the i’ antenna i laboratory i (accession number1 · 1 1 i 1 i i i i 1 i i 1 i i 1 i 1 226 00001 g...

24
THE I’ . ANTENNA (ACCESSION NUMBER1 LABORATORY i <CATEGORY: I (NASA Cli OR TMX OR AD NUMBER) RESEARCH ACTIVITIES in ---I / INVESTIGATION OF A FEW SIMPLE MOLECULAR GASES AS A POSSIBLE MOLECULAR LASER MATERIAL Peter K-L Yin and Said H. Koozekanani Grant Number NsG-74-60 1093-31 1 November 1966 Prepared for: National Aeronautics and Space Administration Washington, D. C. 20546 Office of Grants and Research Contracts DeDartment of ELECTRICAL ENGINEERING i CFSTl PRICE(S) $ I Hard copy (HC) 1 i THE OHIO STATE UNIVERSITY ,’ L /? I Columbus, Ohio RES EARC H FOU N DATI 0 N’ I Microfiche (M F) fl ff 653 July 65 1 https://ntrs.nasa.gov/search.jsp?R=19670004883 2020-06-04T20:18:12+00:00Z

Upload: others

Post on 31-May-2020

18 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

T H E I ’

. A N T E N N A

(ACCESSION NUMBER1 L A B O R A T O R Y i <CATEGORY:

I (NASA Cl i O R TMX O R AD NUMBER)

RESEARCH ACTIVITIES in - - - I

/

INVESTIGATION OF A F E W SIMPLE MOLECULAR GASES AS A POSSIBLE

MOLECULAR LASER MATERIAL

Peter K - L Yin and Sa id H. K o o z e k a n a n i

G r a n t Number NsG-74-60

1093-31 1 N o v e m b e r 1966

P r e p a r e d for: Nat iona l A e r o n a u t i c s a n d Space A d m i n i s t r a t i o n

Washington, D. C. 20546 Office of G r a n t s a n d R e s e a r c h C o n t r a c t s

DeDartment of ELECTRICAL ENGINEERING

i CFSTl PRICE(S) $

I Hard copy (HC) 1 i THE OHIO STATE UNIVERSITY ,’ L /? I

Columbus, Ohio RES EARC H FOU N DATI 0 N’

I

Microfiche (M F) fl ff 653 July 65

1

https://ntrs.nasa.gov/search.jsp?R=19670004883 2020-06-04T20:18:12+00:00Z

Page 2: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

NOTICES

When Government drawings, spec i f ica t ions , o r o ther da ta are u s e d f o r any purpose o ther than i n connection with a def ini te ly r e l a t e d Gov- e r n m e n t p r o c u r e m e n t operation, t h e United S t a t e s G o v e r n m e n t t h e r e b y i n c u r s n o respons ib i l i ty nor any obl igat ion w h a t s o e v e r , and t h e fact t h a t the Government m a y have formulated, furn ished , o r i n any way suppl ied the s a i d drawings , specif icat ions, o r o ther d a t a , is not t o be r e g a r d e d by implicat ion or o therwise as in a n y m a n n e r l icens ing t h e holder o r a n y o ther p e r s o n o r corpora t ion , o r conveying a n y r i g h t s or p e r m i s s i o n t o manufac ture , u s e , o r s e l l any pa ten ted invention that m a y in any way be r e l a t e d t h e r e t o .

The G o v e r n m e n t h a s the r ight t o r e p r o d u c e , u s e , a n d d is t r ibu te this r e p o r t f o r governmenta l purposes i n a c c o r d a n c e with t h e c o n t r a c t under which t h e r e p o r t w a s produced. T o p r o t e c t t h e p r o p r i e t a r y i n t e r e s t s of the c o n t r a c t o r a n d t o avoid jeopardy of its obl igat ions t o the Government , t h e r e p o r t m a y not be r e l e a s e d f o r non-governmenta l u s e such as might const i tute g e n e r a l publ icat ion without t h e e x p r e s s p r i o r consent of T h e Ohio State Universi ty R e s e a r c h Foundat ion.

Page 3: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

Sponsor

REPORT 1093-31

R E P O R T by

THE OHIO STATE UKIVERSITY RESEARCH FOUNDATION COLUMBUSy OHIO 43212

Grant Number

Investigation of

Subject of Report

Submitted by

Date

National Aeronautics and Space Administration Office of Grants and Research Contracts Washington, D. C. 20546

NsG -74- 60

Receiver Techniques and Detectors for Use a t Mill imeter and Submillimeter Wavelengths

Investigation of a F e w Simple Molecular Gases a s a Possible Molecular Laser Material

P. K-L Yin and S. H. Koozekanani Antenna Laboratory Department of Elec t r ica l E ng ine e ring

1 November 1966

i

Page 4: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

ABSTRACT

Energy levels of a few simple molecular gases which have a resonant energy level with the Nz metastable level have been investi- gated for possible molecular l a s e r material .

