the lamb shift, `proton charge radius puzzle' etc. savely karshenboim pulkovo observatory...

65
The Lamb shift, `proton The Lamb shift, `proton charge radius puzzle' etc. charge radius puzzle' etc. Savely Karshenboim Savely Karshenboim Pulkovo Observatory ( Pulkovo Observatory ( ГАО РАН ГАО РАН ) (St. ) (St. Petersburg) Petersburg) & & Max-Planck-Institut f Max-Planck-Institut f ür Quantenoptik ür Quantenoptik (Garching) (Garching)

Upload: ronald-melton

Post on 02-Jan-2016

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

The Lamb shift, `proton The Lamb shift, `proton charge radius puzzle' etc.charge radius puzzle' etc.

Savely KarshenboimSavely Karshenboim

Pulkovo Observatory (Pulkovo Observatory (ГАО РАНГАО РАН) (St. Petersburg)) (St. Petersburg)& & Max-Planck-Institut fMax-Planck-Institut für Quantenoptik (Garching)ür Quantenoptik (Garching)

Page 2: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Outline

Different methods to determine the proton charge radius spectroscopy of hydrogen (and deuterium) the Lamb shift in muonic hydrogen electron-proton scattering

The proton radius: the state of the art electric charge radius magnetic radius

Page 3: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Outline

Different methods to determine the proton charge radius spectroscopy of hydrogen (and deuterium) the Lamb shift in muonic hydrogen electron-proton scattering

The proton radius: the state of the art electric charge radius magnetic radius

Page 4: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Different methods to determine the proton charge radius Spectroscopy of

hydrogen (and deuterium)

The Lamb shift in muonic hydrogen

Spectroscopy produces a model-independent result, but involves a lot of theory and/or a bit of modeling.

Electron-proton scattering

Studies of scattering need theory of radiative corrections, estimation of two-photon effects; the result is to depend on model applied to extrapolate to zero momentum transfer.

Page 5: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Different methods to determine the proton charge radius Spectroscopy of

hydrogen (and deuterium)

The Lamb shift in muonic hydrogen

Spectroscopy produces a model-independent result, but involves a lot of theory and/or a bit of modeling.

Electron-proton scattering

Studies of scattering need theory of radiative corrections, estimation of two-photon effects; the result is to depend on model applied to extrapolate to zero momentum transfer.

Page 6: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Different methods to determine the proton charge radius Spectroscopy of

hydrogen (and deuterium)

The Lamb shift in muonic hydrogen

Spectroscopy produces a model-independent result, but involves a lot of theory and/or a bit of modeling.

Electron-proton scattering

Studies of scattering need theory of radiative corrections, estimation of two-photon effects; the result is to depend on model applied to extrapolate to zero momentum transfer.

Page 7: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Different methods to determine the proton charge radius Spectroscopy of

hydrogen (and deuterium)

The Lamb shift in muonic hydrogen

Spectroscopy produces a model-independent result, but involves a lot of theory and/or a bit of modeling.

Electron-proton scattering

Studies of scattering need theory of radiative corrections, estimation of two-photon effects; the result is to depend on model applied to extrapolate to zero momentum transfer.

Page 8: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Different methods to determine the proton charge radius Spectroscopy of

hydrogen (and deuterium)

The Lamb shift in muonic hydrogen

Spectroscopy produces a model-independent result, but involves a lot of theory and/or a bit of modeling.

Electron-proton scattering

Studies of scattering need theory of radiative corrections, estimation of two-photon effects; the result is to depend on model applied to extrapolate to zero momentum transfer.

Page 9: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Different methods to determine the proton charge radius Spectroscopy of

hydrogen (and deuterium)

The Lamb shift in muonic hydrogen

Spectroscopy produces a model-independent result, but involves a lot of theory and/or a bit of modeling.

Electron-proton scattering

Studies of scattering need theory of radiative corrections, estimation of two-photon effects; the result is to depend on model applied to extrapolate to zero momentum transfer.

Page 10: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Different methods to determine the proton charge radius Spectroscopy of

hydrogen (and deuterium)

The Lamb shift in muonic hydrogen

Spectroscopy produces a model-independent result, but involves a lot of theory and/or a bit of modeling.

Electron-proton scattering

Studies of scattering need theory of radiative corrections, estimation of two-photon effects; the result is to depend on model applied to extrapolate to zero momentum transfer.

Page 11: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Different methods to determine the proton charge radius Spectroscopy of

hydrogen (and deuterium)

The Lamb shift in muonic hydrogen

Spectroscopy produces a model-independent result, but involves a lot of theory and/or a bit of modeling.

Electron-proton scattering

Studies of scattering need theory of radiative corrections, estimation of two-photon effects; the result is to depend on model applied to extrapolate to zero momentum transfer.

