the howarth kirwan pope -2 - max planck society · the howarth kirwan relation (see...
Embed Size (px)
TRANSCRIPT
-
The Howarth . Kirwan relation ( see Bonin - Saglom , vol -2 ; Pope )
°
fundamental statistical quantity of interest :
velocity correlation tensor Rijlx , , x.at )= ( hill , ,t ) ujlxut ) >
. evolution equation from Nse ,= ( uiuj
'>
of ( uiujstdkcuiuauj )tai( uiujui >= . 2 ; ( pujs - a :( pin; > + r Qiluiujltudjicuiuj >Gi closure problem !Go Statistical symmetries for homogeneous isotropic turbulence :homogeneity : ( uiuj ' )= Rijlr ) with 1=1 ' - I ↳ d×i= - On. %=2r ;isotropy : 1) pressure - velocity correlations : ( nip 's = ago):scalar function only isotropicdepending our only tensor of rank I↳ dri ( hip 's = air )r÷r÷ tar ) ( { . rig )
= a 'lr ) +2g acr ) t 0 ( incompressibility)
G is solved by alr ) = 0 ✓ acr ) = r- 2
^
can be excluded on physical groundsbecause of divergence at origin
-
Gipressure - velocity covariance vanishes !
↳ A ( uiuj 's + dr.. [ ( uiujui ) - ( uiuuujy ] = Zvdni ( uiuj 's HI
.'
2) velocity covariance tensor Rijlr )= '±s' [ gir ) oijtffcn- gen) IYD]• pick i=j=l tree , G R " ( re , )= 431 finG. fk ) is the normalized longitudinal autocorrelation function
. pick i=j=2 I re , G Rzz ( re ,)=k÷ ' gcr )Cp glr ) is the normalized transverse autocorrelation function
^h{D ^u2c±+r± , , correlation described by
> re' > > gcr) and flr)Uik ) U
,( Itre , )
incompressibility : A: Rijk )=dj Rijcr ):Oimposes the relation gcr) = fchtlzrftr ) homework !G 9 - component tensor is characterized by variance & single scalar function !3) velocity triple correlation Bij, kk ) = ( uinjui. >=f÷')
"
[ 12 Hrtyrirgjkntiguttrty ( ri9÷triff
- ttoij⇒; 3
. pick i=j=k=l I = re , B " , , = PT
Cp insertion into C* ) yields scalar equation in terms of FG) and TCD
-
4 ( It % dr ) dtf = (
Itri. ) [ @, t4g ) rTt2r( dit 4g dr ) f
G integrate to obtain :
off = F, drr" Tt 2¥
,
drr " or f
von koiruiau - Howarth equation
•
non . trivial relation between longitudinal velocity autocorrelation
function and velocity triple correlations
The 415 - law
• prediction for inertial - range behavior of third - orderstructure function
•
on of a few exact statistical results derived from NSE. consider longitudinal structure functions
Such =LFalter) - ud ).IT >"
velocity fluctuations on scale r"
= ( veh )
:( Itr )
u*[
. relation to vk.tl relation can be expressed via
olf = rttzsz homework !PT = to 5
-
↳ von Kirwan - Howarth equation can be of expressed as
3M of Szt drr" § = 6v2rr4 qsz - 4 ( E > r4
^
from ofrk . } c e >
Gi integrate to obtain
3g, €4 of Sds , Holst § = Gvdrsz - 45 ( e > r ( * )
- -= ° for statistical ,
a 0 in the
stationary fuqnqneinertial range
G)
Slr ) = - Esser kolmogorov's 45 law
° third order structure function is linear in the inertial range
• remember : Sslr ) = ( [( ucetr . ) - ±kD.IT ) = Solve vs flue ; r )
G 45law predicts skewuus of velocity increment PDF!
-
Dissipation rangebehaviour
4
Whathappens at small scales ?
uiktrieikutx) + FEWrittzftp.k.lritfddypcxr?+h.o.t.
↳ re=
Feretftp.ritfdodxpr?+h.o.t.
↳ sun= iris.tt#.l2srittfd*.Yn)ritHWEzBri
'
÷+ ÷ ( g÷Y÷. yithai
4 sur .lt#x.t7ri ' HCo±atM "insert into .
Scr ) = < vi >=#g÷B ri
(ettypyr . www.24#zHr:tsseI*go (E) due toisotropy
↳ eo÷p = . ul¥±third moment of E 0
velocity gradient
• velocity gradient PDF is skewed, too !
• The probability of finding positre and negative velocity increments
of same magnitude differs !