the hybridized powertrain for 48v efficiency & cost optimization · 2018-11-12 · w....

64
W. Schoeffmann AVL List GmbH (Headquarters) Public The hybridized Powertrain for 48V Efficiency & Cost Optimization Energietag 2018 Graz, 10.09.2018

Upload: others

Post on 05-Jul-2020

3 views

Category:

Documents


1 download

TRANSCRIPT

W. Schoeffmann

AVL List GmbH (Headquarters)

Public

The hybridized Powertrain for 48V

Efficiency & Cost Optimization

Energietag 2018 Graz, 10.09.2018

W. Schoeffmann | D2T | 10 Sep. 2018 | 2Energietag 2018

CO2 Emissions▪ Enhanced CO2 limits additionally

aggravated by boundaries (e.g. WLTP) ▪ Lifetime CO2 as next discussion point

Tailored Electrification

New ICE & Transmission

CO2 REDUCTION

Tailored Electrification

New ICE & Transmission

Enhanced CO2 limits additionally aggravated by boundaries (e.g. WLTP)

Lifetime CO2 as next discussion point

CO2 Reduction

W. Schoeffmann | D2T | 10 Sep. 2018 | 3Energietag 2018

CO2 Reduction Emission Compliance AutonomousElectrification

CO2 Emissions▪ Enhanced CO2 limits

additionally aggravated by boundaries (e.g. WLTP)

▪ Improvements from powertrain to entire vehicle required

▪ Well to Wheel as next discussion point

Pollutant Emissions▪ Extended consequences of

Diesel Gate▪ ICE ban under discussion ▪ Minimum emissions under

all operating conditions –over fulfillment of legislation “Zero Impact ICE”

▪ Shift towards electrification

Tailored Electrification▪ MHEV Mild hybrids and 48V

systems as mainstream▪ PHEV Plug-in hybrids as

premium applications for supporting CO2 fleet targets

▪ BEV Battery electric vehicle and fuel cell technology still striving for cost progress and broad customer acceptance

Connectivity /ADAS▪ Accident free driving▪ New levels of driving comfort▪ New functions with V2X like

over the air update▪ Predictive energy efficiency

functions▪ Fully automated driving or

autonomous cars

Overview

Passenger Car Trends

W. Schoeffmann | D2T | 10 Sep. 2018 | 4Energietag 2018

RDE

Aggravation RDE !

RDE

USACAFE

FTP75, US06, SC03

0

50

100

150

200

2012 2016 2021 2025

[gCO2/km]

-31%

EuropeCO2 Fleet

NEDC WLTP, RDE

0

50

100

150

200

2015 2021 2025

[gCO2/km]

-42%

WLTP

ChinaCAFC & single vehicle

NEDCWLTP(CATC), RDE

[gCO2/km]

0

50

100

150

200

2015 2020 2025

WLTP

-42%

City access

restrictions

NGO activities !

Earlier China 6b ?

NEV share mandatory

Registration limitationLow motivation

to buy XEV´s

ZEV share

mandatory

Change directly from

BS4 to BS6

Temperature requirements

RDE extended 5°C to 45°C

Certain traffic situation

(6 – 30% idling duration)

IndiaCO2 Fleet

India driving Cycle (NEDC 90km/h)

[gC

O2/k

m]

0

50

100

150

200

2017 2022

-13%

RDE (CF tbd)

Expected PC production volume [mio. units] in 2025:

~18 (=) ~33 (=/+) ~33 (+) ~8 (+)

Market Specific Boundaries

W. Schoeffmann | D2T | 10 Sep. 2018 | 5Energietag 2018

167

180

117

130

145

95

125 130

0

20

40

60

80

100

120

140

160

180

200

2010 2015 2020 2025 2030

Global CO2 emission regulation development

851)

511)

761)

105

190

941)

931)

731)

731)

941)

121

152Japan

Europa

USA

China

CO2 g/km (NEDC cycle)

BEV

Opel ampera

Toyota Prius

Mitsubishi Outlander

Volvo V60

BMW i3 (rex)

Porsche Panamera

Audi A3 e-tron

BMW i8 (rex)

Porsche Cayenne

Mercedes-Benz S500

Mercedes-Benz GLC 350e

Volvo XC 90

VW Golf GTE

BMW 225xe Active Tourer

BMW 330eBMW 740e

BMW X5 xDrive40e

Future PHEV CO2 emissions

Market challengesWORLDWIDE CO2 reduction & INTRODUCTION OF WLTP

Worldwide CO2 legislations will converge on very low level

CO2 REDUCTION IS THE MOST IMPORTANT TECHNOLOGY DRIVER!

