the loess chronology of the island of susak, croatia · 2018-10-09 · surduk erdut Šarengrad...

17
153 E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License E & G Quaternary Science Journal Volume 60 / Number 1 / 2011 / 153-169 / DOI 10.3285/eg.60.1.11 www.quaternary-science.net GEOZON SCIENCE MEDIA ISSN 0424-7116 The Loess Chronology of the Island of Susak, Croatia Lara Wacha, Snježana Mikulčić Pavlaković, Manfred Frechen, Marta Crnjaković Abstract: A high-resolution infrared stimulated luminescence (IRSL) and radiocarbon dating study was performed on the loess-paleosol sequence from the island of Susak, situated in the North Adriatic Sea in Croatia. e dating results show that a detailed Late Pleistocene record is preserved on Susak, correlating to the marine Oxygen Isotope Stages (OIS) 5 to 2, with a very thi Middle Pleniglacial record predominating. Due to its extraordinary thiness (whi is recorded to be up to 90 metres), the loess on Susak is unique in this area. e numerous paleosols intercalated in the loess give evidence for climate variations whi were warmer than in other loess regions (e.g. the Carpathian Basin). e great thiness of the OIS3 deposits correlates to the general increased dust accumulation in Europe during that time. Based on numerical ages a correlation of the loess on Susak with the loess in North Italy and the Carpathian basin, a more detailed time-based reconstruction of climate and environment anges in the study area was aieved. (Löss-Chronologie der Insel Susak in Kroatien) Kurzfassung: Zahlreie infrarot optis stimulierte Lumineszenz (IRSL)- und Radiokohlenstoff (14C)-Datierungen wurden an mätigen Löss-/Paläobodenabfolgen der Insel Susak in der nördlien Adria von Kroatien durgeführt. Die Datierungsergebnisse zeigen, dass eine sehr detaillierte spätpleistozäne Sedimentabfolge auf Susak erhalten geblieben ist, die mit den marinen Sauerstoff- isotopenstadien (OIS) 5 bis 2 korreliert. Hervorzuheben ist ein besonders mätiges und gut gegliedertes Mielpleniglazial. Aufgrund der großen Mätigkeit von bis zu 90 m bildet der Löss auf Susak ein einzigartiges außerordentli ho aufgelöstes Klimaariv in dieser Region. Die zahlreien im Löss zwisen gesalteten Paläoböden weisen auf Klimavariationen, die auf Susak wärmer gewesen sind als beispielsweise im benabarten Karpatenbeen. Die große Mätigkeit der Abfolge korreliert mit den während des OIS 3 allgemein höheren Staubakkumulationen in Europa. Basierend auf den nummerisen Altern kann die Löss-/Paläobodenabfolge aus Susak mit denen aus Norditalien und dem Karpatenbeen verglien werden und ermögli- en eine detailliertere zeit-basierte Rekonstruktion der Klima- und Umweltveränderungen im Arbeitsgebiet. Keywords: Susak, Croatia, loess-paleosol sequence, georonology, IRSL dating, radiocarbon dating Addresses of authors: L. Waa, dipl. ing. geol., Leibniz Institute for Applied Geophysics, S3 Georonology and Isotope Hydrology, Stilleweg 2, D-30655 Hannover, Germany; Croatian Geological Survey, Department of Geology, Sasova 2, HR-10000 Zagreb, Croatia. E-Mail: [email protected], [email protected]; Mr. Sci. S. Mikulčić Pavlaković & Dr. M. Crnjaković, Croatian Natural History Museum, Department of Mineralogy and Petrography, Demetrova 1, HR-10000 Zagreb, Croatia. E-Mail: Sn- [email protected], [email protected]; Prof. Dr. M. Freen, Leibniz Institute for Applied Geophysics, S3 Geo- ronology and Isotope Hydrology, Stilleweg 2, D-30655 Hannover, Germany. E-Mail: [email protected] 1 Introduction Evidence of Pleistocene climatic anges can be found in more or less continuous terrestrial sediment records like loess-paleosol sequences. Great efforts are made into the high resolution sampling and investigation of loess records using different disciplines and methods with the purpose of identifying climate oscillations and environmental anges (Buylaert et al., 2008; Stevens et al., 2008; Bokhorst& Vandenberghe, 2009). e correlation with oxygen isotope stages (OIS) and the GRIP data (GRIP Members, 1993) isa common practice. However, a robust and detailed rono- logy is mandatory to make a reliable correlation possible. Loess and loess-like deposits in the North Adriatic region are found along the fringes of mountain ains like the Alps and the Apennines in Italy and along the coast and islands of Croatia. During the last Glacial period, the sea le-vel of the Mediterranean was about 100 metres lower than today (Van Straaten, 1970; Cremaschi, 1987; Amorosi, et al., 1999). erefore, the North Adriatic was an extended and closed basin exposed to a strong input of fluvial Alpine ma- terial carried by the river Po and other tributaries. e thi- ness of the loess and loess-like deposits in the North Adriatic area is relatively small, only up to a few meters (Ferraro, 2009), but the deposits are widely distributed. In Italy, loess and loess derivatives can be found on fluvial terraces (Cre- maschi et al., 1990), on moraines and fluvio-glacial deposits e.g. Val Sorda (Ferraro, 2009; Ferraro et al., 2004), or on the carbonate platform (Coudé-Gaussen, 1990) where they cover the carbonate basement and fill caves and shelters (Cremaschi, 1987; Peresani et al., 2008). Along the Croatian coast and on the islands loess and loess derivatives are com- mon. In Istria loess can be found in the south, in Premantura and Mrlera, and in the north-west, in Savudrija (Durn, Ot- tner & Slovenec, 1999; Durn, et al., 2007) as well as on the islands of Unije, Velike and Male Srakane, Krk and Lošinj in the Kvarner region and on the islands Hvar and Mljet in South Dalmatia, with reported thiness ranging from a few meters up to about 20 m (Bognar, 1979). In Savudrija loess is up to 4 m thi and covers terra rossa (Durn, Ot- tner & Slovenec, 1999; Durn et al., 2003, 2007). e influ- ence of loess was recognised by Durn, Ottner & Slovenec

