the gmt consortium large earth...

18
The GMT Consorum Large Earth Finder Sagi Ben-Ami Smithsonian Astrophysical Observatory

Upload: others

Post on 04-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

The GMT Consortium Large Earth Finder

Sagi Ben-AmiSmithsonian Astrophysical Observatory

Page 2: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

The Giant Magellan Telescope• The GMT is one of the three next generation optical

telescope.• Segmented Gregorian design (six off axis and one on axis 8.4m

mirrors) with an effective aperture of 25.4m diameter.• F/8.2 with a FoV of 24’. Plate Scale of 1’’ mm-1.• Site: Cerro Las Campanas in Chile’s Atacama desert.

Page 3: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

The GMT Consortium Large Earth Finder• The GMT Consortium Large Earth Finder (G-Clef) is a general

purpose visible echelle spectrograph that offers precision radial velocity capabilities.

• G-Clef was chosen as the 1st light instrument for the GMT.

Page 4: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

G-CLEF: Science Cases• Weighing planets in the

TESS Catalogue.

• O2 in the transmission spectra of exoplanets:A-Band absorption features

between 7600-7700Å .

Page 5: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

G-CLEF: Science Cases• Near-field cosmology:

Characterization of metal poor stars – the fossils of structure formation at the earliest phase after the big bang.

• Flash Spectroscopy of SNe:Direct measurements of CSM composition, unique properties of the progenitor.

Page 6: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

Science Requirements

Page 7: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

So how do we achieve all of these ?• A fiber-fed high dispersion spectrograph thermally stabilized deployed at a gravity

invariant location. • Pass band: 3500-9500Å

• Different resolution is achieved by feeding the spectrograph with fibers of different core diameters.

dl = Pw '

Page 8: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

Optical Path: Fiber Run

(Pupil Slicer)

Front-end F/# converters.

Vacuum Enclosure Interface

(Scrambler)

Spectrograph F/# converters.

(Exposure Meter)

0 . 4 9

0 . 1 4

0 . 1 2

0 . 1 0

0 . 1 0

0 . 1 2

0 . 1 4

0 . 0 7

0 . 3 0

0 . 3 4

0 . 3 8

0 . 3 8

0 . 2 0 0 . 2 0

0 . 7 6

0 . 3 2 5

0 . 6 5 0

0 . 6 5

6 . 0 0 6 . 0 0 6 . 0 0

B U F F E RC L A D D I N G

CORE

H O R I Z O N T A L A X I S N O T T O S C A L EB U F F E R

C L A D D IN G

CORECORE

C L A D D I N G

B U F F E R

B U F F E R

C L A D D IN G

CORE

F I B E R L A Y O U T

N S - P R V M o d e P R V M o d e M R M o d e H T M o d e

1 0 0 : 1

1 O F 1

T h e d a t a i n t h i s d o c u m e n t i n c o r p o r a t e p r o p r i e t a r y r i g h t s o f t h e S m i t h s o n i a n A s t r o p h y s i c a l O b s e r v a t o r y . A n y p a r t y a c c e p t i n g t h i s d o c u m e n t d o e s s o i n c o n f i d e n c e a n d a g r e e s t h a t i t s h a l l n o t b e d u p l i c a t e d i n w h o l e o r i n p a r t , n o r d i s c l o s e d t o o t h e r s , w i t h o u t t h e c o n s e n t o f t h e S m i t h s o n i a n A s t r o p h y s i c a l O b s e r v a t o r y .

C O M P O N E N TW E I G H T ( k g ) :

D E S C R I P T I O N

D W GN O .

S C A L E

S H E E T

C H E C K E DB Y :

G R P L E A DA P P R O V A L :

± 0 . X X = ± 0 . 2 5 ± 0 . X = ± 0 . 5

N O D E C I M A L = ± 1A N G L E S = ± 1 º

S M I T H S O N I A N A S T R O P H Y S I C A L

O B S E R V A T O R Y1 0 0 A c o r n P a r k D r i v e

C a m b r i d g e , M A 0 2 1 4 0

R E V I S I O N

S H E E T S I Z E

T H I R D A N G L E P R O J E C T I O N

T O L E R A N C E S U N L E S SO T H E R W IS E N O T E D

P B S N O .

