the immune system as a complex adaptive system: a repast simulation of the anti- viral immune...

13
The Immune System as a Complex Adaptive System: A RePast Simulation of the Anti-Viral Immune Response Virginia A. Folcik, Ph.D. [email protected] Charles G. Orosz, Ph.D. [email protected] partment of Surgery/Transplant, The Ohio State Univ College of Medicine and Public Health

Post on 19-Dec-2015

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: The Immune System as a Complex Adaptive System: A RePast Simulation of the Anti- Viral Immune Response Virginia A. Folcik, Ph.D. vnivar@hotmail.com Charles

The Immune System as a Complex Adaptive System: A RePast Simulation of the Anti-

Viral Immune Response

Virginia A. Folcik, [email protected]

Charles G. Orosz, [email protected]

The Department of Surgery/Transplant, The Ohio State University College of Medicine and Public Health

Page 2: The Immune System as a Complex Adaptive System: A RePast Simulation of the Anti- Viral Immune Response Virginia A. Folcik, Ph.D. vnivar@hotmail.com Charles

The Immune System as a Complex Adaptive System: A RePast Simulation of the Anti-Viral Immune Response. Virginia A. Folcik and Charles G. Orosz, Department of Surgery/Transplant, The Ohio State University College of Medicine and Public Health 

The immune system is a prime example of a complex adaptive system, with individual cells that follow rules for behavior based upon detection of signals and contacts with other cells in the environment. We have created a simulation of a human anti-viral immune response using the RePast software framework. The agent-based simulation includes three windows that represent a generic tissue site with parenchyma that becomes infected with virus, a lymph node site with cells that can become activated to fight the viral infection, and the peripheral blood that carries the responding immune cells and antibodies back to the site of infection. The simulation uses seven agent types and twenty signals to represent Parenchymal Cells, B-Cells, T-Cells, Macrophages, Dendritic Cells, Natural Killer Cells and the virus, and pro- and anti-inflammatory cytokines, chemokines and antibodies that such cells use to communicate with each other. The numbers of agents present as well as the quantity and types of signals present depend upon rules for proliferation and the release of cytokines that the agent types follow. Individual agents have various states, migrate from one window to another and live or die as the rules for their behavior dictate.

A typical run of the simulation involves the entry of initial conditions (ratios of immune cell types), then the execution of the simulation during which the numbers of agents and quantities of signals are recorded. Given sufficient time, the outcome of a run may be either that the virus infects all of the parenchymal cells resulting in the death of the tissue (a viral "win") or the elimination of the virus and all virally infected cells with regeneration of healthy cells and restoration of the tissue to equilibrium conditions (an immune system "win"). Consistent with the theoretical properties of a complex system, our experiments have found initial conditions that always produce the same win/loss results, but the profiles of cell proliferation and signal production that occur are unique for every run of the simulation. Other initial conditions have been found that produce varying win/loss ratios.

We plan to be able to use our simulation to explore formative patterns of agent behavior that develop within a complex adaptive system, to evaluate how information is used for decision making as responses evolve, and to develop methods of generating and evalulating simulator data that can be used to identify the strengths and weaknesses of clinical and experimental tools that are currently in use.

Page 3: The Immune System as a Complex Adaptive System: A RePast Simulation of the Anti- Viral Immune Response Virginia A. Folcik, Ph.D. vnivar@hotmail.com Charles

Leukocytes are more like ants than humans

Even human leukocytes are inhuman

Careless about needs or rights of individuals

Individuals are insignificant and expendable

No recognized individuality

No independent thought or creativity

Colony rules prevail; Human social rules are irrelevant,

Network of autonomous peers, each influencing the others

No leaders, no rule books, no blueprints

Each are thoughtless slaves to environmental cues

Page 4: The Immune System as a Complex Adaptive System: A RePast Simulation of the Anti- Viral Immune Response Virginia A. Folcik, Ph.D. vnivar@hotmail.com Charles

Leukocytes always operate “en masse” as leukocyte swarms.

Colony Rules for Leukocytes

There are unlimited numbers of several different types of leukocytes.

Each individual leukocyte operates as an independent entity.

Each leukocyte has a finite set of genetically defined behavior patterns.

All leukocytes can monitor and integrate many environmental signals, including those made by other leukocytes (pheromone equivalent).

Each leukocyte responds predictably to defined patterns of environmental signals.

Immune responses are leukocyte swarm functions.

Leukocyte swarm functions are unpredictable (due to changing local conditions).