Upload: others

Post on 25-Jan-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

153E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

E&G Quaternary Science Journal Volume 60 / Number 1 / 2011 / 153-169 / DOI 10.3285/eg.60.1.11

www.quaternary-science.net

GEOZON SCIENCE MEDIA

ISSN 0424-7116

The Loess Chronology of the Island of Susak, Croatia

Lara Wacha, Snježana Mikulčić Pavlaković, Manfred Frechen, Marta Crnjaković

Abstract: Ahigh-resolution infraredstimulated luminescence (IRSL)andradiocarbondatingstudywasperformedon the loess-paleosolsequencefromthe islandofSusak,situated in theNorthAdriaticSea inCroatia.ThedatingresultsshowthatadetailedLatePleistocenerecordispreservedonSusak,correlatingtothemarineOxygenIsotopeStages(OIS)5to2,withaverythickMiddlePleniglacial record predominating. Due to its extraordinary thickness (which is recorded to be up to 90 metres), the loess onSusakisuniqueinthisarea.Thenumerouspaleosols intercalatedintheloessgiveevidenceforclimatevariationswhichwerewarmerthaninotherloessregions(e.g.theCarpathianBasin).ThegreatthicknessoftheOIS3depositscorrelatestothegeneralincreaseddustaccumulationinEuropeduringthattime.BasedonnumericalagesacorrelationoftheloessonSusakwiththeloess inNorth ItalyandtheCarpathianbasin,amoredetailed time-basedreconstructionofclimateandenvironmentchangesinthestudyareawasachieved.

