzschild.stationary (∂t Killing), axisymmetric (∂φ Killing)

    The Kerr solution is (expected to be) the unique stationary,asymptotically flat, vacuum, nondegenerate black hole spacetime(Alexakis, Ionescu, & Klainerman, 2010).

    An isolated system in GR is (expected to be) asymptoticallystationary =⇒ Kerr should be the end state of evolution of(vacuum) asymptotically flat initial data.

    To establish the relevance of the Kerr solution, we must show it isstable — one of the main open mathematical problemsconcerning the Einstein equations.

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 4 / 42

  • Background Estimates Spin Remarks References

    Kerr

    ∆ = r2 − 2Mr + a2,

    Σ = r2 + a2 cos2 θ,

    Π = (r2 + a2)2 −∆a2 sin2 θ

    and let r± denote the roots of ∆,

    r± = M ±√

    M2 − a2

    On the exterior region r ≥ r+, the Kerr metric can be written (Boyer &Lindquist, 1967)

    gµνdxµdxν =−(

    1 −2MrΣ

    )dt2 −

    4Mra sin2 θΣ

    dtdφ+Σ

    ∆dr2 +Σdθ2

    +Π sin2 θ

    Σdφ2

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 5 / 42

  • Background Estimates Spin Remarks References

    Kerr

    Maximally extended KerrLars Andersson (AEI) Black hole stability Paris, June 13, 2011 6 / 42

  • Background Estimates Spin Remarks References

    The black hole stability problem

    For data close to exterior Kerr data, show that the maximal globallyhyperbolic Cauchy extension is asymptotic to exterior Kerr

    Difficulties:

    Gauge choice

    Kerr recognition

    Exploit cancellations

    H I+

    I−

    i+

    i0

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 7 / 42

  • Background Estimates Spin Remarks References

    Exterior Cauchy problem

    If Mt0 contains an outer trapped surface with θ+ ≤ 0, it contains aunique outermost MOTS St0 with θ+ = 0.

    The outermost MOTS sweep out the apparent horizon Happfoliated by MOTS St .(L.A. & J. Metzger, 2009; L.A., M. Mars, J. Metzger & W. Simon,2009)

    Happ is (weakly) spacelike so is an outflow boundary.

    Choose inner boundary on (or inside) MOTS.

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 8 / 42

  • Background Estimates Spin Remarks References

    Exterior Cauchy problem

    Choose gauge so that the inner boundary approaches i+?Boundary at infinity – at i0 or on I+? Choose gauge so that outerboundary approaches i+?

    H I+

    I−

    i+

    i0

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 9 / 42

  • Background Estimates Spin Remarks References

    Kerr recognition

    Mars-Simon tensor?

    Valiente-Kroon, Bäckdahl: The invariant∫

    |∇(ABKCD)|2

    vanishes only at Kerr. This is an “elliptic” criterion. Is there aversion which fits with the Cauchy problem?

    Curvature concomitants.

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 10 / 42

  • Background Estimates Spin Remarks References

    Fields on Kerr

    A model problem for black hole stability is to understand (test) fields onblack hole backgrounds

    Wave equation on Schwarzschild (Blue & Sterbenz, 2006),(Dafermos & Rodnianski, 2005) (Marzuola, Metcalfe, Tataru, &Tohaneanu, 2010)

    Linear wave equation on slowly rotating Kerr (L.A. & P. Blue, 2009)(Dafermos & Rodnianski, 2008) (Tataru & Tohaneanu, 2008)(Tataru, 2009) (Tohaneanu, 2009)

    Non-linear equations on BH backgrounds (Luk, 2010)

    Maxwell on Schwarzschild (Blue, 2008)

    Asymptotically Schwarzschild (Holzegel, 2010)

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 11 / 42

  • Background Estimates Spin Remarks References

    Higher spin fields

    Spin-1: Maxwell. (L.A., P. Blue & J.-P. Nicolas, 2011) –spin-lowering gives Fackerell-Ipser wave equation, chargevanishing condition, pseudo-differential Morawetz.

    For regular initial data, radiation decays and the solution isasymptotic to a Coloumb state.

