the ccfz environmental study carried out by kordithe ccfz environmental study carried out by kordi...

30
The CCFZ Environmental Study carried out by KORDI November, 2010 Korea Ocean Research & Development Institute Deep-Sea & Marine Georesources Research Department Se-Jong Ju, Kyeong-Hong Kim, Sang-Bum Chi, Chan-Min Yoo

Upload: others

Post on 31-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • The CCFZ Environmental Study carried out by KORDI

    November, 2010

    Korea Ocean Research & Development InstituteDeep-Sea & Marine Georesources Research Department

    Se-Jong Ju, Kyeong-Hong Kim, Sang-Bum Chi, Chan-Min Yoo

  • Objectives

    To understand the physical, chemical, biological, and

    geological properties of the northeastern equatorial

    Pacific :

    in relation to the natural variation

    in association with global climatic events (i.e. El Nino & La Nina)

    To use the environmental baseline study to make a

    strategic plan for Mn nodule mining in the future

    To evaluate and minimize the environmental impact by

    mining activity

  • KOMO1 CTD3 CTD4

    CTD5

    CTD6

    CTD2CTD1

    CTD7

    CTD8

    133.0 132.0 131.0 130.0

    Longitude (O W)

    9.0

    10.0

    11.0

    12.0

    Latit

    ude(O

    N)

    KR5

    KR2

    131.0 130.5

    Longitude(O W)

    16.0

    16.5

    Lat it

    ude(O

    N)

    CTD9

    CTD10

    CTD12

    CTD LADCP

    BC, MC

    KORDI Environmental surveys survey areas

    1995~2009 : 131.3OW, 10.5ON (KOMO, Long-term Monitoring St. )

    1998, 1999, 2000, 2003, 2005 : 0O~17ON, along 131.5OW (Latitudinal, n=18)

    2001, 2002, 2004 : 128O~136OW, along 10.5ON (Longitudinal, n=9)

    2006~2010 : KR2 (n=14) and 5 (n=70)

    Map showing study area in the northeastern equatorial Pacific.

    136 134 132 130 128 1260

    2

    4

    6

    8

    10

    12

    14

    16

    Longitude (O W)

    Lati

    tud

    e (

    O N

    )

    1998

    1999

    2000

    2001

    2002

    2003

    2004

    2005

    2006

    2007

    2008

    2009

    2010

    1998-2010 2010

    KOMO2 CTD11

  • South Equatorial Current (SEC) : 10oS~3oN

    North Equatorial Counter Current (NECC) : 3oN~8oN

    North Equatorial Current (NEC) : 8oN~20oN

    Equatorial Under Current (EUC)

    Background : Surface current system

    Divergence

    Convergence

    Study Area

    0

    1

    2

    3

    4

    5

    0 10 20 30

    Temperature (oC)

    Dep

    th (

    km

    )

    Deeper layer

    Sea floor

    Middle layer

    (permanenet thermocline )

    Surface layer

    0

    50

    100

    150

    200

    10 20 30

    Temperature (oC)

    Dep

    th (

    m)

    Seasonal

    thermocline

    Eu

    ph

    otic zo

    ne

    Surface layer

    Surface mixed layer

    Typical structure of water column in the northeastEquatorial Pacific.

  • Background : Global climatic events

    (El Niño/La Niña in Equatorial Pacific)

    El Nino event La Nina event

    (from NOAA)

    Period of Korea Deep-sea

    Environment Study

  • Background : Geological Setting

    (Sediment types of C-C zone)

    Distribution of sea floor sediments and the study area in the northeastern part of the equatorial pacific (KR 1, 2 area : pelagic red clay, KR 3-7 area : biogenic siliceous sediment, 7- 0o N: calcareous ooze)

    CaC

    O3 c

    onte

    nt(

    %)

    0

    40

    80

    Opal co

    nte

    nt(

    %)

    0

    10

    20

    ?