(Löss-Chronologie der Insel Susak in Kroatien)

Kurzfassung: Zahlreiche infrarot optisch stimulierte Lumineszenz (IRSL)- und Radiokohlenstoff (14C)-Datierungen wurden an mächtigenLöss-/PaläobodenabfolgenderInselSusakindernördlichenAdriavonKroatiendurchgeführt.DieDatierungsergebnissezeigen,dass eine sehr detaillierte spätpleistozäne Sedimentabfolge auf Susak erhalten geblieben ist, die mit den marinen Sauerstoff-isotopenstadien (OIS) 5 bis 2 korreliert. Hervorzuheben ist ein besonders mächtiges und gut gegliedertes Mittelpleniglazial.AufgrunddergroßenMächtigkeitvonbiszu90mbildetderLössaufSusakeineinzigartigesaußerordentlichhochaufgelöstesKlimaarchivindieserRegion.DiezahlreichenimLösszwischengeschaltetenPaläobödenweisenaufKlimavariationen,dieaufSusakwärmergewesensindalsbeispielsweise imbenachbartenKarpatenbecken.DiegroßeMächtigkeitderAbfolgekorreliertmitdenwährenddesOIS3allgemeinhöherenStaubakkumulationeninEuropa.BasierendaufdennummerischenAlternkanndie Löss-/Paläobodenabfolge aus Susak mit denen aus Norditalien und dem Karpatenbecken verglichen werden und ermögli-cheneinedetaillierterezeit-basierteRekonstruktionderKlima-undUmweltveränderungenimArbeitsgebiet.

Keywords: Susak, Croatia, loess-paleosol sequence, geochronology, IRSL dating, radiocarbon dating

Addresses of authors:L. Wacha, dipl. ing. geol., Leibniz Institute for Applied Geophysics, S3 Geochronology and Isotope Hydrology, Stilleweg 2,D-30655 Hannover, Germany; Croatian Geological Survey, Department of Geology, Sachsova 2, HR-10000 Zagreb, Croatia.E-Mail: [email protected], [email protected]; Mr. Sci. S. Mikulčić Pavlaković & Dr. M. Crnjaković, CroatianNatural History Museum, Department of Mineralogy and Petrography, Demetrova 1, HR-10000 Zagreb, Croatia. E-Mail: [email protected],[email protected];Prof. Dr. M. Frechen,Leibniz InstituteforAppliedGeophysics,S3Geo-chronologyandIsotopeHydrology,Stilleweg2,D-30655Hannover,Germany.E-Mail:[email protected]

1 Introduction

Evidence of Pleistocene climatic changes can be found inmore or less continuous terrestrial sediment records likeloess-paleosol sequences. Great efforts are made into thehighresolutionsamplingandinvestigationofloessrecordsusingdifferentdisciplinesandmethodswiththepurposeofidentifyingclimateoscillationsandenvironmentalchanges(Buylaert et al., 2008; Stevens et al., 2008; Bokhorst &Vandenberghe,2009).Thecorrelationwithoxygenisotopestages(OIS)andtheGRIPdata(GRIPMembers,1993)isacommon practice. However, a robust and detailed chrono-logyismandatorytomakeareliablecorrelationpossible.

Loessandloess-likedepositsintheNorthAdriaticregionarefoundalongthefringesofmountainchainsliketheAlpsandtheApenninesinItalyandalongthecoastandislandsofCroatia.DuringthelastGlacialperiod,theseale-veloftheMediterraneanwasabout100metreslowerthantoday(Van Straaten, 1970; Cremaschi, 1987; Amorosi, et al.,1999). Therefore, the North Adriatic was an extended andclosedbasinexposedtoastronginputoffluvialAlpinema-

terialcarriedbytheriverPoandothertributaries.Thethick-nessoftheloessandloess-likedepositsintheNorthAdriaticareaisrelativelysmall,onlyuptoafewmeters(Ferraro,2009),butthedepositsarewidelydistributed.InItaly,loessandloessderivativescanbefoundonfluvialterraces(Cre-maschietal.,1990),onmorainesandfluvio-glacialdepositse.g.ValSorda (Ferraro,2009;Ferraroetal., 2004),oronthecarbonateplatform(Coudé-Gaussen,1990)wheretheycover the carbonate basement and fill caves and shelters(Cremaschi,1987;Peresanietal.,2008).AlongtheCroatiancoastandontheislandsloessandloessderivativesarecom-mon.InIstrialoesscanbefoundinthesouth,inPremanturaandMrlera,andinthenorth-west,inSavudrija(Durn,Ot-tner&Slovenec,1999;Durn,etal.,2007)aswellasontheislands ofUnije,Velike andMale Srakane, Krk and Lošinjin the Kvarner region and on the islands Hvar and MljetinSouthDalmatia,withreportedthicknessrangingfromafewmetersuptoabout20m(Bognar,1979).InSavudrijaloess isupto4mthickandcoversterrarossa(Durn,Ot-tner&Slovenec,1999;Durnetal.,2003,2007).Theinflu-enceofloesswasrecognisedbyDurn,Ottner&Slovenec

