the finite element method - read.pudn.comread.pudn.com/downloads141/ebook/611530/the finite element...

68
The Finite Element Method Contents 1. Introduction 2. A Simple Example 3. Trusses 4. Linear Systems of Equations 5. Basic Equations of Elasticity Theory 6. Finite Elements for Plane Stress Problems 7. Finite Elements for Three-Dimensional Problems 8. Dynamical Problems 9. Beam Elements Gerhard Mercator Universität Duisburg The Finite Element Method Manfred Braun FEM 0.0-1

Upload: vuhuong

Post on 07-Feb-2018

233 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

The Finite Element Method

Contents

1. Introduction

2. A Simple Example

3. Trusses

4. Linear Systems of Equations

5. Basic Equations of Elasticity Theory

6. Finite Elements for Plane Stress Problems

7. Finite Elements for Three-Dimensional Problems

8. Dynamical Problems

9. Beam Elements

GerhardMercatorUniversitätDuisburg

The Finite Element Method Manfred BraunFEM 0.0-1

Page 2: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Literature

[1] Johannes Altenbach, Udo Fischer: Finite-Elemente-Praxis. Fachbuchverlag, Leipzig 1991.ISBN 3-343-00686-6

[2] Klaus-Jürgen Bathe: Finite-Elemente-Methoden. Matrizen und lineare Algebra, die Methodeder finiten Elemente, Lösung von Gleichgewichtsbedingungen und Bewegungsgleichungen.Springer-Verlag, Berlin ·Heidelberg ·New York ·Tokyo 1986. ISBN 3-540-15602-X

[3] Josef Betten: Finite Elemente für Ingenieure 1. Grundlagen, Matrixmethoden, ElastischesKontinuum. Springer-Verlag, Berlin ·Heidelberg ·New York 1997. ISBN 3-540-63239-5

[4] Josef Betten: Finite Elemente für Ingenieure 2. Variationsrechnung, Energiemethoden,Näherungsverfahren, Nichtlinearitäten. Springer-Verlag, Berlin ·Heidelberg ·New York 1998.

ISBN 3-540-63240-9

[5] Richard H. Gallagher: Finite Element Analysis: Fundamentals. Prentice-Hall, EnglewoodCliffs, N. J., 1975. ISBN 0-13-317248-1

GerhardMercatorUniversitätDuisburg

Literature Manfred BraunFEM 0.1-1

Page 3: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Literature (cont’d)

[6] Dietmar Gross, Werner Hauger, Walter Schnell, Peter Wriggers: Technische Mechanik.Band 4: Hydromechanik, Elemente der Höheren Mechanik, Numerische Methoden. Springer-Verlag, Berlin ·Heidelberg ·New York 1993. ISBN 3-540-56629-5

[7] Bernd Klein: FEM. Grundlagen und Anwendungen der Finite-Elemente-Methode. Vieweg,Braunschweig ·Wiesbaden, dritte, überarbeitete Auflage, 1999. ISBN 3-528-25125-5

[8] Günther Müller, Clemens Groth: FEM für Praktiker. Die Methode der Finiten Elemente mitdem FE-Programm ANSYS. expert-verlag, Renningen-Malmsheim, dritte, völlig neubear-beitete Auflage, 1997. ISBN 3-8169-1525-6

[9] Douglas H. Norrie, Gerard de Vries: The Finite Element Method. Academic Press, New York1973. ISBN 0-12-521650-5

[10] J. Tinsley Oden: Finite Elements of Nonlinear Continua. McGraw-Hill, New York 1972.

GerhardMercatorUniversitätDuisburg

Literature (cont’d) Manfred BraunFEM 0.1-2

Page 4: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Literature (cont’d)

[11] Hans Rudolf Schwarz: Methode der finiten Elemente. Eine Einführung unter besondererBerücksichtigung der Rechenpraxis. B. G. Teubner, Stuttgart 1980. ISBN 3-519-02349-0

[12] Hans Rudolf Schwarz: FORTRAN-Programme zur Methode der finiten Elemente. B. G. Teub-ner, Stuttgart 1981. ISBN 3-519-02064-5

[13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element Method. Prentice-Hall,Englewood-Cliffs, N. J., 1973. ISBN 0-13-032946-0

[14] Olgierd C. Zienkiewicz: Methode der finiten Elemente. Hanser Verlag, München, zweite,erweiterte und völlig neubearbeitete Auflage, 1984. ISBN 3-446-12525-6

[15] Olgierd C. Zienkiewicz and Robert L. Taylor: The Finite Element Method. McGraw-Hill,London, fourth edition, 1989.

GerhardMercatorUniversitätDuisburg

Literature (cont’d) Manfred BraunFEM 0.1-3

Page 5: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Contents

1. Introduction

1.1 What is the Finite Element Method

1.2 Brief History

2. A Simple Example

3. Trusses

4. Linear Systems of Equations

5. Basic Equations of Elasticity Theory

6. Finite Elements for Plane Stress Problems

7. Finite Elements for Three-Dimensional Problems

8. Dynamical Problems

9. Beam Elements

GerhardMercatorUniversitätDuisburg

Contents Manfred BraunFEM 1.0-1

Page 6: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Introduction

What is the Finite Element Method?

