the chemical enrichment of centauri john e. norris research schoool of astronomy & astrophysics...

58

Upload: evan-boyd

Post on 18-Dec-2015

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN
Page 2: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

THE CHEMICAL ENRICHMENT OF CENTAURI

JOHN E. NORRIS

RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS

MOUNT STROMLO & SIDING SPRING OBSERVATORIES

AUSTRALIAN NATIONAL UNIVERSITY

Page 3: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN
Page 4: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

PLAN OF ATTACK• Historical review (pre ~1995)• Chemical abundances on the Red Giant Branch

– Metallicity Distribution Function & relative abundances– constraints on enriching stars and age spread

• Kinematics vs. abundance– Constraints on formation mechanisms

• Three populations• Main sequence studies

– Constraints on the population parameters

Collaborators: M.S.Bessell, K.Bekki, R.D.Cannon, G.S.Da Costa, K.C.Freeman, M.Mayor, K.Mighell, G.Paltoglou, P.Seitzer, L.Stanford

Page 5: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Abundance inhomogeneity of Cen (1960-1995)

• Discovery of CH star– Harding (1962)

• Wide giant branch

– Woolley et al (1966, photographic), Cannon & Stobie (1972, photoelectric)

Cen 47 Tuc

Cannon & Stobie 1972, MNRAS, 162, 207 Lee 1977, A&AS, 27, 381

Page 6: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Abundance inhomogeneity of Cen (1960-1995)

• Discovery of CH star– Harding (1962)

• Wide giant branch – Woolley et al (1966, photographic), Cannon & Stobie (1972, photoelectric)

• [Ca/H] spread among RR Lyrae stars– Freeman & Rodgers (1975, low res)

• Large CN variations among red giants– Norris & Bessell (1975, low res), Dickens & Bell (1976, low res)

• Large CO spread among red giants– Persson et al (1980, IR photometry)

[Ca/H] = log(N(Ca)/N(H))* -log(N(Ca)/N(H))o

Page 7: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Persson et al 1980, ApJ, 235, 452

C and/or O enhance-ment unique to Cen

Page 8: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Abundance inhomogeneity of Cen (1960-1995)

• Discovery of CH star– Harding (1962)

• Wide giant branch – Woolley et al (1966, photographic), Cannon & Stobie (1972, photoelectric)

• [Ca/H] spread among RR Lyrae stars– Freeman & Rodgers (1975, low res)

• Large CN variations among red giants– Norris & Bessell (1975, low res), Dickens & Bell (1976, low res)

• Large CO spread among red giants– Persson et al (1980, IR photometry)

• Heavy element abundance spreads – High resolution spectroscopy– Cohen (1981; 5 stars), Gratton (1982; 8), Francois et al (1988; 6),

Paltoglou & Norrris (1989; 15), Brown & Wallerstein (1993; 6), Norris & Da Costa (1995; 35), Smith et al (1995; 7)

Page 9: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Norris, Freeman & Mighell 1996, ApJ, 462, 241

Ca II H&K

Ca II infrared triplet

ROA 253

Low resolution (R~4000) [Ca/H] from Ca II H&K and Ca II infrared triplet

ROA 253

Page 10: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Norris, Freeman & Mighell 1996, ApJ, 462, 241

Ca II H&K AAT

Ca II triplet74-inch

Ca II triplet74-inch

[Ca/H] abundance histograms

METALLICITY DISTRIBUTION FUNCTION

[Ca/H] = log(N(Ca)/N(H))*

-log(N(Ca)/N(H))o

Page 11: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Norris, Freeman & Mighell 1996, ApJ, 462, 241

Two populations

First population: [Ca/H]0 = -1.59 <[Ca/H]> = -1.29

Second population: [Ca/H]0 = -1.09 <[Ca/H]> = -0.83

Simple model,closed box approximation:

metal-rich/metal-poor ~ 0.20

Page 12: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

High resolution spectrum obtained withAAT UCL Echelle Spectrograph (UCLES)

Page 13: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

High resolution spectra of 35 red giants(AAT UCLES, R~35,000;

Page 14: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Norris & Da Costa 1995, ApJ, 447, 680

[alpha/Fe] vs. [Fe/H](NB: heavily biased sample)

Enrichment by SNe II

Cen Other clusters

Page 15: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Norris & Da Costa 1995, ApJ, 447, 680

[neutron capture/Fe] vs. [Fe/H]

Enrichment by (intermediate-mass) AGB stars

Cen Other clusters

Page 16: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Norris, Freeman & Mighell, 1996 ApJ, 462, 241

Heavily biased sample(AAT UCLES high-res)

Unbiased sample(AAT, 74-inch low-res)

Normal globular clustersNo counterpartelsewhere in Galaxy. Suggestscausal link between populations