Page 2: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

154 E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

(1999) and Durn et al. (2007) in the upper parts of terrarossaprofilesinIstria.Themostextraordinaryloess-pale-osol recordof thisarea is theone foundon the islandofSusakinCroatia(Fig.1).Thegenesisandthecompositionofthedepositsontheislandhavebeenamatterofinterestanddiscussionforalongtime,sincethetwopastcenturies(Fortis,1771;Marchesetti,1882;Kišpatić,1910;Šandor,1914;Mutić,1967;Wein,1977;Bognar,1979;Bognaretal.,1983;Cremaschi,1987;1990;Bognar&Zámbó,1992;Bognar, Schweitzer & Kis, 2002; Bognar, Schweitzer& Szöőr, 2003; Lužar-Oberiter et al., 2008; MikulčićPavlakovićetal.,2011;Wachaetal.,2011).Basedonthemineralogical investigations of the deposits from Susak,mostof theresearchersconcludedthat theprovenanceofthematerialistheriverPoplain,situatedinthenorthernpartof Italy.Cremaschi (1990)stated that thedepositionof loessonSusak isrelatedtothe100metresdropof thesea level in theMediterraneanduring the lastglacialpe-riod.Recently,theloess-paleosolrecordonSusakhasbeensuccessfullydatedusinginfraredstimulatedluminescence(Wachaetal.,2011).Thesefirstresultsshowedthatmostof the loess-paleosol record correlates toOxygen IsotopeStage (OIS) 3, but the deposition age of the stratigraphi-callyolderandyoungerpartof the sequencehasnotyetbeendetermined.

InCroatia, loessand loess-likedepositsarewellknownfrom the north of the country, on the Bilogora Mountain,aroundĐakovo,and theeasternpartof thecountryalongtheriverDanube,inBaranja,SrijemandontheFruškagora

(gora=mountain).Loessdepositsinthisregionwereinves-tigatedbyŠandor(1912),Gorjanović-Kramberger(1912,1915,1922),Bronger(1976,2003),Bognar(1979),Galović&Mutić (1984), Poje (1985, 1986),Mutić (1990) andoth-ers.ThefirstageestimatesofthesedepositswerepresentedbySinghvietal.(1989),usingthethermoluminescence(TL)datingmethod,andbyGalovićetal.(2009)usingtheinfra-redstimulatedluminescence(IRSL).

Susak

Val Sorda

Paks

SüttoBasaharc

Zmajevac

VukovarStari

Slankamen

Surduk

Erdut

Šarengrad

Italy

River PoSava

DravaDanube

Danube

Croatia

ZAGREBSlovenia

Austria Hungary

SerbiaBosnia and

Hercegovina

Adriatic Sea

50

100

Fig. 1: Geographical setting of the Island of Susak in Croatia and its relation to the river Po in North Italy and to the Danube loess region with indicated locations of loess-paleosol sections used for correlation. Elevation map for the area is prepared using the DEM image obtained from ASTER GDEM (prod-uct of METI and NASA).

Abb. 1: Geographische Lage der Insel Susak in Kroatien sowie die Lage der für die Korrelation wichtigen Löss-/Paläoboden-Aufschlüsse in der Po-Region in Norditalien und entlang der Donau. Die Höhenlinien beziehen sich auf ein digitales Höhenmodell basierend auf ASTER GDEM-Daten (METI und NASA).