• The finite element method (FEM) is a numerical method for solving problems of engineeringand mathematical physics. Its primary application is in Strength of Materials.

• The FEM is useful for problems with complicated geometries, loadings, and material propertieswhere analytical solutions cannot be obtained.

• The model body is divided into a system of small but finite bodies, the finite elements, inter-connected at nodal points or nodes.

• In each of the finite element the unknown fields are approximated by simple functions, whichare determined by their nodal values.

• The discretization by finite elements yields a large system of equations for the unknown nodalvalues.

GerhardMercatorUniversitätDuisburg

Introduction Manfred BraunFEM 1.1-1

Page 7: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Brief History

• A. Hrennikoff (1941), Solutions of problems in elasticity by the framework method

• D. McHenry (1943), A lattice analogy for the solution of plane stress problems

• R. Courant (1943), Variational methods for the solutions of problems of equilibrium and vibra-tion

• J. H. Argyris (1954–55), Energy theorems and structural analysis

• M. J. Turner, R. W. Clough, H. C. Martin, and L. P. Topp (1956), Stiffness and deflectionanalysis of complex structures

• R. W. Clough (1960), The finite element method in plane stress analysis

Some Names

John H. Argyris, Ivo Babuška, Klaus-Jürgen Bathe, Philipe G. Ciarlet, Richard H. Gallagher,Erwin Stein, Robert L. Taylor, Peter Wriggers, Olek C. Zienkiewicz

GerhardMercatorUniversitätDuisburg

Brief History Manfred BraunFEM 1.2-1

Page 8: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

GerhardMercatorUniversitätDuisburg

Manfred BraunFEM 1.2-2

Page 9: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Contents

1. Introduction

2. A Simple Example

2.1 Statement of Problem and Exact Solution

2.2 Approximate Solution Using Finite Elements

2.3 New Approach: Strain Energy

3. Trusses

4. Linear Systems of Equations

5. Basic Equations of Elasticity Theory

6. Finite Elements for Plane Stress Problems

7. Finite Elements for Three-Dimensional Problems

8. Dynamical Problems

9. Beam Elements

GerhardMercatorUniversitätDuisburg

Contents Manfred BraunFEM 2.0-1

Page 10: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Elastic Rod Loaded by Self-Weight and End Load

x

ρ , E , A

F`

0

x

`

u(x)

g

Elongation or strain

ε =du

dx

Stressσ = Eε

Tensile forceF = Aσ = AE

du

dx

Equilibrium conditiondF

dx= −ρgA

GerhardMercatorUniversitätDuisburg

Elastic Rod Loaded by Self-Weight and End Load Manfred BraunFEM 2.1-1

Page 11: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Boundary Value Problem and Solution

x

ρ , E , A

F`

0

x

`

u(x)

g

Differential equation

d

dx

(

AEdu

dx

)

+ ρgA = 0

Boundary conditions

u(0) = 0,du

dx

x=`

=F`

AE

Assumption: Constant tensile stiffness, AE = const

Closed-form solution of the boundary-value problem

u =

[

ρg

E

(

`− x

2

)

+F`

EA

]

x

GerhardMercatorUniversitätDuisburg

Boundary Value Problem and Solution Manfred BraunFEM 2.1-2

Page 12: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Exact Solution

0 G`2EA

G`EA

0

`

u

x

F` = 0 G/2 G

0 G 2G0

`

F

x

G/2 G

u =Gx

EA

(

1 +F`

G− x

2`

)

F = F` + G(

1− x

`

)

GerhardMercatorUniversitätDuisburg

Exact Solution Manfred BraunFEM 2.1-3

Page 13: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Discretization by Finite Elements

Total system

nodeelement

x

0

h

`

0

1

2

3

4

1

2

3

4

Single element

node

ξ

0

1

0

1

coordinatetransformation

x = x0 + hξ

Displacement ansatz

u = (1− ξ)u0 + ξu1

Nodal displacements

u0 , u1

Interpolation functions

N0 = 1− ξ , N1 = ξ

Strain in element

ε =du

dx=

1

h· du

dξ=

u1 − u0

h

Stress resultant

F =EA

h(u1 − u0)

GerhardMercatorUniversitätDuisburg

Discretization by Finite Elements Manfred BraunFEM 2.2-1

Page 14: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Collecting the Elements

Overall system

nodeelement

x

0

h

`

0

1

2

3

4

1

2

3

4

Single element

node

ξ

0

1

0

1

coordinatetransformation

x = x0 + hξ

Return to global numbering within the overall system

Fi =EA

h(ui − ui−1)

i = 1, 2, 3, 4

Global vector of stress resultants

F1

F2

F3

F4

=EA

h

−1 1

−1 1

−1 1

−1 1

u0

u1

u2

u3

u4

GerhardMercatorUniversitätDuisburg

Collecting the Elements Manfred BraunFEM 2.2-2

Page 15: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Equilibrium ConditionsF0