Page 12: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

The proton charge radius: spectroscopy vs. empiric fits Spectroscopy of

hydrogen (and deuterium)

The Lamb shift in muonic hydrogen

Spectroscopy produces a model-independent result, but involves a lot of theory and/or a bit of modeling.

Electron-proton scattering

Studies of scattering need theory of radiative corrections, estimation of two-photon effects; the result is to depend on model applied to extrapolate to zero momentum transfer.

Page 13: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Lamb shift measurements in microwave Lamb shift used to be

measured either as a splitting between 2s1/2 and 2p1/2 (1057 MHz)

2s1/2

2p3/2

2p1/2

Lamb shift:1057 MHz(RF)

Page 14: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Lamb shift measurements in microwave Lamb shift used to be

measured either as a splitting between 2s1/2 and 2p1/2 (1057 MHz) or a big contribution into the fine splitting 2p3/2 – 2s1/2 11 THz (fine structure).

2s1/2

2p3/2

2p1/2

Fine structure:11 050 MHz(RF)

Page 15: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Lamb shift measurements in microwave & optics Lamb shift used to be

measured either as a splitting between 2s1/2 and 2p1/2 (1057 MHz) or a big contribution into the fine splitting 2p3/2 – 2s1/2 11 THz (fine structure).

However, the best result for the Lamb shift has been obtained up to now from UV transitions (such as 1s – 2s).

2s1/2

2p3/2

2p1/2

1s1/2

RF

1s – 2s:UV

Page 16: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Two-photon Doppler-free spectroscopy of hydrogen atom

Two-photon spectroscopy

is free of linear Doppler effect.

That makes cooling relatively not too important problem.

All states but 2s are broad because of the E1 decay.

The widths decrease with increase of n.

However, higher levels are badly accessible.

Two-photon transitions double frequency and allow us to go higher.

v, k , - k

Page 17: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Spectroscopy of hydrogen (and deuterium)Two-photon spectroscopy

involves a number of levels strongly affected by QED.

In “old good time” we had to deal only with 2s Lamb shift.

Theory for p states is simple since their wave functions vanish at r=0.

Now we have more data and more unknown variables.

Page 18: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Spectroscopy of hydrogen (and deuterium)Two-photon spectroscopy

involves a number of levels strongly affected by QED.

In “old good time” we had to deal only with 2s Lamb shift.

Theory for p states is simple since their wave functions vanish at r=0.

Now we have more data and more unknown variables.

The idea is based on theoretical study of

(2) = L1s – 23× L2s which we understand

much better since any short distance effect vanishes for (2).

Theory of p and d states is also simple.

That leaves only two variables to determine: the 1s Lamb shift L1s & R∞.

Page 19: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Spectroscopy of hydrogen (and deuterium)Two-photon spectroscopy

involves a number of levels strongly affected by QED.

In “old good time” we had to deal only with 2s Lamb shift.

Theory for p states is simple since their wave functions vanish at r=0.

Now we have more data and more unknown variables.

The idea is based on theoretical study of

(2) = L1s – 23× L2s which we understand

much better since any short distance effect vanishes for (2).

Theory of p and d states is also simple.

That leaves only two variables to determine: the 1s Lamb shift L1s & R∞.

Page 20: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Spectroscopy of hydrogen (and deuterium)

Page 21: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Lamb shift (2s1/2 – 2p1/2) in the hydrogen atom

There are data on a number of transitions, but most of their measurements are correlated.

Uncertainties: Experiment: 2 ppm QED: < 1 ppm Proton size: 2 ppm

Page 22: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

H & D spectroscopy

Complicated theory Some contributions

are not cross checked

More accurate than experiment

No higher-order nuclear structure effects

Page 23: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

H & D spectroscopy

Complicated theory Some contributions

are not cross checked

More accurate than experiment

No higher-order nuclear structure effects

Page 24: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

H & D spectroscopy

Complicated theory Some contributions

are not cross checked

More accurate than experiment

No higher-order nuclear structure effects

Page 25: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Proton radius from hydrogen

Page 26: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Optical determination of the Rydberg constant and proton radius

Ry ELamb(H,1s)

H, 1s-2s H, 2s-8s

QEDRp

RyELamb(D,1s)

D, 1s-2s D, 2s-8s

QEDRp

ELamb(H,1s) H, 1s-2s

Page 27: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Optical determination of the Rydberg constant and proton radius

Ry ELamb(H,1s)

H, 1s-2s H, 2s-8s

QEDRp

RyELamb(D,1s)

D, 1s-2s D, 2s-8s

QEDRp

ELamb(H,1s) H, 1s-2s

Page 28: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Optical determination of the Rydberg constant and proton radius

Ry ELamb(H,1s)

H, 1s-2s H, 2s-8s

QEDRp

RyELamb(D,1s)

D, 1s-2s D, 2s-8s

QEDRp

ELamb(H,1s) H, 1s-2s

Page 29: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Proton radius from hydrogen

24 transitions22 partial values of Rp & R∞

1s-2s in H and D (MPQ) +22 transitions- 5 optical experiments - 3 labs- 3 rf experiments

Page 30: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Proton radius from hydrogen

1s-2s in H and D (MPQ)+10 [most accurate] transitions- 2 optical experiments - 1 lab

Page 31: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Proton radius from hydrogen

1s-2s in H and D (MPQ)+10 [most accurate] transitions- 2 optical experiments - 1 lab

Page 32: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

The Lamb shift in muonic hydrogen Used to believe: since

a muon is heavier than an electron, muonic atoms are more sensitive to the nuclear structure.