    Spin-2: Linearized gravity – spin-lowering gives generalizedRegge-Wheeler equation – (L.A. & S. Aksteiner, 2011a),Fackerell’s integral (L.A. & S. Aksteiner, 2011b)

    Expect similar behavior as for Maxwell

    Coloumb states for non-zero spin fields are analogues of modulidegrees of freedom for the Kerr family.

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 12 / 42

  • Background Estimates Spin Remarks References

    Kerr: ergoregion

    Ergoregion ⇒ no globally timelike Killing field ⇒ no positive definiteconserved energy

    K2 K1 0 1 2

    K2

    K1

    0

    1

    2

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 13 / 42

  • Background Estimates Spin Remarks References

    Kerr: Hidden symmetry

    Minkowski:Killing fields: Poincaré Lie algebra so(3, 1) ⋉R4,Conformal symmetries: dilation, K

    Schwarzschild: ∂t , so(3) — conserved quantities E ,Lx ,Ly ,LzKerr: ∂t , ∂φ — conserved quantities E ,Lz ,Q = Qαβ γ̇αγ̇β.

    The presence of the Carter constant Q allows the geodesicequations on Kerr to be separated.

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 14 / 42

  • Background Estimates Spin Remarks References

    Kerr: Hidden symmetry

    Qαβ is a Killing tensor, Qαβ = Q(αβ), ∇(αQβγ) = 0.

    Qαβ is related toKilling-Yano 2-form Kαβ = K[αβ], ∇(αKβ)γ = 0Killing spinor KAB , ∇A(A′KBC) = 0.

    A Killing field ξ is a symmetry of the wave operator [Lξ,�g] = 0Q,K are related to symmetry operators:

    Q = ∇αQαβ∇β with [�g,Q] = 0,K = iγ5γµ(Kµν∇ν − 16γ

    νγλ∇λKµν), with [D,K ]+ = 0

    The Carter Killing tensor is not generated by Killing fields ⇒ Q is ahidden symmetry

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 15 / 42

  • Background Estimates Spin Remarks References

    Kerr: photon region

    Photon region ⇒ trapping for null geodesics and waves

    rph−

    rc

    rph+

    r+

    0

    −rph−

    −rc

    −rph+

    −r+

    m 2m 3m 4m 5m

    K

    Location of photon orbits depend on the conserved quantities viaLz/E ,Q/E

    2

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 16 / 42

  • Background Estimates Spin Remarks References

    The Kerr wave operator

    � = Σ�g = ∂r∆∂r +1∆R

    where �g = ∇α∇α, and R = R(r , E ,Lz ,Q) = R(r , ∂t , ∂φ,Q) is

    R = −(r2 + a2)2∂2t − 4aMr∂t∂φ +∆Q + (∆− a2)∂2φ (1)

    Here Q is the (modified) Carter operator:

    Q =(

    1sin θ

    ∂θ sin θ∂θ

    )+ cot2 θ∂2φ + a

    2 sin2 θ∂2t

    See from this: ∂t , ∂φ,Q commute with �

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 18 / 42

  • Background Estimates Spin Remarks References

    Energy

    ∂t fails to be timelike in the ergoregion

    Use a time-like “almost Killing field”

    Tχ = ∂t + χ∂φ

    where χ is a cutoff function. Want Tχ is timelike for r > r+, andtangent to the horizon.

    H Bad signr = 3M

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 19 / 42

  • Background Estimates Spin Remarks References

    Conformal energy

    Tortoise coordinate dx =(r2 + a2)

    ∆dr , x |r=3M = 0

    K vector field

    K =12(t2 + x2 + 1)T⊥ + txÑ

    2∂x

    where T⊥ ∼= ∂t + ω∂φ, ω = 2aMrΠ , Ñ2 = (r

    2+a2)2

    Π

    K bulk term has bad sign in a region r0 ≤ r ≤ r1

    bad sign

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 20 / 42

  • Background Estimates Spin Remarks References

    Energy estimates

    Momenta Pa = T abX b + qu∇au −∇aqu2/2

    Bulk

    ∇aPa = ∇c∇cu∇buξb + Tab∇

    aX b

    + q∇cu∇cu + qu∇c∇cu −∇c∇cqu2/2 (2)

    Designer vector fields:Blended energy Tχ = ∂t + χ∂φConformal vector field K ∼ u2+∂u+ + u

    2−

    ∂u−Morawetz A = F∂rRedshift Y

    Error terms from Tχ,K ,Y are controlled by the positive bulk fromA.