Type Approval Cycle

Worldwide harmonized Light vehicles Test Procedure

NEDC WLTC

Mean velocity 33 km/h 46 km/h

Acceleration 1 m/s² 1.8 m/s²

Idle share 23 % 13 %

100 200 300 400 500 600 700 800 900 1000 110012001300 140015001600 17001800time [s]

vehic

le s

peed [

km

/h]

0

50

100

150

vehic

le s

peed [

km

/h]

0

50

100

150

NEDC

WLTC

W. Schoeffmann | D2T | 10 Sep. 2018 | 6Energietag 2018

GLOBAL TECHNOLOGY SHARE

W. Schoeffmann | D2T | 10 Sep. 2018 | 7Energietag 2018

GLOBAL TECHNOLOGY SHARE

DIFFERENT PREDICTIONS

AVL(12/2017)

Strategy Engineers Progr. Szenario (12/2016)

(BOSCH Szenario, 04/2017Wiener Motorensymposium)

IEA, Energy Technology

Perspectives, high H2 case, 2015

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BOSCH(04/2017)

En

gin

es

Pro

du

ced

[%

]

IHS(10/2017)

W. Schoeffmann | D2T | 10 Sep. 2018 | 8Energietag 2018

Technologies of the Future

ICE:• Significantly higher effort for emission compliance (RDE, China6, SULEVxx, …)

• “Zero Impact Emission Concepts” starting

• Increasing share turbocharging + Rightsizing

• Advanced boosting, exhaust energy recuperation, full map stoichiometric, water injection, EGR

• E-fuels and E-gas increasing

Mild Hybrid: • 48 V in various configurations P0 – P4

• Power Increase 15 20 30 kW

• ICE utilizes synergies

Full Hybrid: Primarily with Japanese OEM´s

Plug In Hybrid: CAFE and city access as driver

BEV: Dependent on infrastructure, incentives and access restr.

Fuel Cell: limited to specific markets

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AVL Prediction 12/2017

2025: 50% electrified, but growth to 100 mio ICE´s

W. Schoeffmann | D2T | 10 Sep. 2018 | 9Energietag 2018

Future Technology

Impact on Engineering Demand

Dramatically enhanced engineering demand

Connected & Autonomous

New EV / Fuel Cell

Significantly higher effort for emission compliance (RDE, China 6b, SULEV xx, …)

Huge variety of new complex XEV systems

AVL Prediction 12/2017

W. Schoeffmann | D2T | 10 Sep. 2018 | 10Energietag 2018

Strategy to Master the Future

Requirements

Increased development efficiency & “enhanced” validation

Shift towards virtual development & validation

Intelligent & flexible linking of virtual and real world

METHODOLOGY

Modular powertrain systems

From “FULLY FLEXIBLE ICE” towards “FULLY

FLEXIBLE POWERTRAIN”

Powertrain embedded into all vehicle layers

TECHNOLOGY

W. Schoeffmann | D2T | 10 Sep. 2018 | 11Energietag 2018

Tailored Powertrain Electrification

There is no silver bullet.

W. Schoeffmann | D2T | 10 Sep. 2018 | 12Energietag 2018

Tailored Powertrain Electrification

Fuel Cell

100% Electric

Pelectric ≥ PchemPelectric < Pchem

W. Schoeffmann | D2T | 10 Sep. 2018 | 13Energietag 2018

The Electrified Combustion Engine

Gasoline (SI)

Miller,Atkinson

today

Extended Miller,advanced boostingRefined emission

VCR, HCCI,.....

tomorrow

Extended 48V systems (1520>30 kW)

as enabler for low emission & CO2

48V

Diesel (CI)

Lean NOx Trap + SCR

Advanced EAS & Temperature Management, adapted operating strategy

Electrification as enabler for next refinement level of ICE

EAS … Exhaust gas Aftertreatment SystemHCCI ….. Homogeneous Charge Compression IgnitionVCR … Variable Compression Ratio