12ρgAh

F1

0

Fk

12ρgAh

12ρgAh

Fk+1

k

F4

12ρgAh

F`

4

Node with adjacent half elements

F0 = F1 +1

2ρgAh

Fk = Fk+1 + ρgAh 0 < k < 4

F4 = F` +1

2ρgAh

Equilibrium conditions in matrix form

−1

1 −1

1 −1

1 −1

1

F1

F2

F3

F4

= ρgAh

1/21

1

11/2

+

−F0

0

0

0

F`

GerhardMercatorUniversitätDuisburg

Equilibrium Conditions Manfred BraunFEM 2.2-3

Page 16: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Resulting System of Equations

Equilibrium conditions

−11 −1

1 −11 −1

1

F1

F2

F3

F4

= ρgAh

1/21

111/2

+

−F0

0

00

F`

Stress resultants

F1

F2

F3

F4

=EA

h

−1 1−1 1

−1 1−1 1

u0

u1

u2

u3

u4

System of equations

EA

h

1 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 1

u0

u1

u2

u3

u4

= ρgAh

1/21

1

11/2

+

− F0

0

0

0

F`

· unknown

GerhardMercatorUniversitätDuisburg

Resulting System of Equations Manfred BraunFEM 2.2-4

Page 17: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Comparison Between Exact and Approximate Solutions

Displacement

0 G`2EA

G`EA

0

h

2h

3h

4h

u

x

Stress resultant

G 2G0

h

2h

3h

4h

F

x

GerhardMercatorUniversitätDuisburg

Comparison Between Exact and Approximate Solutions Manfred BraunFEM 2.2-5

Page 18: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Strain Energy

Displacement within single element

u = (1− ξ)u0 + ξu1

Strain

ε =1

h(u1 − u0)

Strain energy of single element

Πelem =1

2

∫ 1

ξ=0

EAε2 h dξ =EA

2h(u 2

0 − 2u0u1 + u 21 )

Strain energy of total system

Π =EA

2h

[

u 20 − 2u0u1 + u 2

1 +

+ u 21 − 2u1u2 + u 2

2 +

+ u 22 − 2u2u3 + u 2

3 +

+ u 23 − 2u3u4 + u 2

4

]

GerhardMercatorUniversitätDuisburg

Strain Energy Manfred BraunFEM 2.3-1

Page 19: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Strain Energy (contd.)

Matrix representation of strain energy

Π =1

2uTKu

Global nodal displacement vector

u =

u0

u1

u2

u3

u4

Global stiffness matrix

K =EA

h

1 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 1

GerhardMercatorUniversitätDuisburg

Strain Energy (contd.) Manfred BraunFEM 2.3-2

Page 20: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Principle of Virtual Work

Virtual work of the external forces

(δW ) = pTδu

Global load vector, vector of virtual displacements

p = ρgAh

1/21

1

11/2

+

−F0

0

0

0

F`

, δu =

δu0

δu1

δu2

δu3

δu4

Principle of virtual work

δΠ = (δW ) for arbitrary virtual displacements δu

GerhardMercatorUniversitätDuisburg

Principle of Virtual Work Manfred BraunFEM 2.3-3

Page 21: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Principle of Virtual Work (contd.)

Strain energy

Π =1

2uTKu

Variation of strain energy

δΠ =1

2uT(

K + KT)

δu = uTK δu

due to symmetry of the global stiffness matrix K

Consequence of the Principle of Virtual Work

(Ku− p)T δu = 0 for arbitrary δu

Linear system of equations

Ku = p

GerhardMercatorUniversitätDuisburg

Principle of Virtual Work (contd.) Manfred BraunFEM 2.3-4

Page 22: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

GerhardMercatorUniversitätDuisburg

Manfred BraunFEM 2.3-5

Page 23: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Contents

1. Introduction

2. A Simple Example

3. Trusses

3.1 Data of a Truss

3.2 Element Stiffness Matrix

3.3 Global Stiffness Matrix

3.4 Supports and Reactive Forces

3.5 How to Develop a Truss Program

4. Linear Systems of Equations

5. Basic Equations of Elasticity Theory

6. Finite Elements for Plane Stress Problems

7. Finite Elements for Three-Dimensional Prob-lems

8. Dynamical Problems

9. Beam Elements

GerhardMercatorUniversitätDuisburg

Contents Manfred BraunFEM 3.0-1

Page 24: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Trusses

�� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� ��

����

��

��

� �

����

��

����

����

��

��

��

��

��

��

����

��

��

��

��

Characteristics of a truss

• Assembly of pin-jointed members

• External forces applied to nodes

• Members loaded in axial direction

Prescribed:

– Geometry– Material data– Support– Load

Demanded:

– Nodal displacements– Member forces– Reactive forces

GerhardMercatorUniversitätDuisburg

Trusses Manfred BraunFEM 3.1-1

Page 25: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Elongation of a Rod

Rod in undeformed and deformed configuration

e

`

` + ∆`u 1

u 2

Elongation∆` = e

. (u 2 − u 1)

Matrix representation

∆` =[

−eT +e

T]

u1

u2

=[

uT1 u

T2

]

−e

+e

GerhardMercatorUniversitätDuisburg

Elongation of a Rod Manfred BraunFEM 3.2-1

Page 26: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Element Stiffness Matrix of a Single Member