Page 17: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

[Fe/H]-1.5-2.0 -1.0

0.0

0.0

0.0

1.0

1.0

1.0

Smith et al 2000, AJ, 119, 1239

5Mo

3Mo1.5Mo

5Mo3Mo1.5Mo

5Mo

3Mo1.5Mo

[Rb/Zr]

[Rb/Zr]

[Rb/Zr]

Star formation occurred over 2-3 Gyr

Page 18: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Norris, Freeman & Mighell 1996, ApJ, 462, 241

[Ca/Fe] vs. radius

Abundance decreases with radial distance

Page 19: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Norris, Freeman, Mayor & Seitzer 1997, ApJ, 487, L187

Rotation vs. abundance

Metal-poor sample:V = 10.7 +/- 1.8 km/s

Metal-rich sample:V = 3.0 +/- 2.4 km/s

Metal-poor population rotating more rapidly

Page 20: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Metal-poor sample kinematically hotter and rotating more rapidly.

Kinematics vs. abundance

Norris, Freeman, Mayor & Seitzer 1997, ApJ, 487, L187

O Not ELS collapseO Kinematically consistent with binary cluster evolution (e.g. Makino et al 1991 Ap&SS, 185, 63); but not clear this works chemically

Page 21: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Cen

Lee et al 1999,Nature, 402, 55

Page 22: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Ferraro et al 2004, ApJ, 603, L81Pancino et al 2000, ApJ, 584, L83

‘Third’ population

Page 23: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Pancino et al 2002, ApJ, 568, L101

Enrichment by SNe Ia

[Ca/Fe]

[Fe/H]

Page 24: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Sollima et al. 2005, MNRAS, 357, 265

Page 25: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

To Cen’s main sequence withAAT Two Degree Field

Spectrographs

Page 26: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

… working with Laura Stanford, Gary Da Costa & Russell Cannon(Stanford et al 2006, ApJ, 647,1075)

1998/992002

Page 27: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Stars observed in 2002 box Cen radial-velocity

members in 2002 box

Stanford thesis

Page 28: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Stanford thesis

Page 29: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Metallicity Distribution Function

Stanford et al (2006, ApJ, 647, 1075)

Page 30: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Stanford et al. (2006, ApJ, 647, 1075)

Page 31: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Stanford et al. (2006, ApJ, 647, 1075)

From -

• Ages of individual star in the CMD determined from YY isochrones, taking into account correlated age-metallicity errors

• Comparisons of Monte-Carlo CMD simulations with that of the cluster

There exists an age-metallicity relation, with the more metal-rich populations being younger by 2-4 Gyr than the metal poor one

Page 32: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Stanford et al. 2006, ApJ, 647, 1075Age ranges from the literature

Page 33: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Stanford et al. (2006, in prep)

[Sr/Fe] = +1.6[Ba/Fe] < +0.8:

Page 34: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Bedin et al. 2004, ApJ, 605, L125 (astro-ph/0403112) (also Anderson 1997, 2000, 2003 Thesis U

Berkeley & ASP Proceedings)

Anderson’s double main sequence

HST data

Page 35: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Bedin et al. suggest:

• Observations and/or modelling wrong

• Bluer main sequence has [Fe/H] < -2.0

• Bluer main sequence has higher helium (Y > 0.3)

• Two clusters superimposed, separated by 1-2 kpc along

line of sight

Majority, metal-poor population should be bluest!

Note: X = hydrogen mass fraction Y = helium mass fraction Z = heavy element mass fraction

Page 36: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Pop 1st 2nd 3rd[Fe/H] -1.7 -1.2 -0.6Y 0.23 0.23 0.23Age(Gyr) 16 16 16Fraction 0.80 0.15 0.05

Revised Yale Isochrones Norris 2004, ApJ 612, L25

Page 37: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Pop 1st 2nd 3rd[Fe/H] -1.7 -1.2 -0.6Y 0.23 0.23 0.23Age(Gyr) 16 14 12Fraction 0.80 0.15 0.05

Revised Yale Isochrones Norris 2004, ApJ, 612, L25

Page 38: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Pop 1st 2nd 3rd[Fe/H] -1.7 -1.2 -0.6Y 0.23 0.35 0.38Age(Gyr) 16 15 14Fraction 0.80 0.15 0.05

Revised Yale Isochrones Norris 2004 ApJ, 612, L25

Page 39: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Bedin et al. 2004, ApJ, 605, L125 (astro-ph/0403112) (also Anderson 1997, 2000, 2003 Thesis U

Berkeley & ASP Proceedings)

Anderson’s double main sequence

HST data

Page 40: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Piotto et al. 2005, ApJ, 621, 777

The blue main sequence is more metal-rich by 0.3 dex!

