the hebrew university of jerusalem einstein institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2...

24
Integrable systems and moduli spaces Boris DUBROVIN SISSA, Trieste The Hebrew University of Jerusalem Einstein Institute of Mathematics April 30, 2015 Sunday 10 May 15

Upload: others

Post on 05-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Integrable systemsand moduli spaces

Boris DUBROVINSISSA, Trieste

The Hebrew University of JerusalemEinstein Institute of Mathematics

April 30, 2015

Sunday 10 May 15

Page 2: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Plan

1. Integrable Hamiltonian systems

2. Hamiltonian PDEs

3. KdV

4. Deligne - Mumford moduli spaces and Witten - Kontsevich solution to KdV

Mg,n

5. Construction of KdV: a recipe using Mg,n

6. More general class of integrable hierarchie (Witten’s programme) and -classes�

Sunday 10 May 15

Page 3: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Hamiltonian systems

x = J rH

x 2 M

a manifold (phase space), H = H(x) Hamiltonian

J operator of Poisson bracket

E.g., dimM = 2n, x = (q1, . . . , qn, p1, . . . , pn), J =

✓0 1

�1 0

qi = @H@pi

pi = �@H@qi

9=

; , i = 1, . . . , n

{f, g} = hrf, J rgi

Integrability: commuting Hamiltonians{Hi, Hj} = 0, H = H1

+ completeness ) commuting flowsdx

dti= J rHi,

d

dti

✓dx

dtj

◆=

d

dtj

✓dx

dti

Sunday 10 May 15

Page 4: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Infinite-dimensional analogue: Hamiltonian PDEs

ut

= F (u, ux

, uxx

, . . . ) = J�H

�u(x)for u = u(x, t)

a dynamical system on the space of functions u(x)

Functional (Hamiltonian)

A skew-symmetric operator J of Poisson bracket

H = H[u] =1

2⇡

Z 2⇡

0h(u, u

x

, . . . ) dx

Fréchet derivative (Euler - Lagrange operator)

�H

�u(x)=

@h

@u� d

dx

@h

@ux

+d2

dx2

@h

@uxx

� . . .

Sunday 10 May 15

Page 5: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Example. Korteweg - de Vries (KdV) equation

Integrability: an infinite system of commuting PDEs

(uti)tj =�utj

�ti

uti = F

i

(u, ux

, uxx

, . . . ) = J�H

i

�u(x)i = 0, 1, 2, . . .

) common solution u = u(x, t0, t1, t2, . . . )

for given Cauchy data u0(x) = u(x, 0, 0, 0, . . . )

J =@

@x

ut

= uux

+✏2

12uxxx

=@

@x

�H

�u(x), H =

Z ✓u3

6� ✏2

24u2x

◆dx

Sunday 10 May 15

Page 6: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Example. KdV hierarchy

ut0 = ux = @x�H0�u(x)

ut1 = uux + ✏2

12uxxx = @x�H1�u(x)

ut2 = u2

2! ux + ✏2

12 (2uxuxx + uuxxx) +✏4

240uV = @x

�H2�u(x)

. . . . . . . . . . . . . . . . . . . . . . . .

Constructions:

• Lax representation, isospectral deformations

• Infinite-dimensional Grassmannians

• Baker - Akhiezer functions

Sunday 10 May 15

Page 7: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Example. KdV hierarchy

ut0 = ux = @x�H0�u(x)

ut1 = uux + ✏2

12uxxx = @x�H1�u(x)

ut2 = u2

2! ux + ✏2

12 (2uxuxx + uuxxx) +✏4

240uV = @x

�H2�u(x)

. . . . . . . . . . . . . . . . . . . . . . . .