W. Schoeffmann | D2T | 10 Sep. 2018 | 14Energietag 2018

48V Powertrain architectures

P1

P2

P0

P3

P4

W. Schoeffmann | D2T | 10 Sep. 2018 | 15Energietag 2018

Features and functionsvs. architectures

Function P0 P1 P2 P3/+P0 P4/+P0

Advanced stop start

Charging at standstill

Charging at driving

Recuperation

Boost

Sailing

Coasting

eCreep

Electric drive

Engine shutdown assist

Engine stall protection

eAWD

1)1) 1) 1)

1) 1)

1) 1)

1) 1)

1) MT with eClutch2) P2 with SSM

2)

W. Schoeffmann | D2T | 10 Sep. 2018 | 16Energietag 2018

+ + ++ ++ ++

0 + ++ + +/0

(+) (+) (+) (+) (+)

+ + ++ ++ ++

+ + 0 + +

+ + + + +

0 0 0 0 0

0 0 0 0 +/- 1)

1) Baseline vehicle with mechanical AWD

1)

Attribute P0 P1 P2 P3/+P0 P4/+P0

Fuel Consumption

Performance

Emissions - Gasoline

Emissions - Diesel

NVH

Drivability

Ride Comfort

Handling

Vehicle attributes vs. architectures

Rating:

0 … similar to baseline vehicle+ … better than baseline vehicle- … worse than baseline vehicle

P2 configuration combines best attributes with lowest complexity

W. Schoeffmann | D2T | 10 Sep. 2018 | 17Energietag 2018

0

100

200

300

400

500

600

700

800

900

1000

2 4 6 8 10 12 14 16 18 20

Recu

perati

on

En

erg

y [

Wh

]

E-Machine Size [kW]

WLTC

NEDC

HIGHWAY

C SegmentB Segment E Segment SUV (Diesel)

Recuperation Energy vs. architecturesNEDC, WLTC, Highway

Significantly increased importance of

electrification by the higher dynamics of the

cycle

W. Schoeffmann | D2T | 10 Sep. 2018 | 18Energietag 2018

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

900,00

1000,00

1100,00

0 5 10 15 20

Recupera

tion E

nerg

y [

Wh]

E-Motor Size [kW]

Recuperation Potential

WLTC B P0

WLTC C P0

WLTC C P2

WLTC C P4

WLTC SUV-D P0

WLTC SUV-D P4

WLTC E P0

WLTC E P2

WLTC E P4

P0,P1P0,P1

P0,P1

P0,P1

P2

P3,P4

C SegmentB Segment E Segment SUV (Diesel)

Recuperation Energy vs. architecturesWLTC - 48V Up to 20 kW

P3,P4

P2

P3,P4

20kW is sufficientwith the exception of the heavy vehicles

W. Schoeffmann | D2T | 10 Sep. 2018 | 19Energietag 2018

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

900,00

1000,00

1100,00

0 5 10 15 20 25 30

Recupera

tion E

nerg

y [

Wh]

E-Motor Size [kW]

Recuperation Potential

WLTC B P0

WLTC C P0

WLTC C P2

WLTC C P4

WLTC SUV-D P0

WLTC SUV-D P4

WLTC E P0

WLTC E P2

WLTC E P4

P0,P1P0,P1

P0,P1

P0,P1

P2

P3,P4

C SegmentB Segment E Segment SUV (Diesel)

Recuperation Energy vs. architecturesWLTC - 48V Up to 30kW

P3,P4

P2

P3,P4

25 - 30kW is useful for• Heavy vehicles• Extended electric

driving

W. Schoeffmann | D2T | 10 Sep. 2018 | 20Energietag 2018

▪ P0 as basic electrification. Especially for smaller, cost sensitive segments, competing with 12+12 architectures.

• P2 is appropriate, depending on individual demand (fleet CO2), even before 2020.

Architecture Comparison

How to realize a P2 architecture?

coaxial or side mounted?

module or integrated?

fixed to engine or transmission?

