the effects of small particles on near wllw all ear...

20
5th th OpenFOAM OpenFOAM Workshop Workshop Chalmers Gothenburg Sweden June Chalmers Gothenburg Sweden June 21 21-24 24 2010 2010 Chalmers, Gothenburg, Sweden, June Chalmers, Gothenburg, Sweden, June 21 21 24 24, , 2010 2010 Modeling the Effects of Small Particles Modeling the Effects of Small Particles N W ll Sh St N W ll Sh St on Near W all Shear Stress on Near W all Shear Stress By: By: A Sarreshtehdari Sarreshtehdari M Zeinali Zeinali MH MH Sedaghat edaghat A. A. Sarreshtehdari Sarreshtehdari, M. M. Zeinali Zeinali, M. H. , M. H. Sedaghat edaghat

Upload: dinhtu

Post on 26-Aug-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

55th th OpenFOAMOpenFOAM WorkshopWorkshopChalmers Gothenburg Sweden JuneChalmers Gothenburg Sweden June 2121--2424 20102010Chalmers, Gothenburg, Sweden, June Chalmers, Gothenburg, Sweden, June 2121 2424, , 20102010

Modeling the Effects of Small Particles Modeling the Effects of Small Particles N W ll Sh StN W ll Sh Ston Near Wall Shear Stresson Near Wall Shear Stress

By:By:

AA SarreshtehdariSarreshtehdari MM ZeinaliZeinali M HM H SSedaghatedaghatA. A. SarreshtehdariSarreshtehdari, , M. M. ZeinaliZeinali, M. H. , M. H. SSedaghatedaghat

OutlineOutline

• Particle properties

• Modeling features and its goalsModeling features and its goals

• Particle effects modeling– Force modeling

– Distribution modelingg

• Primary results

C l i• Conclusion

Applied Fluid Mechanics Researches Group 2

Particle PropertiesParticle Properties

• 5 < Particle size (micrometer) < 500• Low upward velocity• Low upward velocity • No collusion or merging existA l bl i• Are not solvable in water

• Constant physical and chemical properties

3Applied Fluid Mechanics Researches Group

ModelingModeling

• Particle effects modeling

• Particles distribution modeling

• Effect of model on near wall region

• Effect of model on vortical structure of background• Effect of model on vortical structure of background flow

• Q alitati el e al ation of presented model for Drag• Qualitatively evaluation of presented model for Drag Reduction phenomenon

Applied Fluid Mechanics Researches Group 4

Particle effects modelingParticle effects modeling

2: ( ( . ). ) ( , , , )puN S Equation u u P u f x y z tt

ρ μ∂− + ∇ = −∇ + ∇ +

3 2 2 22

2 2

1( , , ) ( ) exp( )2 2p

Magnitude

x y zf x y z Fπσ σ

+ += −

MagnitudeDistribution

Applied Fluid Mechanics Researches Group 5

Force componentsForce components0 5 ( )bm dF U Uρ=• Added mass 0.5 ( )A f f b

b

F U Udt

ρρ

= −

0 75 ( )f bmF C U U U Uρ

= − −• Drag force0.75 ( )D D f b f b

b b

F C U U U UDρ

=

3

( )bDF U Uπ ρ ⎡ ⎤= Ω× −⎣ ⎦• Lift force( )

8LS f f bF U Uπ ρ ⎡ ⎤= Ω× −⎣ ⎦

( )bmF gρ ρ= − −• Buoyancy force

f fDUF

ρ ⎡ ⎤⎢ ⎥

( )B f bb

F gρ ρρ

=

• Pressure gradient force

F F F F F F+ + + +

f fp b

b

F mDtρ

= ⎢ ⎥⎣ ⎦

Particle A D LS B pF F F F F F= + + + +Applied Fluid Mechanics Researches Group 6

Particle effects in uniform arrangement

Applied Fluid Mechanics Researches Group 7

Effect of force in flowEffect of force in flow (continue)

Vorticity Convection, Diffusion & Dissipation

Applied Fluid Mechanics Researches Group 8

Effect of force in flowEffect of force in flow (continue)