Constructions:

• Lax representation, isospectral deformations

• Infinite-dimensional Grassmannians

• Baker - Akhiezer functions

• Topology of moduli spacesSunday 10 May 15

Page 8: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Deligne - Mumford moduli spaces of stable algebraic curves

Mg,n = {(Cg, x1, . . . , xn)} / ⇠

Tautological line bundles

Mg,n

Li

T ⇤xiC

g

i := c1 (Li) 2 H2�Mg,n

�, i = 1, . . . , n

· ··0

1

1

M0,4 = P1

M0,3 = pt

····

0

1

1z

M1,1 = {ellipticcurves}

Sunday 10 May 15

Page 9: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Witten - Kontsevich solution to KdV

Then the tau-function of this solution

u(x, t0, t1, . . . ; ✏)|t=0 = x

⌧ = ⌧(t0, t1, . . . ; ✏)

such that ✏

2 @2log ⌧

@x

2= u(t; ✏) reads

where

nonzero only if p1 + · · ·+ pn = 3g � 3 + n

log ⌧(t; ✏) =X

g�0

✏2g�2Fg(t)

Fg(t) =X

n

1

n!

Xtp1 . . . tpn

Z

Mg,n

p11 . . . pn

n

Sunday 10 May 15

Page 10: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

In physics literature (Witten et al.):

the tau-function = partition function of 2D quantum gravity

log ⌧(t) =DeP

i�0 ti⌧iE

⌧0 = 1, ⌧1, ⌧2, . . . observables

time variables of KdV hierarchy = coupling constants

Correlators

h⌧p1 . . . ⌧pni =Z

Mg,n

p11 . . . pn

n , p1 + · · ·+ pn = 3g � 3 + n

Sunday 10 May 15

Page 11: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Moreover, Hamiltonian densities Hp

[u] =

Zhp

(u, ux

, . . . ; ✏) dx

are two-point correlation functions

hp = hh⌧0⌧p+1ii = ✏

2 @2log ⌧(t)

@x @tp+1h�1 = u

h0 = u

2

2 + ✏

2

12uxx

h1 = u

3

3! +✏

2

24

�u2x

+ 2uuxx

�+ ✏

4

240uxxxx

h2 = u

4

4! +✏

2

24

�uu2

x

+ u2uxx

�+ ✏

4

480

�3u2

xx

+ 4ux

uxxx

+ 2uuxxxx

�+ ✏

6

6720u(6)

etc. Hence@hp�1

@tq=

@hq�1

@tptau-symmetry

NB: change of densities hp

7! hp

+ @x

(. . . )

does not change the PDEsSunday 10 May 15

Page 12: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Construction of KdV: a recipe using Mg,n

Start from KdVε=0 vt0 = v

x

vt1 = v v

x

vt2 = v

2

2! vx. . . . . . . . .

vtk = v

k

k! vx

(change notations: u(x, t) 7! v(x, t) )

Verify commutativity:

Exercise. Prove

=@

@x

v

k+1

(k + 1)!

(vtk)tl =@

@x

@

@tl

v

k+1

(k + 1)!=

@

2

@x

2

v

k+l+1

k! l! (k + l + 1)= (k $ l)

Derive the WK solution at g=0: v(t) =X

n�1

1

n

X

k1+···+kn=n�1

tk1

k1!. . .

tkn

kn!

@

nv

@tk1 . . . @tkn

=@

n

@x

n

v

k1+···+kn+1

k1! . . . kn!(k1 + · · ·+ kn + 1)

Sunday 10 May 15

Page 13: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Next, to recover full KdV do a substitution v ! u

u = v + ✏2@2x

2

4 1

24

log vx

+ ✏2✓

vxxxx

1152v2x

� 7 vxx

vxxx

1920v3x

+

v3xx

360v4x

◆+O �

✏4�

| {z }

3

5

�F

Then(“quasitriviality”, B.D., Y.Zhang).