2025 and beyond mandatory to meet severe CO2 legislation

with significant mild hybrid market share

2025 and beyond not sufficient to meet severe CO2 legislation with significant mild hybrid market share

W. Schoeffmann | D2T | 10 Sep. 2018 | 21Energietag 2018

electrified Gasoline & Diesel engine integration in C-Segment Vehicle

Fuel Tank Volume 50 Liter

Total Length 4250 mm

Total Width 1800 mm

Total Height 1460 mm

Wheelbase 2640 mm

Curb Weight (=dry weight) 1130 kg

Gross Weight 1450 kg

C-SEGMENT BASE VEHICLE

W. Schoeffmann | D2T | 10 Sep. 2018 | 22Energietag 2018

In line 4 Cyl TGDI Base engine

Displacement [l] 1,6 Intake system CAC

Rated speed [min-1] 4850 Water pump Fixed ratio

Rated Power [kW] 120 Oil pump Fixed sump pump

Max Torque [Nm] 251 FEADA/C, tensioner, idler, W/P, alternator, PS pump

Start / Stop Yes Piston cooling Pressure regulated

In line 4 Cyl Diesel Base engine

Displacement [l] 1,5 Intake system CAC

Rated speed [min-1] 4000 Water pump Fixed ratio

Rated Power [kW] 80 Oil pump Fixed sump pump

Max Torque [Nm] 250 FEADA/C, tensioner, idler, W/P, alternator, PS pump

Start / Stop Yes Piston cooling Pressure regulated

Gasoline & Diesel Base engine Variantsintegration in C-Segment Vehicle

Both with 12V e-SC + Long Final Gear Ratio

W. Schoeffmann | D2T | 10 Sep. 2018 | 23Energietag 2018

What can be electrified tosimplify the base engine?

