the importance of rock fracture mechanics in cap … importance of rock fracture mechanics in cap...

18
The Importance of Rock Fracture Mechanics in Cap Rock Stability Research for CO2 Storage Field Liu Daan, Cui Zhendong, Tian Tian Key Laboratory of Engingeering Geomechanics Institute of Geology and Geophysics Chinese Academy of Sciences Jan 19th,2010

Upload: lekhuong

Post on 04-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

The Importance of Rock Fracture Mechanics in Cap Rock Stability Research for CO2 Storage Field

Liu Da‐an, Cui Zhen‐dong, Tian Tian

Key Laboratory of Engingeering Geomechanics

Institute of Geology and Geophysics

Chinese Academy of Sciences

Jan 19th,2010

+ Key Geomechanical Issues in Cap Rock Stability Research for CO2 storage;

+ Three Aspects of Fracture mechanics for the cap rock stability Research;

+ A Crucial Problem  of Rock Fracture Mechanics;

+ What have we prepared for solving this problem?

+ Prospecting and Conclusions

OUTLINEOUTLINE

Key Key GeomechanicalGeomechanical Issues in Cap Rock Stability Issues in Cap Rock Stability Research for COResearch for CO2 2 storagestorage

Maximum sustainable pore fluid pressure in the reservoirs for the cap rock;

Maximum sustainable pore fluid pressure in the reservoirs for the fault and reservoir seals; 

Stability of fault system and possibility of fault activation 

Human engineering activities influence on the stability or the seal of cap rock. 

Weakening of the  physical and mechanical properties of seal rocks in the coupled fluid‐stress‐temperature field 

Three Aspects of Fracture mechanicsThree Aspects of Fracture mechanicsfor the cap rock stability Researchfor the cap rock stability Research

Fracture mechanics problems of intact rock, fault rocks and rock interfaces

Reservoir lateral Reservoir lateral seal failure seal failure

Cap rock seal failure Cap rock seal failure Abandoned wellAbandoned wellseal failure seal failure

Interface crack

Simple crack

Fracture of intact rock and rock interface

Rock Fracture Problems related to the WellsRock Fracture Problems related to the Wells

(Gasda et al. 2004)

Possible leakage pathways through an abandoned well:

a) Between casing and cement; b) Between cement plug and casing;c) Through the cement pore space;d) Through casing; e) Through fractures in cement;f) Between cement and rock

Fracture of concrete and rock;Interface fracture of concrete;Interface fracture of concrete

and rock.

axial force axial force

axial force

Confining stressConfining

stressfault

CO2

Key Problem of Rock Failure Key Problem of Rock Failure After COAfter CO22 injectioninjection

Crucial Rock Fracture Problem Crucial Rock Fracture Problem Rock fracture toughness Weakening after CO2 injection

σ1

θ

τσn-Pf

σ3

σ1

Fault activation

Fault activation rock fractureσ3

Weakening of physical properties of rock(Streit, J.E., et al., 2003)

Confining pressure

Fault crack

axial force

PorePressure

Experimental Design for Crucial Experimental Design for Crucial Rock Fracture Problem Study Rock Fracture Problem Study

Instron 1346 Testing Machine

Experimental Experimental study on study on

Rock fracture Rock fracture toughness toughness

Weakening!

CO2 Injection Pressure

Weakening!schematic diagram of experimental device

Why Rock Fracture Toughness so important ? 

+ Basic parameter and basic concept of rock fracture mechanics

+ Material property of rock (conditional) 

+ Prerequisite for establishing a fracture criterion (just like strength theory)

+ Prerequisite for more realisitc geomechanicalaccessment based on theoretical and numerical analysing

What have we prepared for What have we prepared for solving this problem ?solving this problem ?

(How to (How to Determine Rock Fracture Toughness Weakening?))

From theories to techniques and experimentsFrom theories to techniques and experiments

Achievements on Rock Fracture Mechanics

Generalised COD Fracture Criterion

COD

δr

r0

True Mixed Mode Fracture CriterionλKIθ+KIIθ<=KIIcθ

KIθ=KIa11+KIIa12

KIIθ=KIa21+KIIa22

Achievements on Energy GradiantFracture Criterion GV

GV = |Grad(E)| = = GC

θ0= arctg ( )