Strain energy stored in a single member

Π =1

2

EA

`(∆`)2

Strain energy represented in terms of nodal displacements

Π =1

2

EA

`

[

u1 u2

]

eeT −ee

T

−eeT

eeT

u1

u2

=

1

2uTKu

Nodal displacement vector and element stiffness matrix

u =

u1

u2

K =

EA

`

eeT −ee

T

−eeT

eeT

GerhardMercatorUniversitätDuisburg

Element Stiffness Matrix of a Single Member Manfred BraunFEM 3.2-2

Page 27: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Contribution of a Single Rod to the Global Stiffness Matrix

1 2 (1)

3(2) 4Element stiffness matrix of rod (2→ 4 )

K(2→4) =

K11 K12

K21 K22

Global nodal displacement vector and contribution of rod (2 → 4) to the global stiffness matrix

u =

u1

u2

u3

u4

K =

K11 K12

K21 K22

GerhardMercatorUniversitätDuisburg

Contribution of a Single Rod to the Global Stiffness Matrix Manfred BraunFEM 3.3-1

Page 28: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Support and Reaction Forces

Types of support

Fx

ux = 0

Fy

uy = 0

Fx

Fy

ux = uy = 0

Decomposition of the nodal displacement and force vectors

u =

ue

ux

ue free displacementsux fixed displacements

p =

pe

px

pe given forcespx reactive forces

GerhardMercatorUniversitätDuisburg

Support and Reaction Forces Manfred BraunFEM 3.4-1

Page 29: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Decomposition of the System of Equations

System of equations

Kee Kex

Kxe Kxx

ue

ux

=

pe

px

· unknown quantity

Decomposition

1. Kee ue = pe −Kexux =⇒ ue free displacements

2. px = Kxeue + Kxxux =⇒ px reactive forces

GerhardMercatorUniversitätDuisburg

Decomposition of the System of Equations Manfred BraunFEM 3.4-2

Page 30: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

How to Develop a Truss Program

1. Input nodal coordinates. Reserve memory for

� Nodal displacement vector u

� Nodal force vector p

� Global stiffness matrix K (clear matrix to 0 )

2. Input and process member data:

� Compute element stiffness matrices KElem

=

K11 K12

K21 K22

, split them up, and

� accumulate them in the global stiffness matrix K

3. Allow for supports:

� Split up the nodal vectors u =

ue

ux

and p =

pe

px

� Enter the fixed nodal displacements ux

GerhardMercatorUniversitätDuisburg

How to Develop a Truss Program Manfred BraunFEM 3.5-1

Page 31: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

How to Develop a Truss Program (contd.)

4. Input loads

� Enter the vector pe

of given loads

5. Solve the reduced system of equations for the unknown free displacements

Kee

ue

= pe−K

exu

x=⇒ u

e

6. Compute the reaction forces

px = Kxeue + Kxxux =⇒ px

7. Compute member forces

F =EA

`e

. (u 2 − u 1)

GerhardMercatorUniversitätDuisburg

How to Develop a Truss Program (contd.) Manfred BraunFEM 3.5-2

Page 32: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

GerhardMercatorUniversitätDuisburg

Manfred BraunFEM 3.5-3

Page 33: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Contents

1. Introduction

2. A Simple Example

3. Trusses

4. Linear Systems of Equations

4.1 Some Mathematical Foundations

4.2 Cholesky Decomposition

4.3 How to Store Sparse Matrices

4.4 Other Methods

5. Basic Equations of Elasticity Theory

6. Finite Elements for Plane Stress Problems

7. Finite Elements for Three-Dimensional Prob-lems

8. Dynamical Problems

9. Beam Elements

GerhardMercatorUniversitätDuisburg

Contents Manfred BraunFEM 4.0-1

Page 34: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Linear Systems of Equations

Ax = b

detA 6= 0

Solution exists, is unique.

�� ��

�� ��

detA = 0

yTb = 0

for all y satisfying

yTA = 0

Solution exists, is not unique.

�� ��

�� ��

yTb 6= 0

for some y satisfying

yTA = 0

Solution does not exist.

�� ��

�� ��

GerhardMercatorUniversitätDuisburg

Linear Systems of Equations Manfred BraunFEM 4.1-1

Page 35: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Cholesky’s Method

Solution of the linear system Ax = b with a symmetric, positiv definite matrix A .

1. Factorization

Decompose the symmetric matrix A into the product A = UTU

where U is an upper triangular matrix.

2. Forward Substitution

Solve the lower triangular system UTy = b for the auxiliary vector y .

3. Backward Substitution

Solve the upper triangular system Ux = y for the requested vector x .

