the extreme universe

75
The Extreme Universe Probing the Limits of Particle Physics and Astronomy Rene A. Ong University of California, Los Angeles

Upload: phamdat

Post on 13-Feb-2017

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Extreme Universe

The Extreme UniverseProbing the Limits of Particle Physics

and Astronomy

Rene A. OngUniversity of California, Los Angeles

Page 2: The Extreme Universe

Outline• Big Picture

• Cosmic messengers & observables• Scientific motivation• Experimental techniques

• Recent excitement1. (Gamma-ray bursts)2. Extragalactic TeV sources3. Ultrahigh energy cosmic rays

• Future

Page 3: The Extreme Universe

Cosmic Messengers

1. Photons neutral basis for most of astronomy2. Cosmic rays charged important in our galaxy3. Neutrinos weakly inter. only detection – SN1987A4. Grav. waves neutral still in infancy

To fully understand astrophysical sources we need information from multiple messengers.

This talk concentrates on 1 & 2 at high energies.

We learn about the universe from four messengers:

Page 4: The Extreme Universe

Observables

• Particle type - γ, CR, ν, …• Energy spectrum - physics• Direction - astronomy• Variability• (Polarization)

Page 5: The Extreme Universe

High Energies

GeV = 109 eVTeV = 1012 eVPeV = 1015 eVEeV = 1018 eVZeV = 1021 eV

Space-based

Ground-based

Page 6: The Extreme Universe

Diffuse Photon Spectrum

optical

x-ray

cmbr

optical

γ-ray

Cosmic Rays

Flux

Energy

GeV TeV PeV EeV

Page 7: The Extreme Universe

Cosmic Ray Spectrum

• Power law spectrum

• Abundantρ ~ 1 eV / cm3

• LuminousL > 1040 erg/s

• Larmor radius r = R/cBR r _

1015 eV 0.3 pc1020 eV 30 kpc

• HE origin remainscompletely unknown.

Page 8: The Extreme Universe

GeV γ-ray Sky Map

Galacticdiffuse Crab

AGN

EGRET

Page 9: The Extreme Universe

GeV γ-ray Sky Map

+ GRBs

Page 10: The Extreme Universe

UHECR Sky Map

AGASA 59 evts > 4 x 1019 eV

Page 11: The Extreme Universe

ν Sky Map

Page 12: The Extreme Universe

Scientific Motivation

• Explore a new window of astronomy

• “Extreme Astrophysics”:1. Test limits of physical law using most extreme environments.2. Probe high energy, non-thermal astrophysical mechanisms.

• Probe beyond standard models of particle physics and cosmology:

1. Use “particle beams” across interstellar space.2. Search for new particles or new relics from the Big Bang.

Examples from these various topics . . .

Page 13: The Extreme Universe

Extreme Astrophysics

High energy astrophysical sources exist! How do we make such sources?

Three ingredients:1. Power source - electromagnetic, gravitational2. Acceleration - shock acceleration (Fermi)3. Emission - particle interaction and decay

Page 14: The Extreme Universe

Reaching Very High Energies

Hillas plot

Require gyroradius tofit within accelerationregion.

Page 15: The Extreme Universe

Power Sources: Pulsars

Crab Nebula

Produces γ-rays up to 1015 eV.

Pulsar- NS rotation

models

Page 16: The Extreme Universe

Supernova Remnants

E0102AAT, HST, Chandra

radio x-ray

• Collapse of massive star• Remnant expansion powers

shock wave• Particle acceleration via

Fermi mechanism

Energy ~ 1051 ergRate ~ 1 / 30 yr (galaxy)

L ~ 1042 erg/s

Lcr = ε L = 1040 – 1041 erg/s

SNR could explain the origin of cosmic rays

(E < 1015 eV).