Function

Eff

ect

on

p

erfo

rm

an

ce

Eff

ect

on

FC

&

eff

icie

ncy

Packag

e

Cu

sto

mer

valu

e

Fu

ncti

on

al

ris

k

Co

mp

lexit

y

red

ucti

on

Co

mm

en

t

Generator/E-machine + + O + O + P2 architecture

E-Water pump O + + O O +

E-Oil pump O + + O - +

AC compressor O O + + O + Mechanical and e-driven

PS pump O + + O O + Needed for pure e-drive

Vacuum pump O + + O O + Needed for pure e-drive

E-cam phaser + + + + O O

E-Charger + + O + O O Highest potential in FC

E-catalyst O + O O O O Heating strategy

Supporting measures

Grill Shutter O + O O O O Reduction Air-Drag

Thermal encapsulation O + O + O OFaster Warm Up and

Restart

o Basis 12V w BSG+SS

W. Schoeffmann | D2T | 10 Sep. 2018 | 24Energietag 2018

Base engine - state of the art

W. Schoeffmann | D2T | 10 Sep. 2018 | 25Energietag 2018

The ideal base engine for 48 VoltsFeatures

W. Schoeffmann | D2T | 10 Sep. 2018 | 26Energietag 2018

The ideal base engine for 48 VoltsFeatures

W. Schoeffmann | D2T | 10 Sep. 2018 | 27Energietag 2018

The ideal base engine for 48 VoltsFeatures

W. Schoeffmann | D2T | 10 Sep. 2018 | 28Energietag 2018

The ideal base engine for 48 VoltsFeatures

W. Schoeffmann | D2T | 10 Sep. 2018 | 29Energietag 2018

Electrification of A/C compressor

A/C driven by engine

W. Schoeffmann | D2T | 10 Sep. 2018 | 30Energietag 2018

Electrification of A/C compressor

A/C electrically driven

W. Schoeffmann | D2T | 10 Sep. 2018 | 31Energietag 2018

Electrification of A/C compressor

A/C driven by wheels

W. Schoeffmann | D2T | 10 Sep. 2018 | 32Energietag 2018

The ideal base engine for 48 VoltsFeatures

W. Schoeffmann | D2T | 10 Sep. 2018 | 33Energietag 2018

The ideal base engine for 48 VoltsFeatures

W. Schoeffmann | D2T | 10 Sep. 2018 | 34Energietag 2018

The ideal base engine for 48 VoltsFeatures

W. Schoeffmann | D2T | 10 Sep. 2018 | 35Energietag 2018

The ideal base engine for 48 VoltsFeatures

Elimination of conventional coolant pump

W. Schoeffmann | D2T | 10 Sep. 2018 | 36Energietag 2018

The ideal base engine for 48 VoltsFeatures

W. Schoeffmann | D2T | 10 Sep. 2018 | 37Energietag 2018

The ideal base engine for 48 VoltsFeatures

W. Schoeffmann | D2T | 10 Sep. 2018 | 38Energietag 2018

The ideal base engine for 48 VoltsFeatures

W. Schoeffmann | D2T | 10 Sep. 2018 | 39Energietag 2018

The ideal base engine for 48 VoltsFeatures

W. Schoeffmann | D2T | 10 Sep. 2018 | 40Energietag 2018

The ideal base engine for 48 VoltsFeatures

W. Schoeffmann | D2T | 10 Sep. 2018 | 41Energietag 2018

The ideal base engine for 48 VoltsFeatures

W. Schoeffmann | D2T | 10 Sep. 2018 | 42Energietag 2018

The ideal base engine for 48 VoltsFeatures

W. Schoeffmann | D2T | 10 Sep. 2018 | 43Energietag 2018

Catalyst heating element

Electrical coolant pump

Oil cooler/filter module with e-pump

48V 20kW e-Motor

Electric Supercharger

Electric Cam-phaser

The ideal base engine for 48 VoltsFeatures – Diesel engine

W. Schoeffmann | D2T | 10 Sep. 2018 | 44Energietag 2018

The ideal base engine for 48 VoltsIntegration

W. Schoeffmann | D2T | 10 Sep. 2018 | 45Energietag 2018

The ideal base engine for 48 VoltsIntegration

W. Schoeffmann | D2T | 10 Sep. 2018 | 46Energietag 2018

The ideal base engine for 48 VoltsIntegration

W. Schoeffmann | D2T | 10 Sep. 2018 | 47Energietag 2018

The ideal base engine for 48 VoltsIntegration

W. Schoeffmann | D2T | 10 Sep. 2018 | 48Energietag 2018

The ideal base engine for 48 VoltsIntegration

W. Schoeffmann | D2T | 10 Sep. 2018 | 49Energietag 2018

The ideal base engine for 48 VoltsIntegration

W. Schoeffmann | D2T | 10 Sep. 2018 | 50Energietag 2018

The ideal base engine for 48 VoltsIntegration

W. Schoeffmann | D2T | 10 Sep. 2018 | 51Energietag 2018

The ideal base engine for 48 VoltsIntegration

W. Schoeffmann | D2T | 10 Sep. 2018 | 52Energietag 2018

The ideal base engine for 48 VoltsPackage Envelope almost neutral

+/- 0mm+60 mm- 40mm

+ 20mm

Additional e-motor drive assembly

Removal of FEAD and oil pump drive

W. Schoeffmann | D2T | 10 Sep. 2018 | 53Energietag 2018

Ideal base engine for 48vMinimised overall weight increase

4,5 kg18 kg

Production engine&

48V electrification

Electrified base engine&

48V electrification

W. Schoeffmann | D2T | 10 Sep. 2018 | 54Energietag 2018

ARCHITECTURE OPTIMIZATION BY MEANS OF global vehicle SIMULATION

Change of operating point in 3 dimensions:BMEP, engine speed and temperature

Outcome

Real-life Cycles

on the Road

Contribution of each sub-system to the operating conditions

Fuel consumption

f(BMEP, speed, T)

W. Schoeffmann | D2T | 10 Sep. 2018 | 55Energietag 2018

Impact of electrified auxiliariesCoolant Pump - in WLTC

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 200 400 600 800 1000 1200 1400 1600 1800

Ener

gy r

elat

ive

to e

ngi

ne

[%]

cum

late

d p

ow

er [

kWh

]

Time [s]

Coolant Pump

Basis Mechanical controlled Electrical controlled

Absolute Energy

Energy relative to engine

Fuel consumption reduction potential for the coolant pump

~0.4%

Energy Requirement reduced by 50% with switchable coolant

pump main benefit enhanced

warm-up (not considered here!)