Not quite true. What is What is importantimportant: scaling of various contributions with m.

Scaling of contributions nuclear finite size nuclear finite size

effects: effects: ~ m3; standard Lamb-shift

QED and its uncertainties: ~ m;

width of the 2p state: ~ m;

nuclear finite size effects for HFS: ~ m3

Page 33: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

The Lamb shift in muonic hydrogen: experiment

Page 34: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

The Lamb shift in muonic hydrogen: experiment

Page 35: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

The Lamb shift in muonic hydrogen: experiment

Page 36: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Theoretical summary

Page 37: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

The Lamb shift in muonic hydrogen: theory

Discrepancy ~ 0.300 meV.

Only few contributions are important at this level.

They are reliableThey are reliable..

Page 38: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Theory of H and H:

Rigorous Ab initio Complicated Very accurate Partly not cross

checked Needs no higher-

order proton structure

Rigorous Ab initio Transparent Very accurate Cross checked Needs higher-order

proton structure (much below the discrepancy)

Page 39: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Theory of H and H:

Rigorous Ab initio Complicated Very accurate Partly not cross

checked Needs no higher-

order proton structure

Rigorous Ab initio Transparent Very accurate Cross checked Needs higher-order

proton structure (much below the discrepancy)

The th uncertainty is much below the level of the discrepancy

Page 40: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Spectroscopy of H and H:

Many transitions in different labs.

One lab dominates. Correlated. Metrology involved. The discrepancy is

much below the line width.

Sensitive to various systematic effects.

One experiment A correlated

measurement on D No real metrology Discrepancy is of few

line widths. Not sensitive to

many perturbations.

Page 41: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

H vs H:

H: muchmuch more sensitive to the Rp term: less accuracy in theory and experiment is

required;easier for estimation of systematic effects

etc. H experiment: easy to see a signal, hard

to interpret. H experiment: hard to see a signal, easy

to interpret.

Page 42: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Elastic electron-proton scattering

Page 43: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Elastic electron-proton scattering

Page 44: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Electron-proton scattering:new Mainz experiment

Page 45: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Electron-proton scattering: evaluations of `the World data’

Mainz:

JLab (similar results also from Ingo Sick)

Charge radius:

JLab

Page 46: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Electron-proton scattering: evaluations of `the World data’

Mainz:

JLab (similar results also from Ingo Sick)

Charge radius:

JLab

The consistency of the results on the proton charge radius is good, but not sufficient.

The agreement is required betweenthe form factors, which is an open question for the moment.

Page 47: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Electron-proton scattering: evaluations of `the World data’

Mainz:

JLab (similar results also from Ingo Sick)

Charge radius:

Magnetic radius does not agreeMagnetic radius does not agree!!

JLab

Page 48: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Certainty of the derivatives

f/t – we can find it in a model independent way if we have accurate data and an estimation of the higher-order Taylor terms.

Data are roughly with 1%.

Rp is wanted

within 1%. We need fits! We can use fits

only if we know the exact shape.

Page 49: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Certainty of the derivatives

f/t – we can find it in a model independent way if we have accurate data and estimation of the higher-order Taylor terms.

Data are roughly with 1%.

Rp is wanted

within 1%. We need fits! We can use fits

only if we know the exact shape.

Narrowing the area increases the uncertainty:e.g.:Hill and Paz, 2010Kraus et al., 2014

Page 50: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Certainty of the derivatives

f/t – we can find it in a model independent way if we have accurate data and estimation of the higher-order Taylor terms.

Data are roughly with 1%.

Rp is wanted

within 1%. We need fits! We can use fits

only if we know the exact shape.

Fifty years:•data improved (quality, quantity);•accuracy of radius stays the same;•systematic effects: increasing the complicity of the fit.

Page 51: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Certainty of the derivatives

f/t – we can find it in a model independent way if we have accurate data and estimation of the higher-order Taylor terms.

Data are roughly with 1%.

Rp is wanted

within 1%. We need fits! We can use fits

only if we know the exact shape.

Fifty years:•data improved (quality, quantity);•accuracy of radius stays the same;•systematic effects: increasing the complicity of the fit.