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 21 / 42

  • Background Estimates Spin Remarks References

    Trapping in KerrR is the potential for radialmotion of null geodesics

    The photon sphere is given by

    R = 0,∂R

    ∂r= 0

    F ∂R

    ∂r

    Bulk term for A must be positive. Contains terms of the form FR′,

    need −F∂R

    ∂r≥ 0 ⇒ F changes sign at photon orbits

    But R = R(r , E ,Lz ,Q) ⇒

    location of photon orbits depends on E ,Lz ,Q

    ⇒ A must be generalized vector field

    A = F(r , ∂t , ∂φ,Q)∂r

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 22 / 42

  • Background Estimates Spin Remarks References

    Generalized momentum

    S2 = {∂2t , ∂t∂φ, ∂

    2φ,Q} — 2

    nd order symmetry operators.

    If �ψ = 0, then �Saψ = 0 for Sa ∈ S2Given T [u]αβ , by polarization define T [ψ1, ψ2]αβ.

    Generalized vector field X abβ = X (ab)β

    Generalized momentum

    Pα[ψ,X ] = T αβ[Saψ,Sbψ]Xabβ

    + qab(Saψ)α(Sbψ)−12(qab)α(Saψ)(Sbψ)

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 23 / 42

  • Background Estimates Spin Remarks References

    Generalized Morawetz

    Positivity of the A bulk reduces to showing that the ODE

    v ′′ +9x2 − 34x − 26x2(x + 2)2

    v = 0

    has a positive solution on x > 0. This is Gauss’ hypergeometricequation of the first type!

    Generalized Morawetz estimate

    Ek(t1) + Ek (t0) ≥∫

    [t0,t1]×M

    ∆2

    r4|∂r u|2k +

    1r 6h3Mr

    |∇t,ωu|2k +1r2

    |u|2k

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 24 / 42

  • Background Estimates Spin Remarks References

    Higher spin fields

    NP, GHP formalism: Use tetrad components in null tetradla,na,ma, m̄a, lana = 1, mam̄a = −1. Field equations encoded inGHP operators þ,þ ′,ð,ð ′,spin coefficients ρ, σ, . . .GHP “symmetry operations”

    ′ ∗ ¯

    reduce complexity of calculationsWeyl and Maxwell scalars Ψ0, . . . ,Ψ4, φ0, φ1, φ2.Petrov type D spacetimes (in particular Kerr) in a principal nulltetrad has only Ψ2 6= 0, only ρ, τ non-zero spin-coefficients (up to′).

    Ψ2 = −M/(r − ia cos θ)3

    in Boyer-Lindquist coordinates.

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 26 / 42

  • Background Estimates Spin Remarks References

    Higher spin fields

    spin-0: scalar waves�ψ = 0

    spin-1: Maxwell

    Fαβ = F[αβ], ∇αFαβ = 0, ∇[αFβγ] = 0

    NP Maxwell scalars φ0, φ1, φ2spin-2: Gravity: Rαβ = 0 implies

    ∇αWαβγδ = 0

    NP Weyl scalars: Ψ0, . . . ,Ψ4.

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 27 / 42

  • Background Estimates Spin Remarks References

    Higher spin fields

    Linearized gravity:

    ∇backgroundW′ = Γ′Wbackground, R

    ′ = 0

    not the spin-2 field equation if Wbackground 6= 0!