André-Louis Cholesky (1875–1918): French military officer involved in geodesy and surveyingin Crete and North Africa

GerhardMercatorUniversitätDuisburg

Cholesky’s Method Manfred BraunFEM 4.2-1

Page 36: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Cholesky’s Method: Factorization

1. Factorization

A = UT U

s = Aij −i−1∑

k=1

Uki Ukj

Uij =

s

Uii

if i < j

√s if i = j

i = 1, . . . , j

j = 1, . . . , n

GerhardMercatorUniversitätDuisburg

Cholesky’s Method: Factorization Manfred BraunFEM 4.2-2

Page 37: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Cholesky’s Method: Forward and Backward Substitution

2. Forward Substitution

UT y = b yi =1

Uii

(

bi −i−1∑

k=1

Uki yk

)

i = 1, . . . , n

3. Backward Substitution

U x = y xi =1

Uii

(

yi −n∑

k=i+1

Uik xk

)

i = n, . . . , 1

GerhardMercatorUniversitätDuisburg

Cholesky’s Method: Forward and Backward Substitution Manfred BraunFEM 4.2-3

Page 38: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Contents

1. Introduction

2. A Simple Example

3. Trusses

4. Linear Systems of Equations

5. Basic Equations of Elasticity Theory

5.1 Displacements

5.2 Strain

5.3 Stress

5.4 Equilibrium

5.5 Strain Energy

6. Finite Elements for Plane Stress Problems

7. Finite Elements for Three-Dimensional Prob-lems

8. Dynamical Problems

9. Beam Elements

GerhardMercatorUniversitätDuisburg

Contents Manfred BraunFEM 5.0-1

Page 39: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Strain

x

y

x

ydx

dy

x

y

(

1 +∂ux

∂x

)

dx

∂uy

∂xdx

(

1 +∂uy

∂y

)

dy

∂ux

∂ydy

ux

uy

Elongations

εx =∂ux

∂xεy =

∂uy

∂y

Shear

γxy =∂ux

∂y+

∂uy

∂x

GerhardMercatorUniversitätDuisburg

Strain Manfred BraunFEM 5.2-1

Page 40: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Hooke’s Law

Uniaxial stress

σ

ε =1

Eσ ε

t= − ν

Eσ E Young’s modulus

ν Poisson’s ratio

Shear stress

τ

γ =1

Gτ G Shear modulus

GerhardMercatorUniversitätDuisburg

Hooke’s Law Manfred BraunFEM 5.3-1

Page 41: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Simple Shear: Principal Stresses

τxy

τxy

τxy

π/4

σ1 = τxy

σ2 = −τxy

π/2σ

τ

τxy

−τxy

σ1 = τxy

σ2 = −τxy

GerhardMercatorUniversitätDuisburg

Simple Shear: Principal Stresses Manfred BraunFEM 5.3-2

Page 42: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Simple Shear: Deformation

π/4

a

a

σ1 = τ

σ2 = −τ

π / 4−

γ / 2

a(1 + ε)

a(1

−ε)

τττ

GerhardMercatorUniversitätDuisburg

Simple Shear: Deformation Manfred BraunFEM 5.3-3

Page 43: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Relation Among Material Constants

Geometry1− ε

1 + ε= tan

4− γ

2

)

=

1− sin γ

1 + sin γ

Approximation for small strain:γ ≈ 2ε

Hooke’s Law

ε =1

E(σ1 − νσ2) =

1 + ν

Eτ γ =

1

Shear modulus expressed in terms of Young’s modulus and Poisson’s ratio

G =E

2(1 + ν)

GerhardMercatorUniversitätDuisburg

Relation Among Material Constants Manfred BraunFEM 5.3-4

Page 44: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Governing Equations of Plane Stress Problems

Definition of strain

εx

εy

γxy

=

∂∂x

0

0 ∂∂y

∂∂y

∂∂x

[

ux

uy

]

Stress-strain relation (Hooke’s law)

σx

σy

τxy

=E

1− ν2

1 ν 0

ν 1 0

0 0 1−ν2

εx

εy

γxy

Specific strain energy

W =1

2

[

εx εy γxy

]

σx

σy

τxy

GerhardMercatorUniversitätDuisburg

Governing Equations of Plane Stress Problems Manfred BraunFEM 5.3-5

Page 45: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Contents

1. Introduction

2. A Simple Example

3. Trusses

4. Linear Systems of Equations

5. Basic Equations of Elasticity Theory

6. Finite Elements for Plane Stress Problems

6.1 Linear Triangular Elements

6.2 Bilinear Quadrilateral Elements

6.3 Higher Elements

7. Finite Elements for Three-Dimensional Prob-lems

8. Dynamical Problems

9. Beam Elements

GerhardMercatorUniversitätDuisburg

Contents Manfred BraunFEM 6.0-1

Page 46: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Linear Interpolation

ξ

η

0 10

1

1 2

3Problem: Determine the linear function u = u(ξ, η) satisfying

u(0, 0) = u1 u(1, 0) = u2 u(0, 1) = u3

Solution:

u(ξ, η) = (1− ξ − η)u1 + ξu2 + ηu3

Interpolation or shape functions

N1(ξ, η) = 1− ξ − η

N2(ξ, η) = ξ

N3(ξ, η) = η

Characteristic property:

Ni(ξk, ηk) =

1 i = k

if0 i 6= k

GerhardMercatorUniversitätDuisburg

Linear Interpolation Manfred BraunFEM 6.1-1

Page 47: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Affine Transformation

x

y

x1 x2x3

y1

y2

y3

1

2

3

⇐=

ξ

η

0 10

1

1 2

3

Coordinate transformation[

x

y

]

=

[

x1 x2 x3

y1 y2 y3

]

1− ξ − η

ξ

η

GerhardMercatorUniversitätDuisburg

Affine Transformation Manfred BraunFEM 6.1-2

Page 48: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Derivatives

Jacobi matrix

∂x∂ξ

∂x∂η

∂y∂ξ

∂y∂η

=

[

x1 x2 x3

y1 y2 y3

]