  • Environmental items (ISA recommended)

    Detail sampling protocols were described at Chapter 10, Data Standards utilized in the environmental studies of KORDI. In: Standardization of environmental data and information-Development of guidelines (ISA, 2002)

    Group Environmental items Methods and Instruments

    Physical

    Oceanography

    - Surface oceanographic structure - CTD

    - Current condition - Current meter and ADCP

    - Particulate matter in discharge depth - Filteration

    - Satellite-data analysis - SeaWiFS satellite image

    Chemical

    Oceanography

    - D.O., pH, Inorganic Nutrients - Titration, pH meter, Nutrients auto analyzer

    - Total organic carbon - TOC analyzer

    - Chemical exchange between the sediment and the

    water column- ? Benthic Chamber

    - Trace metals in water column - ICP-MS

    Sediment

    properties

    - Geotechnical properties- MC, Pycnometer, motorised vane system, automatic grain size

    analyzer

    - Pore chemistry, Organic carbon - IC, Elemental analyzer

    - Metal contents of manganese nodule - ICP-AES

    Biological

    Communities

    - Microorganism at water column and sediments - Scintillation counter, Microscope, Luminometer

    - Pelagic communities- Flow cytometric analysis, Microscope, Net, Scintillation counter,

    Elemental analyzer

    - Benthic fauna - MC, BC, Microscope, Deep sea camera

    - Nodule fauna - MC, BC, Microscope, Deep sea camera

    - Demersal scavenger - ? Freefall benthos observation system

    - Benthic impact experiments - ?

    Bioturbation- Sediments-mixing rate - MC, BC, 210Pb

    - Rate of bioturbation - MC, BC, 210Pb

    Sedimentation - Vertical mass flux - Sediments Trap

  • Gaps in Environmental measurements

    Chemical exchange between the water and sediment

    Community composition of demersal scavenger

    Benthic impact experiments

    3-D numerical modeling of discharge plume

    Genetic screening of benthic fauna

  • International Collaborative Efforts

    The bi-annual meeting of Korea-China cooperation to exchange

    information and results

    The cross participation of researchers in environmental surveys with

    France (2004-2005)

    University of Hawaii (Dr. Paul Wessel) - the generation research of

    Hawaii-Emperor Bend (2009 - )

  • Standardization Effort

    We made efforts for standardization of

    inorganic nutrients analysis through the

    cross check analysis with Australia

    All environmental sampling and analysis are

    based on standardization of environmental

    data and followed the recommendation and

    documents provided by ISA

  • Results

  • South Equatorial Current (SEC) : 10oS~3oN

    North Equatorial Counter Current (NECC) : 3oN~8oN

    North Equatorial Current (NEC) : 8oN~20oNDivergence

    Convergence

    Meridional distributions of 3 major currents in the

    northeastern equatorial Pacific in 1996, 1998, 1999, 2000,

    2003, 2005, and 2007

    Physical properties - Latitudinal

    5 6 7 8 9 10 11 12

    0

    50

    100

    150

    200

    Dep

    th(m

    )

    (D)KODOS0310

    12

    14

    16

    18

    20

    22

    24

    26

    28

    Divergence

    NECC NEC

    Convergence

    Latitude( N)

    10

    12

    14

    16

    18

    20

    22

    24

    26

    28

    200

    150

    100

    50

    0

    Dep

    th (

    m)

    (C)KODOS0010

    12

    14

    16

    18

    20

    22

    24

    26

    28

    NECC NEC

    Divergence

    Convergence

    200

    150

    100

    50

    0

    Dep

    th (

    m)

    (B)KODOS9910

    12

    14

    16

    18

    20

    22

    24

    26

    28

    Divergence

    NECC NEC

    Convergence

    200

    150

    100

    50

    Dep

    th(m

    )

    0

    (A)KODOS98

    NECC NECSEC

    Convergence

    Temperature( C)

    Divergence

    Meridional distributions of temperature in the northeastern

    equatorial Pacific in 1998, 1999, 2000, and 2003

  • Physical properties - Longitudinal

    Vertical distribution of temp. salinity and density

    along the longitude (2004)

    West East

    Vertical structure of water mass in the mixed layer and deep water (from West to East)

    West East

  • Physical properties - bottom current

    Summarize of the bottom current velocities and main directions

    Water Depth/

    Altitude

    (m)

    Current velocity Progressive vector current velocity

    Average

    (cm/s)

    Maximum

    (cm/s)

    Average

    (m/day)