    Linearized NP scalars: ΨiB, i = 0, . . . ,4

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 28 / 42

  • Background Estimates Spin Remarks References

    Killing spinors

    Petrov Type D spacetimes (eg. Kerr) admit a Killing spinor

    KAB = Ψ−1/32 o(AιB)

    satisfying∇A

    (AKBC) = 0

    Hermitian Killing spinor −→ Killing-Yano tensor

    Yab = Y[ab], Ya(b;c) = 0

    −→ Killing tensor Kab = YacYcb, K(ab;c) = 0

    Killing tensor ↔ symmetry operator for wave equation

    Killing-Yano tensor ↔ symmetry operator for higher spin equations

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 29 / 42

  • Background Estimates Spin Remarks References

    Spin lowering

    Massless spin-s field φABC···D = φ(ABC···D),

    ∇A′AφABC···D = 0

    If Wαβγδ = 0 and KAB is a Killing spinor, then

    φ̂C···D = φABC···DKAB

    is a massless spin-(s − 1) field

    ∇A′Aφ̂ABC···D = 0

    For type D backgrounds, spin lowering still leads to interestingresults.

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 30 / 42

  • Background Estimates Spin Remarks References

    Spin weight 0 potentials

    Maxwell:The spin weight zero scalar φ1 solves the wave equation (Fackerell& Ipser, 1972) (

    �g − 2Ψ2A)(Ψ

    −1/32A φ1) = 0

    φ1 is a potential for Maxwell.

    Linearized gravity:The spin weight zero scalar Ψ2B (not gauge invariant) satisfies theseparated equation (L.A. & S. Aksteiner, 2011a)

    (�g − 8Ψ2A

    )(Ψ

    −2/32A Ψ2B) = 3�BΨ

    1/32A

    �BΨ1/32A = 0 is a modified harmonic (wave coordinates) gauge.

    Ψ2B is a potential for linearized gravity.

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 31 / 42

  • Background Estimates Spin Remarks References

    Non-radiating modes

    Example: Maxwell on Black Hole background

    Conserved charges∫S2 F ,

    ∫S2 ⋆F

    nontrivial due to topology

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 32 / 42

  • Background Estimates Spin Remarks References

    Non-radiating modes

    Correspond to Coloumb solution (φ0, φ1, φ2) = (0, C(r−ia cos θ)2 ,0)

    (L.A., P. Blue & J.-P. Nicolas, 2011) General Maxwell initial dataevolve to asymptotic Coloumb state

    Proof involves decay estimates for the Fackerell-Ipser equation

    To prove a Morawetz estimate for the Fackerell-Ipser equation,must project out non-radiating modes

    For linearized gravity must project out “linearized mass” (ℓ = 0)and “linearized angular momentum” (ℓ = 1) in order to proveMorawetz estimate for generalized Regge-Wheeler equation

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 33 / 42

  • Background Estimates Spin Remarks References

    Maxwell on Kerr

    Charge zero condition∫

    S2(r ,t) F =∫

    S2(r ,t) ∗F = 0leads to

    0 =∫

    S22

    r2 + a2

    ∆1/2φ1 − ia sin θ(φ0 − φ2)dµ

    (in Carter tetrad)

    Controls ℓ = 0 mode of φ1 in terms of φ0, φ2.

    Eliminating the ℓ = 0 mode allows to use an inequality of the form∫

    S(t,r)|∇ωu|2 ≥ 2

    S(t,r)|u|2

    which gives extra positivity in the Morawetz bulk, at the cost ofterms involving φ0, φ2 of order a.

    These terms must be dominated using the F -Morawetz argument.

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 34 / 42

  • Background Estimates Spin Remarks References

    F -Morawetz

    Schwarzschild case – robust for small |a|A bulk term for Maxwell

    Tab∇aAb = V02(|φ0|2 + |φ2|2) + V1|φ1|2 (3)

    where

    V02 = ∂rF , V1 = −2∂r (FVL)

    VL

    Figure: V02 dotted line, V1 solid line.

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 35 / 42

  • Background Estimates Spin Remarks References

    Complex potential

    Ψ2 = −M

    (r−ia cos θ)3 is complex

    no conserved energyUse energy-momentum tensor for �− 2Mr3Error term in energy estimate ∼

    ∫[t0,t1]×M

    ar3 Im(ū∂tu)

    This has support in the photon region ⇒ can’t be controlled using“classical” MorawetzTo improve the Morawetz bulk near the photon region apseudo-differential Morawetz vector field B of the form

    B ∼ arctan(|τ |αF)∂r

    for suitable α, where τ is the t-Fourier variable.B can be constructed so that the Morawetz bulk from A + Bcontrols terms of the form u∇t,ωu in the photon region