−1 −1

1 0

0 1

=

[

x2 − x1 x3 − x1

y2 − y1 y3 − y1

]

Determinant of Jacobi matrix, “Jacobian”

J = (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)

Inverse Jacobi matrix

∂ξ∂x

∂ξ∂y

∂η∂x

∂η∂y

=1

J

[

y3 − y1 x1 − x3

y1 − y2 x2 − x1

]

Transformation of derivatives

[

∂ϕ∂x

∂ϕ∂y

]

=[

∂ϕ∂ξ

∂ϕ∂η

]

∂ξ∂x

∂ξ∂y

∂η∂x

∂η∂y

GerhardMercatorUniversitätDuisburg

Derivatives Manfred BraunFEM 6.1-3

Page 49: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Linear Triangular Element

x

y

x1 x2x3

y1

y2

y3

1

2

3Shape functions

N1(ξ, η)

N2(ξ, η)

N3(ξ, η)

=

1− ξ − η

ξ

η

Derivatives of the shape functions with respect to the global coordinates (x, y)

∂N1

∂x

∂N1

∂y

∂N2

∂x

∂N2

∂y

∂N3

∂x

∂N3

∂y

=

∂N1

∂ξ

∂N1

∂η

∂N2

∂ξ

∂N2

∂η

∂N3

∂ξ

∂N3

∂η

∂ξ∂x

∂ξ∂y

∂η∂x

∂η∂y

=

−1 −1

1 0

0 1

· 1

J

[

y3 − y1 x1 − x3

y1 − y2 x2 − x1

]

=1

J

y2 − y3 x3 − x2

y3 − y1 x1 − x3

y1 − y2 x2 − x1

Jacobian J = (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)

GerhardMercatorUniversitätDuisburg

Linear Triangular Element Manfred BraunFEM 6.1-4

Page 50: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Linear Triangular Element: Stiffness Matrix

Matrix of derivatives of shape functions

DN =1

J

y2 − y3 0 y3 − y1 0 y1 − y2 0

0 x3 − x2 0 x1 − x3 0 x2 − x1

x3 − x2 y2 − y3 x1 − x3 y3 − y1 x2 − x1 y1 − y2

Matrix of material constants

E =E

1− ν2

1 ν 0

ν 1 0

0 0 1−ν2

Element stiffness matrix of the linear triangular element

K =1

2Jh (DN)T E (DN)

GerhardMercatorUniversitätDuisburg

Linear Triangular Element: Stiffness Matrix Manfred BraunFEM 6.1-5

Page 51: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Bilinear Interpolation

ξ

η

0 10

1

1 2

3 4Problem: Determine the bilinear function u = u(ξ, η) satisfying

u(0, 0) = u1 u(1, 0) = u2 u(0, 1) = u3 u(1, 1) = u4

Solution:

u(ξ, η) = (1− ξ)(1− η)u1 + ξ(1− η)u2 + (1− ξ)ηu3 + ξηu4

Interpolation or shape functions

N1(ξ, η) = (1− ξ)(1− η)

N2(ξ, η) = ξ(1− η)

N3(ξ, η) = (1− ξ)η

N4(ξ, η) = ξη

Characteristic property:

Ni(ξk, ηk) =

1 i = k

if0 i 6= k

GerhardMercatorUniversitätDuisburg

Bilinear Interpolation Manfred BraunFEM 6.2-1

Page 52: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Bilinear Parallelogram Element

x

y

x1 x2x3

y1

y2

y3

12

34

Shape functions

N1(ξ, η)

N2(ξ, η)

N3(ξ, η)

N4(ξ, η)

=

(1− ξ)(1− η)

ξ(1− η)

(1− ξ)η

ξη

Derivatives of the shape functions with respect to the global coordinates (x, y)

∂N1

∂x

∂N1

∂y∂N2

∂x

∂N2

∂y∂N3

∂x

∂N3

∂y∂N4

∂x

∂N4

∂y

=

∂N1

∂ξ

∂N1

∂η∂N2

∂ξ

∂N2

∂η∂N3

∂ξ

∂N3

∂η∂N4

∂ξ

∂N4

∂η

[

∂ξ∂x

∂ξ∂y

∂η∂x

∂η∂y

]

=

−(1− η) −(1− ξ)

1− η −ξ

−η 1− ξ

η ξ

· 1

J

[

y3 − y1 x1 − x3

y1 − y2 x2 − x1

]

Jacobian J = (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)

GerhardMercatorUniversitätDuisburg

Bilinear Parallelogram Element Manfred BraunFEM 6.2-2

Page 53: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Bilinear Transformation

x

y

x1 x2x3 x4

y1

y2

y3

y4

1

2

34

⇐=

ξ

η

0 10

1

1 2

3 4

Coordinate transformation

[

x

y

]

=

[

x1 x2 x3 x4

y1 y2 y3 y4

]

(1− ξ)(1− η)

ξ (1− η)

(1− ξ) η

ξ η

GerhardMercatorUniversitätDuisburg

Bilinear Transformation Manfred BraunFEM 6.2-3

Page 54: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Derivatives

Jacobi matrix

∂x∂ξ

∂x∂η

∂y∂ξ

∂y∂η

=

[

x1 x2 x3 x4

y1 y2 y3 y4

]