    Main

    direction

    1,254 / 3,765 4.4 15.3 1,228 NE

    5,004 / 15 3.5 10.6 1,044 SE, NE

    Long-term monitoring results of the bottom current

    (Jul. 2008 to Jul. 2009)

    Stick plots of current velocity(15 m above the bottom)

    Progressive vector diagram of current velocity (15 m above the bottom)

  • Chemical properties – DO & TOC

    Vertical distribution of dissolved oxygen (DO) and total organic carbon (TOC)

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    0.0 0.5 1.0 1.5 2.0

    Total Organic Carbon (mg/l)

    Dep

    th (

    m)

    Refr

    acto

    ry

    Org

    an

    ic M

    atte

    r

    TOC=1.56 e-0.1006×Ln(D)

    TOC (mg/L)

    Vertical distribution of DO instudy area shows generalpattern of open ocean

    Vertical structure of TOC instudy area (ROM = 0.7 mg/L)

    Oxygen Minimum layer

    0

    1

    2

    3

    4

    5

    0 10 20 30

    Temperature (oC)

    Dep

    th (

    km

    )

    Deeper layer

    Sea floor

    Middle layer

    (permanent thermocline )

    Surface layer

    Typical structure of watercolumn in the northeastEquatorial Pacific.

  • Chemical properties - Nutrients

    Vertical distribution of inorganic nutrients (2007) (nitrate+nitrite, phosphate, silicate)

    Vertical distribution of inorganic nutrient in study area shows general pattern of open ocean.The green color bar indicate a permanent thermocline

    Nitrite+Nitrate

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    0 20 40 60

    Concentration ( M)

    Dep

    th (

    m)

    Phosphate

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    0 1 2 3 4

    Concentration (μM)

    Dep

    th (

    m)

    Silicate

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    0 50 100 150

    Concentration (μM)

    Dep

    th (

    m)

    Permanent thermocline

  • Vertical distributions of nutrients

    Spatial distribution of nutrients

    Latitudinal vertical distributions of nutrients (N, P, and Si)(2003, 2005)

    NorthSouthLatitude ( N)

    200

    150

    100

    50

    0

    Dep

    th (

    m)

    5 6 7 8 9 10 11 12 13 14 15 16 17

    2

    6

    10

    14

    18

    22

    26

    30

    34

    Nitrite+Nitrate (

    Latitude ( N)

    200

    150

    100

    50

    0

    Depth

    (m

    )

    5 6 7 8 9 10 11 12 13 14 15 16 17

    0.2

    0.6

    1.0

    1.4

    1.8

    2.2

    2.6

    3.0

    3.4

    Phosphate (

    Latitude ( N)

    200

    150

    100

    50

    0

    Dep

    th (

    m)

    5 6 7 8 9 10 11 12 13 14 15 16 17

    2

    6

    10

    14

    18

    22

    26

    30

    34

    Silicate (

    Latitude ( N)

    200

    150

    100

    50

    0

    Dep

    th (

    m)

    0 1 2 3 4 5 6 7 8 9 10 11 12

    2

    6

    10

    14

    18

    22

    26

    30

    34

    Nitrite+Nitrate (

    Latitude ( N)

    200

    150

    100

    50

    0D

    ep

    th (

    m)

    0 1 2 3 4 5 6 7 8 9 10 11 12

    0.2

    0.6

    1.0

    1.4

    1.8

    2.2

    2.6

    3.0

    3.4

    Phosphate (

    Latitude ( N)

    200

    150

    100

    50

    0

    Dep

    th (

    m)

    0 1 2 3 4 5 6 7 8 9 10 11 12

    2

    6

    10

    14

    18

    22

    26

    30

    34

    Silicate (

    N

    P

    Si

    N

    P

    Si2003

    NorthSouth

    2005

    Longitude ( W)

    200

    150

    100

    50

    0

    Depth

    (m

    )

    Nitrate + Nitrite (μ M)

    136 135 134 133 132 131 130 129 128

    2.0

    6.0

    10.0

    14.0

    18.0

    22.0

    26.0

    30.0

    34.0

    38.0

    Longitude ( W)

    200

    150

    100

    50

    0

    Depth

    (m

    )