Fig. 2: Photo of Kalučica bay on the easternmost cape of the island, with the characteristic dissected morphology of the Susak loess sequence.

Abb. 2: Foto der Kalučica Bucht am östlichsten Kap der Insel mit der cha-rakteristischen morphologischen Ausprägung der Lösse auf Susak.

Page 3: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

155E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

In this study the geochronological framework of the loessrecord fromthe islandofSusakpresented inWachaetal.(2011)issignificantlyimprovedbynewinfraredstimulatedluminescence (IRSL) and radiocarbon data. Furthermore,the detailed loess-paleosol sequence is compared with thecontemporaneous loess deposits from the North AdriaticBasin and the Pannonian (Carpathian) Basin and an at-tempt of a chronostratigraphical correlation is given. Theloessprovincesmentionedabovedifferinmanyways.Theloess in theAdriaticregion isoftenneglectedwhenmajorcorrelationsof loess inEuropearemade. In thisstudythedifferences and similarities of these twogeneticallydiffer-entloessprovincesaresummarizedandtheyarecorrelatedbasedontheirchronology.

Theaimofthisstudyistoestablishamoredetailedgeo-chronological framework for the unique loess record ontheIslandofSusakintheNorthAdriaticSeaasabasisforfurther high-resolution proxy studies including grain-sizeandpalaeomagneticapproaches (Wachaetal., inprepara-tion) and to settle the Quaternary sediment succession oftheIslandinawidercontext,thatoftheNorthMediterra-neanandPannonian(Carpathian)area.

14.29°E

14.29°E

14.30°E

14.30°E

14.31°E

14.31°E

44.5

2°N

44.5

1°N

44.5

0°N

SUSAK

Sand Pit

0 250 500 750 1000m

Susak Harbour

Cape Kurilca

Cape Segarina

Cape MargarinaKa

luèi

caba

y

Bok bay

Gra

brov

ica

bay

16

15

30

15

30

40

K2

E1,2

K2

l

l

K2

K2

K2

K2

l

E1,2

LEGEND

loess and sand

Eocene limestones

Upper Cretaceous limestones

Bok

Fig. 3: Geological map of the Island of Susak (simplified after Mamužić, 1965).

Abb. 3: Geologische Karte der Insel Susak (vereinfacht nach Mamužić, 1965).

Fig. 4: Carbonate basement covered with the red paleosol which represents the beginning of the Quaternary loess-paleosol sequence on Susak. (Photo by E. Schmidt.)

Abb. 4: Karbonatisches Basement mit überlagerndem roten Paläoboden, der den Beginn der quartären Löss-/Paläoboden-Sequenz repräsentiert (Foto: E. Schmidt).

Page 4: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

156 E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

transgressiveonthe JurassicandCretaceouscarbonatesoftheIstrianplatform,andonNeogeneorPaleogenedepositsinthePobasinasseenincoresfromtheNorthAdriaticSea(Kalac,etal.,1995).TheQuaternarydepositsonSusakaremadeof loess, loessderivativesandsand,andare interca-latedbynumerouspaleosolsandatleastthreetephralayers(Fig.5).

Wacha et al. (2011) and Mikulčić Pavlaković et al.(2011) described altogether four smaller sections from theEastern part of the island in more detail (Fig. 3). In thebayofBok(Fig.3)aredpaleosol,overlainbyasecondredpaleo-sol,coversthecarbonatebasement(Fig.4).Thethick-nessoftheseredpaleosolsisupto100cmbutchangeslat-erally.Onsome locationsonthe islandonlyoneredpale-osol is exposed. The paleosols are separated with septar-iancarbonateconcretions,upto20cmindiameter.Sandyloesscoverstheredpaleosolsandisinitslowerpartlithi-fied forming a sandstone bench. In the upper part of thesandy loess horizon vertical carbonate concretions up to10cm longare found.SecondarycarbonatesaredescribedinmoredetailbyBognar&Zámbó (1992)andMikulčićPavlakovićetal.(2011)andindicatestrongwaterpercola-tion from theupperpartof the section.The lowerpartof

Fig. 5: Three macroscopically visible tephra layers were detected intercalating the Susak loess-paleosol sequence, described in more detail by Mikulčić Pavlaković et al. (2011). a) TF1 – a thin yellow layer of the lowermost, oldest tephra; b) the thin brown paleosol with patches of orange-yellow middle tephra (TF2); c) TF3 – the uppermost and stratigraphically youngest most tephra intercalating loess on Susak is found as a thin olive green layer.