−(1− η) −(1− ξ)

1− η −ξ

−η 1− ξ

η ξ

Determinant of Jacobi matrix, “Jacobian”

J = ∂x∂ξ

∂y∂η− ∂y

∂ξ∂x∂η

Inverse Jacobi matrix

∂ξ∂x

∂ξ∂y

∂η∂x

∂η∂y

=

∂x∂ξ

∂x∂η

∂y∂ξ

∂y∂η

−1

=1

J

∂x∂η−∂x

∂η

−∂y∂ξ

∂x∂ξ

matrix elements arerational functions of ξ, η

Transformation of derivatives

[

∂ϕ∂x

∂ϕ∂y

]

=[

∂ϕ∂ξ

∂ϕ∂η

]

∂ξ∂x

∂ξ∂y

∂η∂x

∂η∂y

GerhardMercatorUniversitätDuisburg

Derivatives Manfred BraunFEM 6.2-4

Page 55: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Bilinear Quadrilateral Element: Stiffness Matrix

Derivatives of shape functions

[

∂Nk

∂x

∂Nk

∂y

]

=[

∂Nk

∂ξ

∂Nk

∂η

]

∂ξ∂x

∂ξ∂y

∂η∂x

∂η∂y

. . . rational functions of ξ , η

Matrix of derivatives of shape functions

DN =

∂N1

∂x0 ∂N2

∂x0 ∂N3

∂x0 ∂N4

∂x0

0 ∂N1

∂y0 ∂N2

∂y0 ∂N3

∂y0 ∂N4

∂y

∂N1

∂y

∂N1

∂x

∂N2

∂y

∂N2

∂x

∂N3

∂y

∂N3

∂x

∂N4

∂y

∂N4

∂x

Element stiffness matrix of the bilinear quadrilateral element

K =

1∫

η=0

1∫

ξ=0

(DN)T E (DN) Jh dξ dη numericalintegration

(Gauss)

GerhardMercatorUniversitätDuisburg

Bilinear Quadrilateral Element: Stiffness Matrix Manfred BraunFEM 6.2-5

Page 56: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Quadratic Triangular Elements

ξ

η

0 10

1

1 2

3

45

6

N1 = (1− ξ − η)(1− 2ξ − 2η)

N2 = ξ(2ξ − 1)

N3 = η(2η − 1)

N4 = 4ξη

N5 = 4η(1− ξ − η)

N6 = 4ξ(1− ξ − η)

Affine Transformation

x

y

1

2

3

Isoparametric Transformation

x

y

1

2

3

4

5

6

GerhardMercatorUniversitätDuisburg

Quadratic Triangular Elements Manfred BraunFEM 6.3-1

Page 57: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Quadrilateral Elements of Lagrange Type

ξ

η

0 1

1

1 2 3

4

567

8 9

N1 =1

4ξ(1− ξ)η(1− η)

N2 = −1

2(1− ξ2)η(1− η)

N3 = −1

4ξ(1 + ξ)η(1− η)

N4 =1

2ξ(1 + ξ)(1− η2)

N5 =1

4ξ(1 + ξ)η(1 + η)

N6 =1

2(1− ξ2)η(1 + η)

N7 = −1

4ξ(1− ξ)η(1 + η)

N8 = −1

2ξ(1− ξ)(1− η2)

N9 = (1− ξ2)(1− η2)

Affine Transformation

x

y

1

3

7

Isoparametric Transformation

x

y

1 2

3

4

56

7

89

GerhardMercatorUniversitätDuisburg

Quadrilateral Elements of Lagrange Type Manfred BraunFEM 6.3-2

Page 58: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Quadrilateral Elements of Serendipity Type

ξ

η

0 1

1

1 2 3

4

567

8

N1 = −1

4(1− ξ)(1− η)(1 + ξ + η)

N3 = −1

4(1 + ξ)(1− η)(1− ξ + η)

N5 = −1

4(1 + ξ)(1 + η)(1− ξ − η)

N7 = −1

4(1− ξ)(1 + η)(1 + ξ − η)

N2 =1

2(1− ξ2)(1− η)

N4 =1

2(1 + ξ)(1− η2)

N6 =1

2(1− ξ2)(1 + η)

N8 =1

2(1− ξ)(1− η2)

Affine Transformation

x

y

1

3

7

Isoparametric Transformation

x

y

1 2

3

4

56

7

8

GerhardMercatorUniversitätDuisburg

Quadrilateral Elements of Serendipity Type Manfred BraunFEM 6.3-3

Page 59: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Deriving the Stiffness Matrix of a Finite Element

Displacement vector

u (ξ, η) =

n∑

i=1

Ni(ξ, η) ui

Strain

ε = D u =n∑

i=1

(DNi) ui

Stress

σ = E ε =n∑

k=1

E (DNk) uk

Strain energy

Π =1

2

V

εTσ dV =

1

2

n∑

i=1

n∑

k=1

uT

i

V

(DNi)T E (DNk) dV uk

GerhardMercatorUniversitätDuisburg

Deriving the Stiffness Matrix of a Finite Element Manfred BraunFEM 6.3-4

Page 60: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Element Stiffness Matrices of Finite Elements for Plane Stress Problems

General structure

K =

K11 K12 . . . K1n

K21 K22 . . . K2n

... ... . . . ...