Page 17: The Extreme Universe

Active Galactic Nuclei (AGN)

3C273

jet

Chandra

model

• BH accretion powers jets• Shock acceleration in jets• Relativistic electrons, protons

Inv. Compton: eγ eγDecay: πο γγ

π+ νEmission mechanisms

Page 18: The Extreme Universe

Beyond the Standard models

1. Using “particle beams” across interstellar space

• Absorption features in spectra of distant sources:• Absorption of HE γ-rays by pair-production.

More on this later.• Cutoff of extragalactic cosmic rays by CMBR (GZK cutoff).

• Dispersion in time of flight of arrival particles:• Quantum gravity effects – energy dependent c -

time dispersion of photons from distant source (AGN, GRB).• Dispersion in arrival time of neutrinos – ν mass limit.

Page 19: The Extreme Universe

Beyond the Standard models

• Supersymmtery:• Neutralinos at galactic center.

• So – explain origin of UHECR.

• Primordial black holes M ~ 1015 g

• Topological defects• Cosmic strings, domain walls MX ~ 1015 GeV.

• . . .

2. New Particles and Relics

Page 20: The Extreme Universe

SUSY – Neutralino annihilation

Annihilation:

q

qor γγ , Zγ

X

X

γ-ray detectors have sensitivity to neutralinos in the important energy range.

Annihilation at Galactic Center

Page 21: The Extreme Universe

Experimental Techniques

Wide energy range requires multiple techniques

6 9 12 15 18 21 Log [E (eV)]

Satellite AtmosphericCherenkov

Air Shower ArraysN2 Fluorescence

EGRET STACEE WHIPPLE AGASA FLY’S EYE GLAST VERITAS AUGER

Page 22: The Extreme Universe

AtmosphericCherenkov

Air ShowerArray

CASA-MIA (Dugway, UT)

Satellite

EGRETDetecting HE Particles

Page 23: The Extreme Universe

Atmospheric Cherenkov Technique

Cherenkov Light PoolWhipple 10m Reflector

(Mt Hopkins, AZ)

Page 24: The Extreme Universe

Cherenkov Pulses

Pulse ~ 5 nsec

Page 25: The Extreme Universe

Recent Excitement

1. (Gamma-ray bursts)

2. Extragalactic sources of TeV photons• Detection of luminous “blazars”• 20-200 GeV “terra incognita”• Development of STACEE project

3. 1020 eV cosmic rays

Page 26: The Extreme Universe

Extragalactic TeV sources

1992 Detection of TeV photons from the active galaxyMrk 421 (z=0.031).

1994 First major variability detected by TeV telescopes.1997 Dramatic flaring detected in second source

Mrk 501 (z=0.033).

1998 Additional sources detected.to Multi-wavelength studies.

2001 Dramatic flaring of Mrk 421.

These powerful objects are fascinating and enigmatic !

Page 27: The Extreme Universe

“Blazars”

Blazars are a type of AGN with somekey features:

• Powerful, radio-loud• Highly variable at all wavelengths • Relativistic jets – superluminal• Power peaks in X-rays, γ-rays

TeV image of Mrk 421

Whipple 23σ detection

Page 28: The Extreme Universe

Blazars – powerful, variable sources

• Dramatic variability:time scales < 30 min.

• Large fluxes: 1011 TeV γ-rays / secto earth.

• Energies > 10 TeV.

Whipple Mrk 501

Page 29: The Extreme Universe

Blazar Energy Distribution

• Double peaked:power is at HE.

• X-rays & γ-rayshighly correlated

• Model components:SynchrotronInverse Compton

synchrotron IC

Page 30: The Extreme Universe

Key Questions about Blazars

• How do blazars really work?- must explain: fluxes, variability, correlations …

• Why don’t we see more of them at TeV energies?>70 sources at GeV, but only handful at TeV.Is absorption instrinsic or intergalactic ?

• Are blazars sources of UHECRs or ν ?

