the escher problem

38
The Escher Problem

Upload: oswald

Post on 14-Jan-2016

42 views

Category:

Documents


0 download

DESCRIPTION

The Escher Problem. Frieze Groups. Frieze = embroidery from Friez, horizotal ornamented band (architecture). We are interested in symmetry groups of such bends. There are 7 frieze groups. We start with a rectangular stamp. Transformations. Translation Halfturn Vertical Reflection - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The Escher Problem

The Escher Problem

Page 2: The Escher Problem

Frieze Groups

• Frieze = embroidery from Friez, horizotal ornamented band (architecture).

• We are interested in symmetry groups of such bends. There are 7 frieze groups.

• We start with a rectangular stamp.

Page 3: The Escher Problem

Transformations

• Translation

• Halfturn

• Vertical Reflection

• Glide-reflection

Page 4: The Escher Problem

Seven Frieze Types

• Groups (notation):• 11 (translations only)• 12 (translations and halfturns)• m1 (translations and vertical reflections)• 1g (translations and glidereflections)• mg (translations, halfturns, vertical reflections and

glide reflections)• 1m (translations and horizontal reflections)• mm (translations, halfturns,vertical reflections,

glide reflections, horizontal reflections)

Page 5: The Escher Problem

11

Page 6: The Escher Problem

12

Page 7: The Escher Problem

m1

Page 8: The Escher Problem

1g

Page 9: The Escher Problem

mg

Page 10: The Escher Problem

1m

Page 11: The Escher Problem

mm

Page 12: The Escher Problem

The Groups

• Group Elements• Identity I

• Translation T

• Halfturn R

• Glidereflection G

• Vertical mirror V

• Horizontal mirror H.

• Some relations: R2 = V2 = H2 = I, RV = VR = H,..

Page 13: The Escher Problem

Subgroups

• (1) T P C1

• (2) G P,R(P) C1

• (3) T,R B C1 £ D1

• (4) T,V A D1

• (5) T,H S D1

• (6) G,V A,R(A) D1

• (7) all(T,G,R,V,H) H D1 £ D1

Page 14: The Escher Problem

Exercise

• Explain how the Frieze groups can be described by the four letters (aspects of the pattern):

• b, p, q, d.

b

p

q

d

Page 15: The Escher Problem

Discrete Isometries

• Each metric space M determines the group of distance preserving maps, isometries Iso(M).

• A subgroup of Iso(M) is discrete, if any isometry in it either fixes an element of M or moves is far enough.

• Discrete subgroups of I(R2) fall into three classes:• 17 crystallographic groups

• 7 frieze groups

• finite groups (grups of rozettes).

Page 16: The Escher Problem

Theorem of Leonardo da Vinci

• The only finite groups of isometries in the plane are the group of rosettes (cyclic groups Cn and dihedral groups Dn).

Page 17: The Escher Problem

The Escher problem

• There is a square stamp with asymmetric motif.• By 90 degree rotations we obtain 4 different aspects.• By combining 4 aspects in a square 2 x 2 block, a

translational unit is obtained that is used for plane tilnig. Such a tiling is called a pattern.

• Question: What is the number of different patterns ?• Answer: 23.

Page 18: The Escher Problem

Example

Page 19: The Escher Problem

Recall Burnside Lemma.

• Let G be a group, acting on space S.

• For g 2 G let fix(g) denote the number of points form S fixed by g.

• Let N denote the number of orbits of G on S.

• Then:

Page 20: The Escher Problem

Application

• Determine the group (G) and the sapce (S).

• Pattern can be translated and rotated.

• Basic observatrion: • Instead of pattern consired the block (signature).

• Group operations:• H – horizontal translation

• V – vertical translation

• R – 90 degrees rotation.

Page 21: The Escher Problem

(Abstract) group G

• h2 = v2 = r4 = 1.• hv = vh• hr = rv

v vr vr2 vr3

1 r r2 r3

h hr hr2 hr3

hv hvr hvr2 hvr3

Page 22: The Escher Problem

Space S

• Space S consists of 4 4 4 4 = 256 signatures.