VLT Giraffe

Page 41: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

BUT …

• Canonically, Y/Z ~3-4, and with an increase from [Fe/H] = -1.7 to -1.2 one expects only Y = 0.003!

• Suggests non-canonical evolution.

OBSERVATIONALLY …

• Determine Y from hot blue horizontal-branch stars?• Use sensitivity of HB luminosity and Teff to helium?• Zero-Age HB RR Lyraes of 2nd pop should be brighter by 0.2-

0.3mag. In contrast, the observed metal-richer RR Lyraes are fainter by 0.2-0.3mag! (see also Sollima et al. 2006, ApJ, 640, L43)

But … are the variables representative of the populations?

Page 42: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Ferraro et al 2004 ApJ, 603, L81

Pop 1st 2nd Alt.2nd[Fe/H] -1.7 -1.2 -1.2Y 0.23 0.35 0.23Age(Gyr) 14 12 12Fraction 0.80 0.15 0.15Turnoff mass (Msun) 0.82 0.71 0.85

Rey et al 2004

D’Cruz et al 2000 ApJ, 530, 352 - HST UV observations

“… over 30% of the HB objects are “extreme” HB or post-HB stars”

see also:Lee et al., 2005, ApJ, 621, L57

Page 43: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

CANDIDATES FOR PRODUCERS OF HELIUM

• Massive stars (~60 Mo) with rotationally driven mass loss (Maeder & Meynet astro-ph/0601425) - also produce copius C, N, and O

• 10-14 Mo SNe (Piotto et al 2005, ApJ, 621, 777)

• More massive (~6-7 Mo) AGB stars• Problems with self enrichment by above candidates within a closed

system producing so much helium. (Pre-Maeder & Meynet) Bekki & Norris (2006, ApJ, 637, L109) suggested second population formed from gas “ejected from field stellar populations that surrounded Cen when it was the nucleus of an ancient dwarf galaxy”

• Helium diffusion in protocluster phase (Chuzhoy astro-ph/0602593): “Element diffusion can produce large fluctuations in the initial helium abundance of the star-forming clouds. Diffusion time-scale … can fall below108 years in the neutral gas clouds dominated by collisionless dark matter or with dynamically important radiation or magnetic pressure. ”

Page 44: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

SUMMARY• Cen possesses at least three distinct populations, described

to first approximation by: Population First Second Third Fraction 0.80 0.15 0.05 [Fe/H] -1.7 -1.2 -0.6 Y 0.23 0.35 0.38: YY Age (Gyr) 14 12 12: (Vr) (km/s) 13 8 13

Rotation (km/s) 11 3 unknown

• The origin of the helium in the second population is currently not understood.

• System not formed in an ELS scenario, but more likely as a dwarf galaxy having multiple star-formation episodes well away from the forming Galaxy, and later being captured by it.

Page 45: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN
Page 46: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

98/9998/99

2002

Stanford thesis (2006, ApJ, 647, 1075)

Page 47: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Age-Metallicity Relation

Stanford et al (2006, ApJ, 647, 1075)

Page 48: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Sollima et al. 2005, ApJ, 634, 332

Page 49: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Smith, Cunha & Lambert 1995 AJ, 110, 2827

Mixing line

[Fe/H]

[Ba/Fe]

Page 50: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Metallicity RangeStanford thesis work

Page 51: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Age-Metallicity Relation

Stanford et al (2006, ApJ, 647, 1075)

Page 52: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN
Page 53: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Norris & Da Costa 1995 ApJ, 447, 680

[iron peak/Fe] vs. [Fe/H]

Cen Other clusters

Page 54: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Stanford thesis work

Observations

Simulations of populations: [Fe/H] FractionFirst -1.7 0.80Second -1.2 0.15Third -0.6 0.05

0 Gyr

6 Gyr

4 Gyr

2 Gyr

Age spread

Page 55: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

Stanford thesis work

[Fe/H]

Age(Gyr)

15

10

5

-2 -1

Turnoff stars

Page 56: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

THE CHEMICAL ENRICHMENT OF CENTAURI

JOHN E. NORRIS

RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS

MOUNT STROMLO & SIDING SPRING OBSERVATORIES

AUSTRALIAN NATIONAL UNIVERSITY

Page 57: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

AAT Two Degree Field - Plate with fibres

Page 58: THE CHEMICAL ENRICHMENT OF  CENTAURI JOHN E. NORRIS RESEARCH SCHOOOL OF ASTRONOMY & ASTROPHYSICS MOUNT STROMLO & SIDING SPRING OBSERVATORIES AUSTRALIAN

D’Cruz et al 2000 ApJ, 530, 352 - HST UV observations

‘Normal’ Horizontal Branch

EHB

“… over 30% of the HB objects are “extreme” HB or post-HB stars”

V ~ 16