    Phosphate (μ M)

    136 135 134 133 132 131 130 129 128

    0.0

    0.4

    0.8

    1.2

    1.6

    2.0

    2.4

    Longitude ( W)

    200

    150

    100

    50

    0

    Dep

    th (

    m)

    Silicate (μ M)

    136 135 134 133 132 131 130 129 128

    2.0

    6.0

    10.0

    14.0

    18.0

    22.0

    26.0

    30.0

    N

    P

    Si 2004

    EastWest

    Longitudinal vertical distributionsof nutrients (N, P, and Si) (2004)

    Divergence

    Convergence

    DivergenceDivergence

    Convergence

  • long-term variation of nutrients

    Interannual variation of nutrients

    El nino

    La nina

    Annual variation of nutrients concentrationat KOMO (1995 – 2007)

    200 m

    90 ~ 110 m

    100 m

    150 m

    200 m

    0 m Surface mixed area

    Surface mixed area

    AEutrophic region

    Thermocline

    10~ 30 m

    0 m

    Oligotrophic region Photic zone

    Photic zone

    BEutrophic region

    Meso trophic region

    5 N 12 NO O

    Therm

    oclin

    e

    Thermocline

    Upwelling

    Downwelling

  • Latitude ( N)

    200

    150

    100

    50

    0

    Dep

    th (

    m)

    5 6 7 8 9 10 11 12 13 14 15 16 17

    0.02

    0.06

    0.10

    0.14

    0.18

    0.22

    0.26

    0.30

    0.34

    0.38

    Chl.-a ( g/l)

    Pelagic ecosystem – Chl a

    Distribution and abundance of Chl-a (primary producer)

    Latitudinal vertical distribution of Chl-a in surface mixed-layer(2003)

    Latitudinal distribution of primary production(2003)

    South NorthLongitude ( W)

    200

    150

    100

    50

    0

    Dep

    th (

    m)

    Chl (ug/l)

    136 135 134 133 132 131 130 129 128

    0.02

    0.06

    0.10

    0.14

    0.18

    0.22

    0.26

    0.30

    0.34

    West East

    Longitudinal vertical distribution of Chl-a in surface mixed-layer(2004)

    Primary Production(mgC/m2/day)

    200

    300

    400

    500

    600

    700

    136 134 131.3 130 128

    Longitude(oW)

    Longitudinal distribution of primary production(2004)

  • Interannual variation of Chl a Distribution and abundance of Chl-a (primary producer)

    SeaWiFS satellite image showing surface Chl-a in the eastern Pacific (2007, 2008)Monthly surface chl-a variation at the KOMO station (1998-2007)

    El nino La nina

    Annual variation of SeaWiFS satellite image showing surface Chl-a in the eastern Pacific (1998-2006)

    July 2007

    July 2008

  • Composition and abundance of zooplankton (2005)

    Latitudinal distribution of mesozooplankton abundance in surface mixed layer and lower layer

    Percentage of taxonomic groups in mesozooplankton at surface mixed layer and lower layer

    surface mixed layer

    0

    10,000

    20,000

    30,000

    40,000

    50,000

    60,000

    70,000

    0° 1°N 2°N 4°N 5°N 6°N 7°N 9°N 10°N 10.5°N 11°N 12°N

    ind

    ivis

    ua

    ls/1

    00

    m3

    lower layer

    0

    2,000

    4,000

    6,000

    8,000

    10,000

    12,000

    14,000

    16,000

    18,000

    0° 2°N 4°N 5°N 6°N 7°N 9°N 10°N 10.5°N 11°N 12°N

    Others

    Larvae

    Thaliaceans

    Appendicularians

    Copepods

    Ostracods

    Chaetognaths

    Siphonophores

    Foraminiferans &

    Radiolarians

    Pelagic ecosystem - zooplankton

    Surface mixed layer

    Ostracods

    7.9%

    Chaetognaths

    6.6%

    Siphonophores

    2.3%

    Foraminiferans &

    Radiolarians

    10.3%

    Others

    4.3%Larvae

    4.1%Thaliaceans

    1.7%

    Appendicularians

    7.6%

    Copepods

    55.3%

    Lower layer

    Appendicularians

    3.3%

    Thaliaceans

    1.4%

    Larvae

    3.5%

    Others

    4.1%Foraminiferans &

    Radiolarians

    12.2%Siphonophores

    1.7%

    Ostracods

    7.1%

    Chaetognaths

    5.3%

    Copepods

    61.3%

  • 0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    St.1 St.2 St.5 St.7 St.9 St.11 St.15 St.17 St.19 St.21 St.23 St.25 St.27 St.29 St.30