• Count fix(g) for g 2 G.

• For instance:• fix(1) = 256.

• fix(r) = fix(r3) = 4.

• fix(h) = fix(v) = 16.

• By Burnside Lemma we obtain N = 23.

Page 23: The Escher Problem

Homework

• Consider the Escher problem with the motiff on the left.

• H1. Determine the abstract group and its Cayley graph.

• H2. What is the number of different patterns?

• H3. What is the number of different patterns if we reflections are allowed?

• H4. What is the number of different patterns in the original Escher problem if reflections are allowed?

Page 24: The Escher Problem

1-dimensional Escher problem

• Rectangular Asymmetric Motiff

• Only Two Aspects.

• 1 x n block (signature)

• Determine the number of patterns:

• Two more variations:• II two motiffs(mirror

images)

• III reflections are allowed.

Page 25: The Escher Problem

Space S

• Space S consists of 2 2 .... 2 = 2n signatures.

• Count fix(g) for g 2 G.

• For instance:• fix(1) = 256.

• fix(r) = fix(r3) = 4.

• fix(h) = fix(v) = 16.

• By Burnside Lemma we obtain N = 23.

Page 26: The Escher Problem

Solution for the basic case

• where g(n) = 0 for odd n and for even n:

nk

kn ngkn

nf|

/ ))(2)((2

1)(

2/2)2/()( nnng

Page 27: The Escher Problem

Program in Mathematica

• f[n_] := (Apply[Plus,Map[EulerPhi[#] 2^(n/#)&,Divisors[n]]] + If[OddQ[n],0,(n/2) 2^(n/2)])/(2n)

• f[n_,m_] := (Apply[Plus,Map[EulerPhi[#] (2 m)^(n/#)&,Divisors[n]]] + If[OddQ[n],0,(n/2) (2 m)^(n/2)])/(2n)

• g[n_] := (Apply[Plus,Map[If[OddQ[#],1,2] EulerPhi[#] 4^(n/#)&,Divisors[n]]] + If[OddQ[n],0,(n) 4^(n/2)])/(4n)

Page 28: The Escher Problem

Results for a tape

• n I II III• 1 1 2 1• 2 2 6 4• 3 2 12 6• 4 4 39 23• 5 4 104 52• 6 9 366 194• 7 10 1172 586• 8 22 4179 2131• 9 30 14572 7286• 10 62 52740 26524

Page 29: The Escher Problem

Exercise

• Determine the Cayley graph of each of the Frieze groups.

• Determine the crystallographic groups that may arise from the classical Escher problem

Page 30: The Escher Problem

17 CRYSTALLOGRAPHIC GROUPS6-števna os?

zrcaljenje? 4-števna os?

p6mm p6

Zrcala v 4 smereh?

zrcaljenje?

p4

3-števna os?

p4mm p4gm

zrcaljenje?2-števna os?

zrcaljenje?

glide?Rombska mreža?glide?Drugo zrcalo?

Rombska mreža?

zrcaljenje?

p1pgpmcmp2c2ggp2mg

3-osi na zrcalih?

p31mp3m1

p3

c2mm p2mm

Page 31: The Escher Problem

p1

• p1 = <a,b|ab=ba>

Page 32: The Escher Problem

p2

• p2 = <a,b,c| b2=c2=(ab)2=(ac)2=1>

Page 33: The Escher Problem

pm

• pm = <a,b,c| b2=c2=1, ab=ba, ac=ca>

Page 34: The Escher Problem

pg

• pg = <a,b|ab=ba-1>

Page 35: The Escher Problem

cm

• cm = <a,b,c| b2=c2=1, ab=ca>

Page 36: The Escher Problem

p2mm

• p2mm = <a,b,c,d| a2=b2= c2=d2= 1, (ab)2=(ad)2=(bc)2=(cd)2=1>

Page 37: The Escher Problem

p2mg

• p2mg = <a,b,c| b2 = c2 = 1, (ab)2=(ac)2=1>

Page 38: The Escher Problem

p2gg

• p2gg = <a,b| (ab)2=1>