Abb. 5: Drei makroskopisch sichtbare Tephralagen sind den Löss-/Paläobodenabfolgen auf Susak zwischen geschaltet. A) TF1 – dünne gelbe Lage der untersten und stratigraphisch ältesten Tephra; b) TF2 - dünner brauner Paläoboden mit taschenartigen Anreicherungen einer orange-gelben Tephra; c) TF3 – oberste und stratigraphisch jüngste Tephra als oliv-grüne Lage im Löss zwischen geschaltet.

2 Geological setting and the sediment succession

The island of Susak is situated in the western part of theKvarner Archipelago in the North Adriatic Sea in Croatia(Fig.1).Itistheoutermostandquiteisolatedislandwithanareaof3.8km2.Thehighestpeakisat96mabovesealevel(asl).Susakislocatedbetween44.50°and44.52°Nand14.28°and14.32°E.Thegeomorphologyoftheislandhasallcharac-teristicsofaloessplateau(Bognar,Schweitzer&Szöőr,2003)dissectedbynumerousgorges,steepbluffsandgullies(Fig.2).Humanactivityduringhistoricaltimeshadandstillhasamajorinfluenceonthemorphologyanderosionoftheislandbecause the island isawineyardareasinceRomantimesresultinginnumerousartificialplateaus.

Geotectonically,SusakbelongstotheWestIstrianautoch-tonoftheNorthernAdriaticCarbonatePlatform(Mamužić,1973).Thebasementof the island ismadeofUpperCreta-ceouslimestones(Fig.3&4).Onthenortherncoast,Eocenelimestones can be found (Mamužić, 1973). The bedrock iscoveredbyupto90metresofQuaternarysediments,recent-lydescribedbyCremaschi(1990),Bognar,Schweitzer&Szöőr(2003),MikulčićPavlakovićetal.(2011)andWachaetal.(2011).PlioceneandPleistocenesedimentsareusually

Page 5: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

157E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

theloess-paleosolsequenceonSusakisdominatedbythreeabout1metrethickpaleosols,twoofthembrownandoneorange-brown in colour. In theupperpart of the loess se-quencenumerous thinbrownpaleosols are exposed, someof themcontainingdispersedcharcoal andcharcoalpieces(Fig.6).Thecharcoalpiecesfoundintwohorizonswerein-vestigated byBognar, Schweitzer&Szöőr (2003).Theyconcludedthattheseremainsaretheresultsofforestfires,caused by self-inflammation or human activity and deter-mined the Pinus sylvestris group of tree species from thecharcoal. In the middle part of the loess-paleosol recordhomogenous and laminated sand can be found, in a formofafewcentimetres thicklayersanddunesand.Thesandindicates stronger wind activity, a near-distance transportandaverylikelylocalsourceofthematerial.Thetransitionfrom sand into loess is mostly gradual. The general trendof loess coarsening upwards was observed by MikulčićPavlakovićetal.(2011)andissupportedbytheresultsofgrain-sizeanalysisfromanongoingstudy(Wachaetal.,inpreparation).ThreetephrasweredetectedintercalatingtheloessofSusak;twoinaformofcontinuouslayers(TF1andTF3) and one as accumulations (pockets) in a thin brownpaleosol (TF2) (Fig. 5). The sedimentological, geochemi-cal and mineralogical properties of loess, sand, paleosolsand the tephrasarepresented inmoredetailbyMikulčićPavlakovićetal. (2011). InFig. 7all the investigatedandsampled sections are presented along with the indicatedsamplepositionsandIRSLandradiocarbonages.