• KdVε=0(v)=0 KdV(u)=0

• Operator of Poisson bracket unchangedJ =@

@x

• New Hamiltonian densities

hp

(u, ux

, . . . ) = h0p

(v) + ✏2@x

@tp+1�F

are differential polynomials in u satisfying tau-symmetry

Sunday 10 May 15

Page 14: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

E.g., start with vt

= v vx

, plug

u = v +✏2

24

(log vx

)

xx

+O �✏4�

ut

= vt

+✏2

24

✓vxt

vx

xx

+ · · · = v vx

+✏2

24

✓v v

xx

+ v2x

vx

xx

+ . . .

then

= v vx

+

✏2

24

[(v (log vx

)

x

)

xx

+ vxxx

] = v vx

+

✏2

24

[(v (log vx

)

xx

)

x

+ 2vxxx

]

= uux

+✏2

12uxxx

+O �✏4�

(cf. N.Ibragimov, V.Baikov, R.Gazizov, ’89)

Sunday 10 May 15

Page 15: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Geometrical meaning of the substitution (Dijkgraaf, Witten 1990): expressing higher genera via genus zero:

�F =X

g�1

✏2g�2Fg

⇣v, v

x

, . . . , v(3g�2)⌘

plug the genus zero solution

vx

= vx

(t)v = v(t) =X

n�1

1

n

X

k1+···+kn=n�1

tk1

k1!. . .

tkn

kn!, etc. Then

Fg

⇣v(t), v

x

(t), . . . , v(3g�2)(t)⌘=

X 1

n!

Xtk1 . . . tkn

Z

Mg,n

k11 . . . kn

n

= Fg

(t), g � 1

Sunday 10 May 15

Page 16: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

How to find the substitution? Solve loop equation

L(�)e�F = 0 8�

L(�) =X

k�0

�Ak(�)� ✏2Bk(�)

� @

@v(k)� ✏2

2

X

k,l�0

Ckl(�)@2

@v(k)@v(l)+

1

16(v � �)2=

X

m��1

Lm

�m+2

Ak

(�) = @k

x

✓1

v � �

◆+

kX

j=1

✓kj

◆@j�1x

✓1pv � �

◆@k�j+1x

✓1pv � �

Bk

(�) = � 1

16@k+2x

✓1

(v � �)2

Ckl

(�) = @k+1x

✓1pv � �

◆@l+1x

✓1pv � �

Commutation relations [Lm,Ln] = (m� n)Lm+n, m, n � �1

Sunday 10 May 15

Page 17: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Digression: on computation of intersection numbers

h⌧k1 . . . ⌧kni =Z

Mg,n

k11 . . . kn

n

Let M(z) =1

2

0

B@�P1

g=1(6g�5)!!

24g�1·(g�1)!z�6g+4 �2

P1g=0

(6g�1)!!24g·g! z�6g

2P1

g=06g+16g�1

(6g�1)!!24g·g! z�6g+2

P1g=1

(6g�5)!!24g�1·(g�1)!z

�6g+4

1

CA

(cf. Faber - Zagier series). Then (M.Bertola, B.D., Di Yang, 2015)

Xh⌧k1 . . . ⌧kni

(2k1 + 1)!!

z2k1+21

. . .(2kn + 1)!!

z2kn+2n

= � 1

n

X

r2Sn

TrM(zr1) · · ·M(zrn)Qnj=1(z

2rj � z2rj+1

)� �n,2

z21 + z22(z21 � z22)

2, n � 2

Sunday 10 May 15

Page 18: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Proof uses Lax representation for KdV hierarchyn -th equation , Ltn = [An, L]

L = @2x

+ 2u Lax operator, An

=

1

(2n+ 1)!!

⇣L

2n+12

+

(set ✏ = 1) Eigenfunctions L = z2 satisfy

tn = An , n � 0

At t = 0 u = u0(x) = x

000 + 2x 0 = z

2 0 ⇠ Airy equation

Use

Ai(z) ⇠ e�⇣

2p⇡z1/4

1X

k=0

(6k � 1)!!

(2k � 1)!!