1. The earlier fits are inconsistent 1. The earlier fits are inconsistent with the later data.with the later data.2. The later fits have more parameters 2. The later fits have more parameters and are more uncertain, while applyingand are more uncertain, while applying to the earlier data.to the earlier data.

Page 52: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Analytic properties: is that important? The form factors

are measured in a certaincertain space-like region.

The empiricempiric fits present the form factors for all the momenta.

The form factors fits in the time-liketime-like region are wrong.

Their analyticanalytic properties are inappropriate.

Their behavior at largerlarger momenta is unreasonable.

Page 53: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Analytic properties: is that important? The form factors

are measured in a finite space-like region.

The fits present the form factors for all the momenta.

The form factors fits in time-like region are wrong.

Their analytic properties are inappropriate.

Their behavior at larger momenta is unreasonable.

`Dispersion fits’ always produce smaller values of the radius, but they usually have bad 2.

Mergell et al., 1995; Belushkin et all, 2007, Lorenz et al., 2012; Adamuscin et al., 2012

Is it possible to produce a fit with a good Is it possible to produce a fit with a good value of value of 22 and consistent with our knowledge and consistent with our knowledge about the imaginary part ?about the imaginary part ?

Page 54: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Asymptotic behavior: is that important? The form factors

are measured in a finite space-like region.

The fits present the form factors for all the momenta.

The form factors fits in time-like region are wrong.

Their analytic properties are inappropriate.

Their behavior at high momenta is unreasonable.

Page 55: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Asymptotic behavior: is that important? The form factors

are measured in a finite space-like region.

The fits presents the form factors for all the momenta.

The form factors in time-like region are wrong.

Their analytic properties are inappropriate.

Their behavior at high momenta is unreasonable.

Page 56: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Convergenceradius |q2|=(2m) 2

e-p data

q2

branch cut(2 continuum)

0.1 GeV20

Key areafor G’(0)

Analytic properties and the data

Page 57: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Different methods to determine the proton charge radius

spectroscopy of hydrogen (and deuterium)

the Lamb shift in muonic hydrogen

electron-proton scattering

Comparison:

JLab

Page 58: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Present status of proton radius: three convincing results

charge radiuscharge radius and the Rydberg constant: a strong discrepancy.

If I would bet: systematic effects in

hydrogen and deuterium spectroscopy

error or underestimation of uncalculated terms in 1s Lamb shift theory

Uncertainty and model-independence of scattering results.

magnetic radiusmagnetic radius:a strong discrepancy

between different evaluation of the data and maybe between the data

Page 59: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Present status of proton radius: three convincing results

charge radiuscharge radius and the Rydberg constant: a strong discrepancy.

If I would bet: systematic effects in

hydrogen and deuterium spectroscopy

error or underestimation of uncalculated terms in 1s Lamb shift theory

Uncertainty and model-independence of scattering results.

magnetic radiusmagnetic radius:a strong discrepancy

between different evaluation of the data and maybe between the data

Page 60: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Proton radius determination as a probe of the Coulomb law

hydrogen

e-p

q ~ 1 – 4 keV

muonic hydrogen

-p

q ~ 0.35 MeV

scattering

e-p

q from few MeV to 1 GeV

Page 61: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

What is next (the short-term scale)? new evaluations of scattering data (world’s new evaluations of scattering data (world’s

and MAMI’s)and MAMI’s) new spectroscopic experiments on new spectroscopic experiments on

hydrogen and deuteriumhydrogen and deuterium evaluation of data on the Lamb shift in evaluation of data on the Lamb shift in

muonic deuterium (from PSI) and new value muonic deuterium (from PSI) and new value of the Rydberg constantof the Rydberg constant

systematic check on muonic hydrogen and deuterium theory

Page 62: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Where we are

Page 63: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

What’s new?

Hydrogen: A preliminary

MPQ result on 2s-4p is consistent with H.

Muonic atoms: D is consistent

with H (PSI) + isotopic H-D 1s-2s (MPQ).

Scattering data: Jlab’s people and

I. Sick state that world data and MAMI’s are not quite consistent.

More studies of different shapes (conformal mapping etc.)

Page 64: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

What’s new?

Hydrogen: A preliminary

MPQresult on 2s-4p is consistent with H.

Muonic atoms: D is consistent

with H (PSI) + isotopic H-D 1s-2s (MPQ_.

Scattering data: Jlab’s people and

I. Sick state that world data and MAMI’s are not quite consistent.

More studies of different shapes (conformal mapping etc.)

Page 65: The Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik

Conferences

Precision physics Precision physics and fundamental and fundamental constants (FFK)constants (FFK)

Oct., 12-16, 2015

Budapest

Precision physics of Precision physics of simple atoms simple atoms (PSAS)(PSAS)

May, 22-26, 2016

Jerusalem