Vorticity Convection, Diffusion & Dissipation

Applied Fluid Mechanics Researches Group 9

P ti l Di t ib tiParticles Distribution 

0 60.70.8

0.40.50.6

Experimental data

Modeling data

0.10.20.3

00 1 2 3 4

y/hy

2

2

1 ( )( ) ( )22

xf x exp μσπσ−

= −2πσ

Applied Fluid Mechanics Researches Group 10

P ti l Di t ib tiParticles Distribution (continue)8090

100

5

10

15

20

25

30

35

Qua

ntity

010203040506070

0.01

0.04

0.08

0.11

0.14

0.18

0.21

0.25

0.28

0.31

0.35

0.38

0.41

0.45

0.48

0.52

Qua

ntity

0

0.23

0.36

0.48

0.60

0.72

0.84

0.96

1.09

1.21

1.33

1.45

1.57

1.70

1.82

z-Position(m)

direction

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y-Position (m)

Y‐d

10

15

20

25

30

35

Qua

ntity

0

5

10

0.36

0.62

0.88

1.13

1.39

1.65

1.91

2.17

2.42

2.68

2.94

3.20

3.46

3.72

x-Position(m)

Applied Fluid Mechanics Researches Group 11

Numerical methodNumerical method

• Large Eddy Simulation

0iu∂=

( ) ( )

0

21

j

i j iji

x

u u Su p ν

∂ ∂∂ ∂Filtration

( ) ( )1i j ijib

j i j

u p ft x x xρ

∂ ∂+ + = +

∂ ∂ ∂ ∂Calculated force

Modeled term

iu∂

1⎧( ) ( )

0i

j

ux∂

=∂

( )2

1 23

ijij ij kk t

t s

S

C S

τ δ τ ν

ν

⎧ − = −⎪⎨⎪ = Δ⎩

SGSModels

( ) ( )21i j iji ijb

j i j j

u u Su P ft x x x x

ν τρ

∂ ∂ ∂∂ ∂+ + = + −

∂ ∂ ∂ ∂ ∂ ( )⎩j j j

Applied Fluid Mechanics Researches Group 12

Particle force componentsParticle force components

bp

Um ddt

=

AF

F

+

+D

L

F

F

+

+

,g W PF F+

Applied Fluid Mechanics Researches Group 13

Modeling stepsModeling steps

Applied Fluid Mechanics Researches Group 14

Vorticity effects of particlesVorticity effects of particles

Before Particle Effects

After Particle Effects

Applied Fluid Mechanics Researches Group 15

Distance effect on modelDistance effect on model

0.06

0.04

0.05

m/s

)

0.02

0.03

Velo

citr

y (m

x=1.5x=2x=2 5

0 00

0.01

V x=2.5x=3

0.000.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Distance from wall (m)

Applied Fluid Mechanics Researches Group 16

Far away from wallFar away from wall

0 00 0 20 0 40 0 60 0 80 1 00

Distance from wall (m)Ortiz, Hassan, 2006

10.00 0.20 0.40 0.60 0.80 1.00

0.1

y (m

/s)

x=1.5

0.01Velo

city x=2

x=2.5

x=3

0.001

Applied Fluid Mechanics Researches Group 17

Effect of void fractionEffect of void fraction

35

40

single phase (u+=y+ & log law)

25

30

35 single phase (u+=y+ & log law)

max. void fraction

med. void fraction

min. void fraction

Ortiz, Hassan, 2006

15

20

25

U+Viscous sub layer

U+=Y+

5

10

15

Log. layer

0

5

10 100 1000

g y

Y+Applied Fluid Mechanics Researches Group 18

ConclusionConclusion

• Particle effects leads to change the vortical behavior of• Particle effects leads to change the vortical behavior of initial flow field and caused significant effect on near wall shear stresses.

• Present hypothesis is developed qualitatively to particle drag reduction modeling and this model convinces g gexperimental results which are obtained by other experiment researches

• The present model is capable to simulate the effect of Particle size, particle distribution and void fraction effectseffects.

• Presented model decrease CPU Time Significantly.g y

Applied Fluid Mechanics Researches Group 19

Thank You For Thank You For Your Your

AttentionAttenti n

Applied Fluid Mechanics Researches (AFMR) Group www sarreshtehdari net

Applied Fluid Mechanics Researches Group

www.sarreshtehdari.net