Page 5: The Immune System as a Complex Adaptive System: A RePast Simulation of the Anti- Viral Immune Response Virginia A. Folcik, Ph.D. vnivar@hotmail.com Charles

Agents

• Parenchymal CellsParenchymal Cells impart tissue function

• Dendritic Cells tissue surveillance, antigen presentation

• Macrophages scavenging, antigen presentation

• T Cells lymphocytes, cell mediated immunity

• Natural Killer Cells kill stressed cells

• B Cells lymphocytes, humoral immunity (Antibodies)

• Portals blood vessels, lymphatic ducts

Page 6: The Immune System as a Complex Adaptive System: A RePast Simulation of the Anti- Viral Immune Response Virginia A. Folcik, Ph.D. vnivar@hotmail.com Charles

Agents and the Signals That They Produce

Parenchymal CellsParenchymal Cells PK1 (Heat Shock Protein, a stress signal), Virus

Dendritic Cells

Macrophages

T Cells

Natural Killer Cells CK1 (IFN-), Apoptotic Bodies

B Cells

DC1 (Pro-inflammatory)DC2 (Anti-inflammatory)

MO1 (Pro-inflammatory) MK1 (IL-12)MO2 (Anti-inflammatory) MK2 (IL-10)

T1 (Pro-inflammatory) CK1 (IFN-)T2 (Anti-inflammatory) CK2 (TGF-)

Ab1 (cytotoxic)Ab2 (targeting)

Necrosis factors, complement

Page 7: The Immune System as a Complex Adaptive System: A RePast Simulation of the Anti- Viral Immune Response Virginia A. Folcik, Ph.D. vnivar@hotmail.com Charles

Design: Three zones of activity

Zone 1: Tissue Equivalent

Zone 2: LN Equivalent

Blood EquivalentZone 3: Blood Equivalent Zone 1: Tissue Equivalent

Page 8: The Immune System as a Complex Adaptive System: A RePast Simulation of the Anti- Viral Immune Response Virginia A. Folcik, Ph.D. vnivar@hotmail.com Charles

Initial Studies: Characterization

How do major changes in conditions affect the outcome?

Given the same initial conditions, how reproducibleis the outcome?

Does the immune simulator behave as a complex system?

Page 9: The Immune System as a Complex Adaptive System: A RePast Simulation of the Anti- Viral Immune Response Virginia A. Folcik, Ph.D. vnivar@hotmail.com Charles

Immune Win

What happens when particular agents or signals are excluded?

Time to EliminateInfected Cells

Control 100% 117.9 +/- 17.4

No Dendritic Cells 0% NA

No Antibodies 0% NA

No Macrophages 0% NA

No T Cells 0% NA

No NK Cells 100% 171.8 +/- 21.6 (p < .0005)

No T1 Cells 30% 159 +/- 16.1 (p < .001)

No T2 Cells 100% 121.8 +/- 15.4 (NS)

Page 10: The Immune System as a Complex Adaptive System: A RePast Simulation of the Anti- Viral Immune Response Virginia A. Folcik, Ph.D. vnivar@hotmail.com Charles

0

20

40

60

80

100

0 1 5 10 15 20 50

number of DC

% im

mu

ne

win

0

50

100

150

200

250

300

350

400

tim

e to

elim

inat

e in

fect

ed c

ells

What happens when the initial number ofDendritic Cells is varied?

Page 11: The Immune System as a Complex Adaptive System: A RePast Simulation of the Anti- Viral Immune Response Virginia A. Folcik, Ph.D. vnivar@hotmail.com Charles

Highly Variable Behavior of T Cell Populations

Multiple runs with the same parameter settings do not necessarily yield the same outcome

Even with locked parameter settings, the pattern of agent activity always differs for each run

WinT0

T1

T2

T0

T1 T2

Lose

T1T0

T2LoseWin

T0

T1

T2

Four consecutive runs with the same parameter settings

Page 12: The Immune System as a Complex Adaptive System: A RePast Simulation of the Anti- Viral Immune Response Virginia A. Folcik, Ph.D. vnivar@hotmail.com Charles

Does the addition of memory cells enhance the simulated immune response?

No Memory Memory (10 cells) Memory (50 cells)

Time to Eliminate 117.9 +/- 17.4 107.6 +/-13.1 100.6 +/- 6.5Infected Cells (p < .025) (p < .0005)

Time to Appearance 32.2 +/- 9.9 23.9 +/- 8.7 18.7 +/- 6.9of Antibody in Tissue (p < .01) (p < .0005)

Time to Appearance 23.8 +/- 5.2 19.6 +/- 0.7 21.5 +/- 3.6of T1 Cells in Tissue (p < .0005) (p < .05)

Page 13: The Immune System as a Complex Adaptive System: A RePast Simulation of the Anti- Viral Immune Response Virginia A. Folcik, Ph.D. vnivar@hotmail.com Charles

Observations:Initial conditions exist that always produce the same (win/loss) results.

Every run of the simulator has a unique profile of cell proliferation and signal production.

Initial conditions exist that produce varying win/loss ratios.

Conclusion:

The immune simulator remains cohesive when faced withchange, ie. it contiues to function.

The enhancement of the simulated immune response by“memory cells“ demonstrates the capability to learn.

The activity of the immune simulator adapts to majorchanges in agent profiles.

The immune simulator behaves as a complex, adaptive system.