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 36 / 42

  • Background Estimates Spin Remarks References

    Concluding remarks

    Significant progress has been made in numerical and analyticalstudies of the global properties of black hole spacetimesHowever, the main problems are still open:

    Cosmic censorshipUniqueness of KerrStability of Kerr

    We expect the methods presented here generalize to linearizedgravity on Kerr, and to be useful for analyzing stability of Kerrunder small nonlinear perturbations

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 38 / 42

  • Background Estimates Spin Remarks References

    References I

    Aksteiner, S., & Andersson, L. (2011a, March). Linearized gravity andgauge conditions. Classical and Quantum Gravity, 28(6),065001-+.

    Alexakis, S., Ionescu, A. D., & Klainerman, S. (2010, October).Uniqueness of Smooth Stationary Black Holes in Vacuum: SmallPerturbations of the Kerr Spaces. Communications inMathematical Physics, 299, 89-127.

    Andersson, L., & Aksteiner, S. (2011b). On Fackerell’s integral.Andersson, L., & Blue, P. (2009, August). Hidden symmetries and

    decay for the wave equation on the Kerr spacetime. ArXive-prints.

    Andersson, L., Blue, P., & Nicolas, J.-P. (2011). Decay for the Maxwellfield on the Kerr spacetime.

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 39 / 42

  • Background Estimates Spin Remarks References

    References II

    Andersson, L., Mars, M., Metzger, J., & Simon, W. (2009). The timeevolution of marginally trapped surfaces. Classical QuantumGravity, 26(8), 085018, 14. Available fromhttp://dx.doi.org/10.1088/0264-9381/26/8/085018

    Andersson, L., & Metzger, J. (2009, September). The Area ofHorizons and the Trapped Region. Communications inMathematical Physics, 290, 941-972.

    Blue, P. (2008). Decay of the Maxwell field on the Schwarzschildmanifold. J. Hyperbolic Differ. Equ., 5(4), 807-856.

    Blue, P., & Sterbenz, J. (2006). Uniform decay of local energy and thesemi-linear wave equation on Schwarzschild space. Comm.Math. Phys., 268(2), 481–504.

    Boyer, R. H., & Lindquist, R. W. (1967). Maximal analytic extension ofthe Kerr metric. J. Mathematical Phys., 8, 265–281.

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 40 / 42

    http://dx.doi.org/10.1088/0264-9381/26/8/085018

  • Background Estimates Spin Remarks References

    References III

    Dafermos, M., & Rodnianski, I. (2005). The red-shift effect andradiation decay on black hole spacetimes.(arXiv.org:gr-qc/0512119)

    Dafermos, M., & Rodnianski, I. (2008, November). Lectures on blackholes and linear waves. ArXiv e-prints.

    Fackerell, E. D., & Ipser, J. R. (1972, May). Weak ElectromagneticFields Around a Rotating Black Hole. Phys. Rev. D, 5,2455-2458.

    Holzegel, G. (2010, October). Ultimately SchwarzschildeanSpacetimes and the Black Hole Stability Problem. ArXiv e-prints.

    Luk, J. (2010, September). The Null Condition and Global Existencefor Nonlinear Wave Equations on Slowly Rotating KerrSpacetimes. ArXiv e-prints.

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 41 / 42

    http://arxiv.org/abs/gr-qc/0512119

  • Background Estimates Spin Remarks References

    References IV

    Marzuola, J., Metcalfe, J., Tataru, D., & Tohaneanu, M. (2010,January). Strichartz Estimates on Schwarzschild Black HoleBackgrounds. Communications in Mathematical Physics, 293,37-83.

    Tataru, D. (2009, October). Local decay of waves on asymptotically flatstationary space-times. ArXiv e-prints.

    Tataru, D., & Tohaneanu, M. (2008, October). Local energy estimateon Kerr black hole backgrounds. ArXiv e-prints.

    Tohaneanu, M. (2009, October). Strichartz estimates on Kerr blackhole backgrounds. ArXiv e-prints.

    Lars Andersson (AEI) Black hole stability Paris, June 13, 2011 42 / 42