3 Dating methods

3.1 Luminescence Dating

Loess has proved to be excellent material for lumines-cence dating (Frechen, Horváth & Gábris, 1997; Lu,Wang&Wintle,2007;Robertsetal.,2003;Roberts,2008;Novothny, Horváth & Frechen, 2002; Novothny et al.,2009,2010;Schmidtetal.,2010)because it fulfils thebasicdatingassumptionwhichisthecompletebleachingofthela-tent luminescence signal in themineral grains (quartz andfeldspar)priortodeposition.Aeoliantransportationofdustisagoodmechanismforthefulfilmentofsuchanassumptionbecauseduringtransporttheparticlesareexposedtosunlightwhichreleasesmostofthetrappedchargesinthecrystallat-ticeofthemineralsandresetsthedosimetertozero.Afterthedepositionandafterthematerialhadbeenburied,theminer-alsareagainexposedtothenaturalradioactivityofthesur-roundingsediment.Thisionizingradiationmovesthechargesfromtheiroriginalpositionintochargetrapscausedbyimpu-ritiesorcrystallatticedefects,fromwheretheycanonlybereleasedbyadditionalenergy.Releasingtheseelectronsfromthetrapsandtheirrecombinationwiththepositivechargesin the crystal lattice results in the emissionof light (lumi-nescence),andcanbemeasuredbyaphotomultiplierinthelaboratory.Withtimetheamountofsuchdislocatedchargegrows,meaningthattheluminescencesignalisproportion-al to thedepositionalageof thesediment.The intensityoftheluminescencesignalincreaseswiththedepositionageofthesediment.Theequivalentdose (De) isameasureof thepastradiationand,ifdividedbythedoserate,givesthetimeelapsedsincethe lastexposureof thesedimenttosunlight,

i.e.thedeposition.TheprinciplesofluminescencedatingaregivenindetailbyAitken(1985,1998),Wintle(1997),Bøt-ter-Jensen,McKeever&Wintle(2003)andPreusseretal.(2008, 2009) and a more recent review about luminescencedatingofloessispresentedbyRoberts(2008).

Twenty-one samples were collected in 2008 using light-proofplastic tubes,bypushingorhammering intoaprevi-ouslycleanedloesswall.Additionalmaterialwastakenfordose rate determination by gamma spectrometry. In thisstudyweappliedthesamesamplepreparationprocedureforthe extraction of the polymineral fine-grained material, asdescribedinWachaetal.(2011).

The same protocols and measurement procedures wereusedaspresentedinWachaetal.(2011),becausetheyhaveprovedtobesatisfactory.AllmeasurementswereperformedusingtwoautomatedRisøTL/OSL-DA15readersattheLeib-nizInstituteforAppliedGeophysicsequippedwitha90Sr/90Yβ-source,withdose ratesof 0.101Gy/sand0.096Gy/s, re-spectively,forfinegrainsmountedonaluminiumdiscs.

Fadingtestswereperformedonthesamealiquotswhichwere previously used for De measurements for all samplesusingthesuggestionofHuntley&Lamothe(2001)andAu-clair,Lamothe&Huot(2003).Thesamemeasuringcondi-tionswereusedasfortheDeevaluation.Themeanofthesixaliquotswasusedforfadingcorrectionsandtheirstandarderrors.Thefadingrates(g-values)werecalculatedaccordingtoHuntley&Lamothe (2001)using the same integrationlimitsasfortheDecalculation.Theg-valueswereusedforagecorrections.

Thedoseratesof thesedimentweremeasuredbygam-ma spectrometry with a HPGe (High-Purity Germanium)N-typecoaxialdetectorinthelaboratoryattheLeibnizIn-stituteforAppliedGeophysics.700gofdriedandhomoge-nizedmaterialwasusedforthemeasurements.EachsamplewasplacedintoaMarinelli-beakerandcapsealedtoavoidthelossof222Rninthe238Udecaychainandstoredforamini-mumoffourweeksinordertore-establishtheradioactive

Fig. 6: A detail from the upper part of the Sand Pit section showing the weakly developed brown paleosols with dispersed charcoal remains and the IRSL and radiocarbon dating results.