ii

Page 5: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

TABLE O F CONTENTS

I. INTRODUCTION

11. MECHANISMS O F INVERSION

111. REVIEW OF SOME SIMPLE MOLECULAR GASES

IV. SUMMARY

iii

P a g e

1

1

2

19

Page 6: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

INVESTIGATION OF A FEW SIMPLE MOLECULAR GASES AS A POSSIBLE MOLECULAR LASER MATERIAL

I. XNTRODVCTION

Coherent sources lying in the infrared o r the far- infrared region of the spectrum would be best and m o r e efficiently produced with mo- lecular gas l a s e r s ra ther than atomic gas l a se r s . simply in the f ac t that in atomic gases , disregarding the hyperfine o r magnetic splitting, the electronic transit ions necessary to reproduce a n inf ra red photon would, in general , be between s ta tes having high quantum numbers n w h e r e the energy s ta tes l ie close to each other. This fact reduces the efficiency greatly; moreover the upper s ta tes of atomic levels tend to have long l ife-t imes, which in turn can be shown to cause these states to be saturated a t very low cu r ren t discharges o r low pressures . Hence atomic l a s e r s a t these wavelengths suffer both f r o m low efficiency and low output power. a r e alleviated to a g rea t extent when one considers molecular sys tems where one need not work between the electronically excited levels. vibrational levels a r e r ich i n energy s ta tes and a r e low-lying in the energy scale. This feature could greatly enhance the efficiency. The following discussions will concern a few possible mechanisms of inversion and w i l l review o ~ l y a few of the many promising molecules suitable for l a s e r action in the infrared region, so that investigators equipped to handle these gases may experiment with them.

The reason l ies

However, the above problems

The

11. MECHANISMS O F INVERSION

Among the few possible methods of population inversion of some

In of the energy levels of a certain gas with respect to its other levels, the method of resonant t ransfer has one of the highest efficiencies. this method a gas molecule which has been excited to a metastable level, upon collision with another molecule, relinquishes i ts energy to the colliding par t ic le and relaxes f r o m its metastable level to the ground state. The excitation c r o s s section for this process has its grea tes t value when the energy levels of the colliding par t ic les a r e in resonance, o r differ by less than kT.

1

Page 7: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

Among the l a s e r s which use this p rocess f o r excitation a r e the He-Ne’ l a s e r in which the metastable ievels of He a r e responsible f o r the inversion of the neon levels, and a l so the COz-N2 the vibrationally excited metastable level of N2 excites the vibrational (001) level of COz. very c lose to each other. Yet another p rocess which can aid great ly the inversion of some of the vibrational levels of the molecular gases is the addition of light gases in the discharge. When a par t ic le collides with a vibrating molecule it can cause the vibrating level to re lax to the ground s ta te by t ransfer r ing the vibrational energy to i ts kinetic energy.3 Since the c r o s s sections for this p rocess for all of the vibrational levels a r e not equal, this can help to bring about a non- the rma l distribution. He-C02 mixture.

l a s e r in which

The energy levels in both the above p rocesses a r e

An example of such a l a s e r sys tem i s the

111. REVIEW O F SOME SIMPLE MOLECULAR GASES

We shall now review some of the simple molecular gases which have energy levels c lose to the vibrationally excited metastable level ( v = 1) of N2. may not be stable in a discharge; however, in the la t te r case , it is possible to excite the Nz in another chamber and then mix it with the gas in question. The review is presented in a s e r i e s of ten tables , which follow.

Most of these gases a r e extremely poisonous and a few

2

I * I I I I 1 I I I I 1 I 1 I 1 1 1 I 1

Page 8: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

TABLE I C2H2: Linear with center of symmetry (Dah)

~~ ~

Energy level De s ig na t io n Species ( cm-' )

2215 00003' '1TU

1956 0002"1' "U

z+ g

1973. 8 01000

*1460 00002

1328. 1 0001' 1'

*1224 00021

729. 1 00001' =U

g 611. 8 000 1' 0 a

* Not observed Spectroscopically. including the anharmonic correction.

Values a r e estimated without

Remark: 000031 - O O O O o O o is weak. favorable for laser action.

Hence, it is not very

TABLE I1 CzD2: Linear with center of symmetry (Dah)

Energy level Designation Species

2311 01001 lrU

+ g

1762.4 0 1000 (J

lr U

1610 00003

1044 01001 =Ll

Remark: 01001 -00000 is weak. Hence, it is not very favorable fo r laser action.

3

Page 9: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

TABLE It1 C2N2: Linear with center of symmetry ( D & )

Energy level De signa tion Species * I

1 1 I 1 I I I I 1 I I 1 I I 1 I 1

226 00001

g 50 6 000 10 TT

732 000 11 + %

848 0 1000

1026 00002

2 149 00100 + @U

U+ g

2322 10000

Remark: 10000 level is v e r y close to that of N2( v = 1 ) . since transit ion to the ground state i s forbidden, collision c r o s s section is small.