W O R K F L O WS T A T E :

D R A F T E DB Y :

D E S I G N E DB Y :

C H I E F E N GA P P R O V A L :

R E L E A S E D A T E :

C O M P O N E N T M A T E R I A L :

B

S A O

Page 9: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

Spectrograph Optical Design

Grating: A mosaic of three 300x400mm R4 operating at a quasi-Littrow configuration.

Mangin Fold Mirror to correct cylindrical field curvature

 =ldl

=dArf

d1

D

Page 10: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

G-Clef Red Camera• The re-designed red camera is a 7-element

camera with one aspheric surface on the back surface of the 1st lens (Glass substrate).

• Power is mainly due to CaF2 positive lenses, with i-line negative and meniscus lenses to control chromatic aberrations.

Passband 5400-9520Å (Orders 65-113)

Focal Length 450mm

Beam Diameter 250mm

FoV 7.7°

Testable in collimated light (air-space).

Yes

Page 11: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

0

5

10

15

20

 

 

0

5

10

15

20

 

 

0

5

10

15

20

 

 

5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 100000

5

10

15

20

Wavelength [Ang]

Box Edge Size [mm]

Run HE081715AGs − Ensquared Energy

 

 

Fiber5 67% AHsFiber5 80% AHs

Fiber6 67% AHsFiber6 80% AHs

Fiber7 67% AHsFiber7 80% AHs

Fiber8 67% AHsFiber8 80% AHs

0

5

10

15

20

 

 

0

5

10

15

20

 

 

0

5

10

15

20

 

 

5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 100000

5

10

15

20

Wavelength [Ang]

Box Edge Size [mm]

Run 0HE081715AGs − Ensquared Energy

 

 

Fiber1 67% AHsFiber1 80% AHs

Fiber2 67% AHsFiber2 80% AHs

Fiber3 67% AHsFiber3 80% AHs

Fiber4 67% AHsFiber4 80% AHs

Red Camera: PRV Ensquared Energy• Center-to-center distance between fibers in pseudo-slit

increased to 170μm.• 80% Ensquared energy below 18μm (Nyquist for STA 9μm

pixels) across the entire echellogram.

Page 12: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

X-dispersers: VPH Gratings• VPH Grating: A modulation in the index of refraction induced

by holographic exposure of dichromatic gelatin. • Higher efficiency than common ruled gratings.

Blue X-disperser:A VPH-Prism.

3000 3500 4000 4500 5000 55004

5

6

7

8

9

10

11

12

13

Wavelength [Ang]

Angle (deg)

VPH Gelatin AoI and AoE

Page 13: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

VPH Ghosts Mitigation: Tilted Fringes• Narcissistic Ghosts: Scattering from Gelatin-Glass interface

after reflection from the detector .• Littrow ghost: Recombination of cross dispersed orders by the

VPH .

m= 1; m̀= 0

Dm= 0

sinb ' =Dmls cosg

+ sina

Page 14: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

Tilted Fringes

• By introducing a tilt to the imprinted fringes, we move the operation wavelength away from the Littrow configuration.

• The tilt should be large enough so that the ghosts are moved away from the detector.

sinbB = n2 sin arcsinsinan2

æèç

öø÷- 2f

é

ëê

ù

ûú

Db = a - bB

Page 15: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

Narcissistic Ghost• The increased VPH-camera angle deflects ghost beams to

higher angles.

Reflected Beams

Narcissistic Beams

Detector

Page 16: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

Littrow Ghost• Tilted fringes ensure that we no longer operate in Littrow

configuration, and so the recombined rays miss the detector after recombination.

Detector

Page 17: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

Red Arm Echellogram• Entire Echellogram fits well onto the detector (92.4×92.2mm),

with at least 1mm for alignment in each direction.

−21.5 −21 −20.5 −20 −19.5 −19

40

40.5

41

41.5

42

42.5

43

[mm]

[mm]

Page 18: The GMT Consortium Large Earth Findercxc.harvard.edu/fellows/symp_presentations/2015/sagi_ben_ami.pdf · G-Clef Red Camera • The re-designed red camera is a 7-element camera with

Blue Arm Echellogram• Entire Echellogram fits well onto the detector (92.4×92.2mm), with at

least 0.5mm for alignment in each direction.