    Ab

    un

    da

    nce

    (In

    d./1

    0 ㎠)

    Nematodes Harpacticoids Nauplius Tardigrades Others

    Benthic ecosystem - meiofauna

    Species composition and abundance of meiofauna (2003)

    Latitudinal abundance of dominant meiofauna groups

    Comparison of abundance of total meiofauna in the KR5 area

    Major meiofauna taxa in the KR5 area (A: Desmoscolex sp. (Nematodes), B: Tricoma sp. (Nematodes), C: Harpacticoid copepods, D:

    Tardigrada)

  • 0

    100

    200

    300

    400

    500

    Nu

    mb

    er o

    f in

    div

    idu

    al(

    /0.0

    6m

    2)

    5 6 8 9 12 13 14 17

    Latitude(oN)

    Other

    Nematoda

    Foraminifera

    Benthic ecosystem - macrofauna

    Species composition and abundance of macrofauna (2003)

    Latitudinal abundance of dominant macrofauna groups

    Actinaria Foraminifera Deep-sea cucumber

    Isopoda Polychaeta Macrura

    Ophiuroidea Ostracoda Sea Anemone

    According to these biological results, the distribution of zooplankton and benthos is mainly affected by their food source (the surface primary production).

  • Photographic examination - megafauna

    The photographs of megafauna obtained by deep-sea camera (2008)

    Observation of species in the substrate at each

    photographing line

    Fish

    Species and Lines in KR5 DSC08-01 DSC08-02

    Sea cucumber * *

    Sea anemone * *

    Sea star * *

    Sea pen * *

    Fish * *

    Bivalve * -

    Crustacean * *

    Faecal cast * *

    Phytodetritus * *

    Burrow openings * *

    Locomotion trace * *

    Fish Sea anemone

    Crustacean & Bivalve Sea Cucumber

    Sea Star Jellyfish

  • Latitudinal variation of sediment types in the study area Comparison of CaCO3 variation between core RC11-210 (western Pacific) and PC98N6 (CCZ)

    Sediment type characteristics in relation to latitude (2003)

    Sediment properties

  • Long-term monitoring (at KOMO St.) of the particle mass flux using sediment trap (2003-2009)

    Particle Mass flux

    The monthly variation of total mass flux (grey bar) was well matched with Chl-aconcentration (green circle), and the mass flux also showed a seasonal variation.

    The moderate El Niño was accompanied by a significant reduction in total mass flux, andthe opposite trend was observed for the moderate La Niña.

  • Plume impact experiment Microcosm experiments to evaluate the impact of discharge plume

    on SCM water (2008)

    Effects of discharge plume on Nitrate, Chl, ATP, and POC of SCM water (F-con; control, SED-1: 1/10000, SED-2: 1/5000,

    SED-3: 1/3300 dilution)

    Mesocosm & Microcosm (100L)

    Results of microcosm experiment

  • Summary

    Seasonal and interannual variation of physico-chemicalproperties have been detected in our study area.

    Strong spatial heterogeneity of pelagic and benthiccommunity were found and benthic production were wellcoupled with pelagic production.

    Particle mass flux was well correlated with surface primaryproduction, particularly during episodic events.

    No clear impact of plume discharge was detected on pelagicecosystem (SCM) through micro-scale experiment. May bedue to experimental design we used or/and targeted watersample (SCM)

    From this study, 57 papers (SCI:16 and Local:41) have beenpublished.

  • Future works

    Continuation of Environmental baseline study focused in

    Claimed Areas (KR 2, 5) with long-term monitoring (KOMO)

    Pelagic & Benthic impact experiments

    Genetic analysis of benthic fauna

    International collaborations needed to fill the gaps

  • Thank you