However,

TABLE IV CS2: Linear with center of symmetry (C2v)

Energy level D e signa tion Species

2329 0 2 " 1

2183. 9 10" 1

1523

796

OO"1

02"O + g

r,

656. 5 10"O

396. 7 01 '0

4

Page 10: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

TABLE V SOz: Asymmetr ic top nonlinear ( C2v)

Energy level De signa tio n Species

2305 200 A1

1871 011 81

1361 001 bl

1151. 2 100 a1

TABLE V I HzO: Asymmetric top nonlinear (Czv)

Energy level D e signa t ion Species

68 74

5332

3755. 8

3651. 4

3151. 4

1595

0 2 1

011

0 0 1

100

0 20

0 10

B1

B1

Remark: The l ifetime of N2( v = 3) is short . Hence, a slim chance of l a s e r action is expected with N2( v = 3 ) .

5

Page 11: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

TABLE VI1 HzS: Asymmetr ic top nonlinear ( Czv)

Energy level D e s i g na tio n Species

2422 0 20 A1

1290 0 10 a1

Remark: It may not be very favorable for l a se r action because 020 level of HzS lies above that of Nz ( v = 1 ) .

TABLE VIII NZO: Asymmetric top nonlinear ( Czv)

Energy level D e signa t ion Species

2220 011 BI

1621 001 bl

1320 100 a1

1373 0 20 -

64 8 0 10 a1

6

1 + I

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

~

Page 12: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

TABLE IX A3H3 : S y h m e t r i c top ( C3 v)

E n e r g y l e v e l D e s igna t io n S p e c i e s

2162 v3 E

2115. 2 V1 A1

1812 2 v2 A1

999 .4 v 1 E

906 v2 A1

7

Page 13: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

TABLE k C3OZ: Linear with center of symmetry ( Dah)

Energy level De signa t ion Species

2290 +

v3 uU

+ U

g 2200 V1

TU 1980 - - ll 1850 U

=U 1760 -

1670

1570

1470

v4

=U

uU +

+ rU or mu

1387 -

1225

1226

1114

- lT U 1024

909

1176

+ ug 843 -

586 v5 ll g

TT v7 U 557

Remark: v 3 is very strong. But when warm i t decomposes.

8

Page 14: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

200(

5 oc

- 0001'1'(2~

30001'(7r" )

0

Fig . 1. Vibra t iona l e n e r g y level d i a g r a m of C2H2.

9

Page 15: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

200(

50

F i g . 2. Vibrational e n e r g y level diagram of C2D2.

10

00003('

1 + I

1 I I I I 1 1 1 I I I I I I 1 I I

Page 16: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

2000

1500

C M-'

1000

500

0

Fig. 3. Vibra t iona l e n e r g y level d i a g r a m of C2NZ.

11

Page 17: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

200c

I50(

C M- '

loo(

5 0

I 020 I r

\

- Fig . 4. Vibra t iona l e n e r g y level d i a g r a m of CSZ.

12

1 * I

1 1 I I I I 1 I I I I I I 1 1 I I

Page 18: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

.

C M'

2000

I500

1000

500

0

Fig . 5. V ib ra t iona l e n e r g y level d i a g r a m of SOz.

1 3

Page 19: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

7000

6000

500C

C M-'

4ooc

300(

200(

100'

- 0 2 I (e,)

6

Fig . 6. V i b r a t i o n a l e n e r g y level d i a g r a m of HzO.

14

-000

Page 20: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

I

C M'

2000

00

1000

500

0 000 (A,).

Fig. 7. Vibrational energy level diagram of H2S.

1 5

Page 21: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

2000

1500

C M-

IOOC

50C

(

Ne@= I)

-

010 (a, 1 - -

N20

F i g . 8. V i b r a t i o n a l energy level d i a g r a m of NzO.

16

Page 22: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

250C

200c

Is00

CM-'

1000

500

0

\

Fig. 9. Vibrational energy level diagram of A S H 3 .

17

Page 23: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

C M-

2000

I50C

loo(

I

3 N,(V = I)

I

I

1 .(n" &- I

Fig . 10. V i b r a t i o n a l e n e r g y level d i a g r a m of C30z.

18

* I I 1 1 I I 1 1 I 1 1 I I I 1 I I 1

Page 24: THE I’ ANTENNA I LABORATORY i (ACCESSION NUMBER1 · 1 1 I 1 I I I I 1 I I 1 I I 1 I 1 226 00001 g 50 6 000 10 TT 732 000 11 + % 848 0 1000 1026 00002 2 149 00100 + @U U+ g 2322

IV. SUMMARY

A few of the simple gases having resonant energy level with the v = 1 vibrational level of Nz have been investigated. The vibra- tional level of N2( v = 1) is about 2330 cm-l above the ground level and is a metastable state. Because of its long l ifetime it is a suit- able g a s for t ransferr ing its energy to other gases being in resonance with it.

19