Page 31: The Extreme Universe

Blazar Dynamics

General picture

• Origin and properties of Jet- Doppler boost δ, geometry

• Nature of beam: e or p• Source of IC photons• Emission zones• Magnetic and radiation fields• . . .

Page 32: The Extreme Universe

• Cosmic EBL produced by normal star formation and evolution

• HE γ-rays from AGN will interact with EBL via pair production: γ γ e+ e-

• Can determine EBL density from optical depth: τ ~ n EBL σγγ D

~ n EBL σγγ / Ηo

n EBL depends on early astrophysics and cosmology

The extragalactic background light

Page 33: The Extreme Universe

EBL Absorption of γ-rays

Page 34: The Extreme Universe

20-200 GeV “Terra Incognita”

• Window 20-200 GeV not explored by any experiment:• Above range of satellite instruments.• Below range of Cherenkov telescopes.

• Energy threshold of Cherenkov telescopes is set S/NCan achieve a low threshold by using a large mirror area.

• Large mirrors exist at Solar research facilities (e.g. Sandia)

STACEE Project

Page 35: The Extreme Universe

Solar Tower AtmosphericCherenkov Effect Experiment

National Solar Thermal Test FacilitySandia National Labs

Page 36: The Extreme Universe

STACEE Concept

Page 37: The Extreme Universe

62 STACEE HeliostatsTotal mirror area = 2,400 m2 Secondary mirrors on Tower

Primary and Secondary Mirrors

Page 38: The Extreme Universe

Heliostat Field

Tower

Page 39: The Extreme Universe

Secondary mirror and camera

Electronics Trigger & FADCs

Page 40: The Extreme Universe

STACEE Timeline

1997 Start construction1999 32-heliostats E= 190 GeV Detect Crab Nebula 7σ2001 48-heliostats E= 110 GeV Detect Mrk 421 flares ~ 15σ

64-heliostats E=80 GeV Operational

Collaboration:Alberta: D. GingrichU. California: L. Boone, J. Carson, R. Ong, D. Williams,

J. Wong, J. ZweerinkCase Western: C. Covault, J. Hinton, R. ScalzoColumbia: D. Bramel, R. MukherjeeMcGill U: P. Fortin, D. Hanna, C. Mueller, K. Ragan

Page 41: The Extreme Universe

Mrk 421 Light Curve (2001)

STACEE-48 E=110 GeV

Mar Apr May Jun

Page 42: The Extreme Universe

Comparison with Whipple

STACEEFlux

Whipple Flux

• Correlated fluxes

• STACEE ~ 2 timesWhipple in flux

Page 43: The Extreme Universe

Projected Sensitivity

Spectra from distantAGN (z=0.94)

Page 44: The Extreme Universe

Future: γ-rays

• New generation of telescopesspace: SWIFT, GLASTground: Cherenkov Tel. Arrays –VERITAS

• Big gains in:• Source sensitivity (10 mCrab)• Angular and energy resolution• Energy coverage

• Expect number of HE sources to increasesubstantially.

Page 45: The Extreme Universe

GLAST

GLAST Instrument:• Si tracker• CsI calorimeter• Anti-coincidence veto

Sky map from 1 year survey

Launch in 2006.

Page 46: The Extreme Universe

VERITAS

Mt. Hopkins, AZ

Page 47: The Extreme Universe

VERITAS - Design

Telescope Array

Updated design f 1.2

Page 48: The Extreme Universe

• Stereo reconstruction • Excellent angular and energy resolution

VERITAS - Reconstruction

Page 49: The Extreme Universe

AGN Sensitivity

Whipple VERITAS (2004)

Page 50: The Extreme Universe

Summary

• High energy particle astrophysics is an emerging, exciting area.

• Research is experimentally driven – probing limits of known astrophysics and possibly beyond standard models.

• For γ-rays: GRBs and AGN are the most powerful astrophysical objects known.STACEE – project to explore region 20-200 GeV.

• For cosmic rays: future experiments will resolve a very compelling problem.