Kn1 Kn2 . . . Knn

Submatrices

Kik =

A

(DNi)T E (DNk) h dA

Kik =E

1− ν2

A

∂Ni

∂x

∂Nk

∂x+

1− ν

2

∂Ni

∂y

∂Nk

∂yν∂Ni

∂x

∂Nk

∂y+

1− ν

2

∂Ni

∂y

∂Nk

∂x

ν∂Ni

∂y

∂Nk

∂x+

1− ν

2

∂Ni

∂x

∂Nk

∂y

∂Ni

∂y

∂Nk

∂y+

1− ν

2

∂Ni

∂x

∂Nk

∂x

h dA

GerhardMercatorUniversitätDuisburg

Element Stiffness Matrices of Finite Elements for Plane Stress Problems Manfred BraunFEM 6.3-5

Page 61: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Contents

1. Introduction

2. A Simple Example

3. Trusses

4. Linear Systems of Equations

5. Basic Equations of Elasticity Theory

6. Finite Elements for Plane Stress Problems

7. Finite Elements for Three-Dimensional Problems

7.1 Linear Tetrahedral Elements

7.2 Trilinear Hexahedral Elements

7.3 Higher Elements

8. Dynamical Problems

9. Beam Elements

GerhardMercatorUniversitätDuisburg

Contents Manfred BraunFEM 7.0-1

Page 62: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Contents

1. Introduction

2. A Simple Example

3. Trusses

4. Linear Systems of Equations

5. Basic Equations of Elasticity Theory

6. Finite Elements for Plane Stress Problems

7. Finite Elements for Three-Dimensional Prob-lems

8. Dynamical Problems

8.1 Natural and Forced Vibrations

8.2 Mass Matrices

8.3 Natural frequencies and modes

9. Beam Elements

GerhardMercatorUniversitätDuisburg

Contents Manfred BraunFEM 8.0-1

Page 63: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Contents

1. Introduction

2. A Simple Example

3. Trusses

4. Linear Systems of Equations

5. Basic Equations of Elasticity Theory

6. Finite Elements for Plane Stress Problems

7. Finite Elements for Three-Dimensional Problems

8. Dynamical Problems

9. Beam Elements

9.1 Hermite Interpolation

9.2 Mass and Stiffness Matrices of Beam Elements

9.3 Cubic Splines

GerhardMercatorUniversitätDuisburg

Contents Manfred BraunFEM 9.0-1

Page 64: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Beam Elements: Hermite Interpolation

��

��

w0

w′0 w1

w′1

x

w

hx0

x = x0 + hξ w = N00(ξ)w0 + hN01(ξ)w′0 + N10(ξ)w1 + hN11(ξ)w′

1

GerhardMercatorUniversitätDuisburg

Beam Elements: Hermite Interpolation Manfred BraunFEM 9.1-1

Page 65: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Shape Functions

0

1

0 1

N00 = (1− ξ)2(1 + 2ξ)

N01 = ξ(1− ξ)20

1

0

1

N10 = ξ2(3− 2ξ)

N11 = −ξ2(1− ξ)

GerhardMercatorUniversitätDuisburg

Shape Functions Manfred BraunFEM 9.1-2

Page 66: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Element Stiffness Matrix

Strain energy of beam element

Π =1

2

x0+h∫

x=x0

EI

(

d2w

dx2

)2

dx =1

2h3

1∫

ξ=0

EI

(

d2w

dξ2

)2

EI bending stiffness

Displacementw = N00(ξ)w0 + hN01(ξ)w′

0 + N10(ξ)w1 + hN11(ξ)w′1

Nodal displacement and load vectors, element stiffness matrix

u =

w0

w′0

w1

w′1

p =

F0

M0

F1

M1

K =2EI

h3

6 3h −6 3h

3h 2h2 −3h h2

−6 −3h 6 −3h

3h h2 −3h 2h2

GerhardMercatorUniversitätDuisburg

Element Stiffness Matrix Manfred BraunFEM 9.2-1

Page 67: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

Element Mass Matrix

Kinetic energy of beam element

Π =1

2

x0+h∫

x=x0

ρAw2dx =

h

2

1∫

ξ=0

ρAw2dξ

ρA mass per unit length

Displacement velocity

w = N00(ξ)w0 + hN01(ξ)w′0 + N10(ξ)w1 + hN11(ξ)w′

1

Nodal velocity vector and element mass matrix

u =

w0

w′0

w1

w′1

M =m

420

156 22h 54 −13h

22h 4h2 13h −3h2

54 13h 156 −22h

−13h −3h2 −22h 4h2

GerhardMercatorUniversitätDuisburg

Element Mass Matrix Manfred BraunFEM 9.2-2

Page 68: The Finite Element Method - read.pudn.comread.pudn.com/downloads141/ebook/611530/The Finite Element Meth… · [13] Gilbert Strang and George J. Fix: An Analysis of the Finite Element

GerhardMercatorUniversitätDuisburg

Manfred BraunFEM 9.2-3