(�216 ⇣)�k

k!, ⇣ =

2

3z3/2, z ! 1, | arg z| < ⇡

Sunday 10 May 15

Page 19: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

More general integrable Hamiltonian tau-symmetric hierarchies conjecturally depend on an infinite number of parameters s1, s2, . . . (a deformation of KdV)

(B.D., S.-Q.Liu, Y.Zhang, D.Yang, 2014)

Construction uses Hodge potential

ut

= uux

+ ✏2⇣u

xxx

12� s1ux

uxx

+ ✏4� s160

u(5) + s21

✓uxx

uxxx

+1

5ux

u4

◆� 4s31

5

�2u

x

u2xx

+ u2x

uxxx

�s26

�2u

x

u2xx

+ u2x

uxxx

�i+O(✏6)

Hg(t, s) =X

n�0

1

n!

Xtp1 . . . tpn

Z

Mg,n

eP

k�1 skchk(E) p11 . . . pn

n

Hodge bundle

Mg,n

E

H0 (T ⇤Cg)

(even components of Chern character vanish ch2i (E) = 0)

Sunday 10 May 15

Page 20: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Clearly Hg(t, 0) = Fg(t) Redenote s2k�1 7! � B2k

(2k)!sk

Thm.1) H0 = F0, for g � 1 Hg = (Fg +�Hg)v=v(t),v

x

=vx

(t),...

where�H

g

2 Qhs1, . . . , sg; v, v

±1x

, vxx

, . . . , v(3g�3)i

�H1 = �1

2s1v

E.g.,

�H2 = s1

✓11v2

xx

480v2x

� vxxx

40vx

◆+

7

40s21vxx �

✓s3110

+s248

◆v2x

RecallF1 =

1

24

log vx

, F2 =

v(4)

1152v2x

� 7vxx

vxxx

1920v3x

+

v3xx

360v4x

Sunday 10 May 15

Page 21: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

2) The substitution

v 7! u = v + ✏2@2x

X

g�1

✏2g�2Hg

h0p

=vp+2

(p+ 2)!7! h

p

= h0p

+ ✏2@x

@tp+1

X

g�1

✏2g�2Hg

transforms KdVε=0 to a new integrable Hamiltonian tau-symmetric hierarchy

=X

g�0

✏2gh[g]p

, h[g]p

2 Qhs1, . . . , sg;u, ux

, . . . , u(2g+2)i

utp =@

@x

�H[u; s]

�u(x), H[u; s] =

Zhp dx, p = 0, 1, 2, . . .

@hp�1

@tq=

@hq�1

@tpSunday 10 May 15

Page 22: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

E.g., for t = t1 one obtains a deformation of KdV

depending on the parameters s1, s2, . . .

ut

= uux

+ ✏2⇣u

xxx

12� s1ux

uxx

+ ✏4� s160

u(5) + s21

✓uxx

uxxx

+1

5ux

u(4)

◆� 4s31

5

�2u

x

u2xx

+ u2x

uxxx

�s26

�2u

x

u2xx

+ u2x

uxxx

�i+O(✏6)

Sunday 10 May 15

Page 23: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Conjecture. This is a universal deformation of KdVε=0 in the class of Hamiltonian tau-symmetric integrable hierarchies. For

Example 1. For sk = � B2k

2k(2k � 1)

s2k�1, for k � 1

one obtains intermediate long wave eq. (A.Buryak)

ut

= uux

+X

g�1

✏2gsg�1 |B2g|(2g)!

u2g+1

Example 2. For sk = (4k � 1)B2k

2k(2k � 1)s2k�1, k � 1

one obtains (?) Volterra equation (=discrete KdV)

ut

=1

⇣eu(x+✏) � eu(x�✏)

⌘(checked up to ✏12)

s = 0 obtain KdV

Sunday 10 May 15

Page 24: The Hebrew University of Jerusalem Einstein Institute of ... · 1 g=1 (6g5)!! 24g1 ·(g1)! z 6g+4 2 P 1 g=0 (6g1)!! 24g ·g! z 6g 2 P 1 g=0 6g+1 6g1 (6g1)!! 24g ·g! z 6g+2 P 1 g=1

Thank you!

Sunday 10 May 15