Page 51: The Extreme Universe

UHECRs

Page 52: The Extreme Universe

UHECR Detectors - Fly’s Eye

HiRes mirror sheds Nitrogen fluorescence techniqueDugway, UT

Page 53: The Extreme Universe

UHECR Detectors - AGASA

• 100 km2 surface array• Honshu, Japan

Charged particle detectors

Page 54: The Extreme Universe

Comparison of Aperture

Rp~30km

Rp~20km

Rp~40km

Rp~10km

• Possible systematic errors ?

Page 55: The Extreme Universe

Ultrahigh Energy Spectrum

AGASA9 yrs of data

Fly’s Eye HiRes4 yrs of mono data

Similar exposure – much different flux above 6 x 1019 eV.

Page 56: The Extreme Universe

Directional correlations (AGASA)

Sky map

Angular correlation ~ 5σ effect

Page 57: The Extreme Universe

UHECR Questions

• Do Super-GZK events really exist?- discrepancy between AGASA and Fly’s Eye.

• Do the events cluster on the sky?- evidence from AGASA suggests this.- astrophysical sources.

• What is the composition of the events?- contradictory information from the experiments.

Clearly need a new generation of more powerful experiments!

Page 58: The Extreme Universe

Future: UHECRs

Aperture . . .

Year1985 1990 1995 2000 2005 2010 2015

Effe

ctiv

e Ap

ertu

re *

Year

(Km

2 *st

r*yr

)

102

103

104

105

106

107

Flys Eye

AGASAHiRes

Pierre-Auger TA

EUSO

Super-OWL

Page 59: The Extreme Universe

Pierre Auger Project

Hybrid ArrayMendoza, Argentina

Page 60: The Extreme Universe

UHECRs from Space

General conceptEUSO on ISS

Page 61: The Extreme Universe

Gamma Ray Bursts

Page 62: The Extreme Universe

Gamma Ray Bursts

BATSE ~ 1 GRB/dayISOTROPC

30 Year Old Mystery !

Page 63: The Extreme Universe

GRB Counterparts

1997 Major BreakthroughBEPPO/SAX provides accurate positionsRedshifts for dozens of afterglows determined

Before After

KeckGRB 981214Z= 3.412

“Afterglow”

Page 64: The Extreme Universe

GRB 990123

Detection of GRB in process !

ROTSE

GRB 990123Z= 1.600Mag = 8.95

Energy released~ 1054 ergs

(isotropy)

Page 65: The Extreme Universe

GRB Enigmas• Mechanisms not fully understood – “fireball” models

• Hypernova – “collapsars”• NS-NS collisions

• Types of GRB not understoodCounterparts detected for long, energetic bursts

Short bursts may havedifferent origin!

Page 66: The Extreme Universe

Other Slides

Page 67: The Extreme Universe

TeV Sky Map

~ dozen sources

Page 68: The Extreme Universe

Imaging PMT Camera500 Elements

379 1/2"PMTs

111 1"PMTs

ProtonPrimary

γ - ray

Cherenkov Camera

Page 69: The Extreme Universe

Flaring of Mrk 421 in 2001

Whipple

1 Crab

Page 70: The Extreme Universe

Mrk 421, 501 Spectra

HEGRA

Difficult to measureabsorption:

Wide dynamic rangeControl of systematics

Still an open question.

Page 71: The Extreme Universe

Collection Area

EnergyThreshold

E-2.3 spectrum

STACEE-48 Area & Threshold

Page 72: The Extreme Universe

VERITAS

Advanced hardware

Multi-level trigger500 MHz FADCsHigh speed DAQ

Page 73: The Extreme Universe

VERITAS Groups

UCLA

Page 74: The Extreme Universe

GLAST - LAT

Hardware fromparticle physics andspace physics fields

Partnership:DOE NASA International

Page 75: The Extreme Universe

Neutrino Spectra

• Completely hypothetical !