Energy requirement of electrical driven pump - coolant flow

controlled on demand

W. Schoeffmann | D2T | 10 Sep. 2018 | 56Energietag 2018

0

1

2

3

4

5

6

7

8

9

10

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0 200 400 600 800 1000 1200 1400 1600 1800

Au

xilia

ry e

nerg

y r

ela

tive t

o e

ng

ine [

%]

Au

xilia

ry c

um

late

d p

ow

er [

kW

h]

time [sec]

Cumulated mechanical power of auxiliariesduring WLTC

HT Coolant Pump Oil pump Steering pump

Vacuum pump Idlers Auxiliaries (sum of)

Sum relative to engine

Impact of electrified auxiliariesUP TO 4% CO2 reduction in WLTC

Auxiliaries (sum of) relative to engine [%]

W. Schoeffmann | D2T | 10 Sep. 2018 | 57Energietag 2018

Impact of 48V hybridization on DieselUP TO 14% CO2 reduction in WLTC

Base engine thermal encapsulation not includedNot active vehicle grill shutters

Significant e-Drive capability and energy recuperation in WLTC

eDrive activeRecuperation active

Vehicle speed

48V battery SoC

W. Schoeffmann | D2T | 10 Sep. 2018 | 58Energietag 2018

48V P2 Gasoline VehicleCO2 reduction potential in WLTC

13% 0,4%

1,9%0,5% 0,6%0,6%0,4%1,0%

1,6%0,5%79,5%

70%

75%

80%

85%

90%

95%

100%

CO2 walk for 48V optimized Gasoline engine

FEAD

Additional

VTMS

Optim

ized 1

2V B

aseline

Engin

e-20,50%

W. Schoeffmann | D2T | 10 Sep. 2018 | 59Energietag 2018

60

65

70

75

80

85

90

95

100

105

110g C

O2

CO2 optimzation potential comparison of 48V Diesel and Gasoline

48V Diesel Engine 48V Gasoline Engine

CO2 optimzation potential comparison of 48V Diesel and Gasoline in WLTC

FEAD Additional VTMSOptimisedBaseline

48V Hybrid

12V D

iesel

12V G

asoline

17,5𝚫 = gCO2

W. Schoeffmann | D2T | 10 Sep. 2018 | 60Energietag 2018

CO2 reduction potential in WLTCVehicle segments - 48V architectures

0%

5%

10%

15%

20%

P0, P1 P2, P0/P3, P0/P4

Fuel Consum

ption R

eduction P

ote

ntial

(WLT

C)

B Segment C Segment E Segment SUV (Diesel)

5%

▪ Results are mean values for (P0, P1) and (P2, P0/P3, P0/P4) respectively

▪ Potentials increase with improved basis (high efficient PWT, low vehicle resistance)

W. Schoeffmann | D2T | 10 Sep. 2018 | 61Energietag 2018

Cost to benefit vs. architectures

C Segment Gasoline

B Segment E SegmentSUV

(Diesel)

Cost vs. CO2 diagram mappingdifferent hybrid architectures andvehicle segments – includingengine measures with mostbeneficial Cost/CO2 trade-off.(Electrified water, oil, vacuum andsteering pump as well as active bayshutters and engineencapsulation.)

Assumptions:>500.000 units p.a.Established supplier base for 48VBase engine modificationsconsidered

Cost / CO2 Range

<= 80 €/(gCO2/km)

<= 60 €/(gCO2/km)

<= 40 €/(gCO2/km)

<= 20 €/(gCO2/km)

C Segment Diesel

W. Schoeffmann | D2T | 10 Sep. 2018 | 62Energietag 2018

▪ 48 V Architectures are cost effective solutions between 12 V and High Voltage Hybridization.

▪ 48V offers considerable fuel consumption reduction throughout all vehicle segments.

▪ 48 V high power drives allow additional customer value (electric driving, valet parking…)

▪ 48 V are also driven by vehicle electric power requirements

▪ 48 V Mild Hybrids are expected to achieve significant share in powertrain systems

AVL 48V MILD HYBRID POWERTRAINBEST VALUE FOR THE END CUSTOMER

W. Schoeffmann | D2T | 10 Sep. 2018 | 63Energietag 2018

AVL - Rightsizing the electrification

www.avl.com

Thank You

Thank you for your attention!Any Questions?