E(ax, ay) = [(1+k2)-(1-k2)cos2β]+E0

22 )()(yx a

EaE

∂∂

+∂∂

xy aE

aE

∂∂

∂∂

µσπκ

32)1( 22a+

Virtual Crack Vector

Model 2a0

2aao

a a∆

y

x0

crack inc line ang le

θ 0

crac

k pr

opag

atio

n an

gle

4 0 ¡ ã

80¡ ã

0 6030

β90

σθ

G V

G H

90

θ80¡ ã

40¡ ã

0 30 60

G H

G V0-

θσ

crack inc line ang le

k =0.27k =0.33

ββ

crack incline angle

σσ

4

3

2

1

9060300

cr

cl

σθ

G H

G V

G H

G V

θσ

0 30 60 90

1

2

3cr

clσ

crack incline angle

criti

cal s

tress

σ

β

k =0.33 k =0.27

Nonsingular Effects on Rock Fracture

Specially designed compression shearing rock fracture experiment

Different in-sito stress sysstem effect on rock crack with different orientation

Achievements on ISRM Achievements on ISRM SugesstedSugesstedMethods for Determining Rock KMethods for Determining Rock K1C1C

Theoretical foundationEnergy Release Rate Under General Boundary Condition

∫ −==Π−A

OeAO dFFdA )(21 δδ

Cracked belt Micro crack

Fracture process zone

σ Tension-softening

Traction free crack

σb

σc

F

F

O

F

δ

A B

A edA e

'

2

EK

BdadAG Ie

I ==

EK

BdadUG I

I

2

==

F δdF

Experimental comparisonTable 1 Physical parameters of each tested rock

RockName

TensileStrength(Mpa)

ElasticModulus

(Gpa)

Poisson’sRatio

Grain Size(mm)

PorosityRatio

IsotropicProperty

Hunan marble 6.4 51.6 0.14-0.2 <0.4 <1% excellentBohus granite 12.3 52.8-57.6 0.15-0.23 0.4-0.6 <1% good

Ogino tuff 4.7 12.4 Not test 0.19 18% excellentKallax gabbra 18.8 98.4 0.27-0.3 <1mm Not test excellent

T a b le 4 S t a t i s t i c a n a l y s i s o n n o n l i n e a r c o r r e c t io n o f f r a c t u r e to u g h n e s sv a lu e s f o r B o h u s g r a n i t e a n d O g in o tu f f

R o c k( S p e c i m e n )

D( m m )

F m a x( k N )

K m a x( M P a √ m )

K I S R M( M P a √ m )

K E D( M P a √ m )

K W( M P a √ m )

K A E D( M P a √ m )

B o h u sG r a n i t e

( S R )5 0 .0 0 .8 6 7

± 0 .0 5 81 .8 2 6± 0 .1 4 1

2 .1 3 8± .0 2 6

2 .1 1 7± 0 .1 7 4

2 .3 9 6± 0 .2 7 4

2 .1 2 6± 0 .2 6 6

B o h u sG r a n i t e

( C B )5 0 .0 1 .6 5 2

± 0 .1 3 31 .6 0 8± 0 .0 7 5

1 .5 9 1± .3 8 6

1 .8 8 1± 0 .0 9 7

2 .4 9 1± 0 .1 3 1

2 .2 3 6± 0 .1 1 6

M e a n S R- M e a n C B

0 .2 1 8 0 .2 6 8 0 .2 3 6 - 0 .0 9 5 - 0 .1 1 0

O g i n oT u f f( S R )

6 8 .5 0 .5 5 7± 0 .0 1 4

0 .7 3 8± 0 .0 1 5

0 .8 5 7± 0 .0 5 1

0 .8 0 2± 0 .0 1 7

0 .8 3 6± 0 .0 4 6

0 .8 6 2± 0 .0 2 7

O g i n oT u f f( C B )

6 8 .5 1 .2 4 1± 0 .0 2 3

0 .7 8 2± 0 .0 1 3

0 .9 0 7± 0 .0 6 7

0 .8 6 3± 0 .0 7 8

0 .8 1 8± 0 .0 6 6

0 .8 5 0± 0 .1 0 3

M e a n S R- M e a n C B

- 0 .0 4 6 - 0 .0 5 1 - 0 .0 6 1 0 .0 1 8 0 .0 1 2

Prospecting and ConclusionProspecting and Conclusion

Geomechanics and  especailly rock  fracture  mechanics  are crucial in the cap rock stability research;

Physical  simulation  or  experimental  methods  for  fracture pressure prediction of cap rock should\can be developed;

3D geological\numerical modelling of  geomechanics response of  caprock during  the  CO2 injection  and  after  the  injection should be carried out based on the experimental researches. 

Ideal  cap  rock  stability  accessment method  could  be established in the near future. 

Thank you Thank you for your attention!for your attention!