Abb. 6: Detailansicht der schwach entwickelten braunen Paläoböden (OIS 3) mit zahlreichen Holzkohleresten aus dem Sand Pit-Aufschluss sowie den IRSL- und 14C-Datierungsergebnissen.

Page 6: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

158 E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

South wall

+++++++++++++++++

x

xxxxxxxxxxxxxxxxxxxxxxxxxxx

BokBok 1 Sand Pit

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38 m a.s.l.

xxxxxx

xxxxxxxxxxxxx

+++++

Cretaceous limestones withcracks filled with Terra Rossa

septarian concretions

rhizoconcretions

sandstone bench

red (double) paleosol

orange-brown paleosol

brown paleosol

loess

slightly humified horizon

brown (double) paleosol

sand

laminated sand

charcoal

old tephra (TF1)

accumulations of middle tephra (TF2)in brown paleosol

young tephra (TF3)

OSL sample position

14C samplex

LEGEND

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxx

East wall

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxx

+++++++++++++++++++++++

x

x

x

x

x

x

+++++++++++++++++

x

xx

x

x

x

63.5 ± 5.1

79.1 ± 5.793.3 ± 7.098.3 ± 7.3

54.3 ± 4.9

52.8 ± 4.048.2 ± 3.6

41.2 ± 3.6

38.5 ± 3.0

38.6 ± 2.9

39.3 ± 3.4

34.9 ± 2.7

34.1 ± 2.733.6 ± 2.6

34.1 ± 3.1

38.1 ± 2.9

14C:

27.7 ± 0.7

14C:29.0 ± 0.9

14C:32.2 ± 1.0

14C:30.6 ± 1.4

14C:32.1 ± 0.3; 24.8 ± 0.8

14C:32.5 ± .1.0

34.7 ± 2.7

27.2 ± 2.0

28.0 ± 2.1

28.8 ± 2.131.3 ± 2.5

24.2 ± 1.8

39.0 ± 3.3

32.9 ± 2.5

31.0 ± 2.3

26.3 ± 2.026.8 ± 2.031.0 ± 2.329.9 ± 2.2

25.3 ± 1.9

24.6 ± 1.8

22.4 ± 1.8

22.8 ± 1.7

18.1 ± 1.414

C:1.4 ± 0.06

14C:19.4 ± 0.2

14C:15.1 ± 0.4

14C:28.9 ± 1.1

14C:29.1 ± 0.6

14C:26.2 ± 0.6

64.1 ± 5.370.7 ± 6.3

67.6 ± 5.5

Fig. 7: The investigated loess-paleosol sections on Susak, with indicated IRSL and radiocarbon sampling positions and age estimates, and their correlation.

Abb. 7: Die untersuchten Löss-/Paläobodenaufschlüsse auf Susak mit IRSL- und 14C-Probenpositionen und Altersergebnissen sowie die Korrelation der Horizonte.

equilibrium.Themeasuringtimewasoneday.Themeasuredactivitiesof40K;and210Pb,234Th,214Biand214Pbradionuclidesfromthe238U;and228Ac,208Tland212Pbradionuclidesfromthe232Thdecaychainswereusedforthecalculationofpo-tassium, uranium and thorium contents, respectively. Theradioactive equilibrium was assumed for the decay chain,whichisnormallythecaseforloess;noradioactivedisequi-libriumwasdetectedbygammaspectrometry.Cosmicdoserateswerecorrectedforthealtitudeandsedimentthickness(Prescott&Hutton,1994).Thealphaefficiencywasesti-matedtoameanvalueof0.08±0.02forpolymineralIRSL(Rees-Jones, 1995). The water content was assumed to befrom 15 ± 5% to 20 ± 5%, depending on the depth (Pécsi,1990).Forthecalculationofthetotaldoseratetheconver-sion factors publishedbyAdamiec&Aitken (1998)wereused.A systematic errorof 2% is included for thegammaspectrometry.An error of 10% is estimated for the cosmicdose.Theuranium,thoriumandpotassiumcontents,aswellasthetotaldoserates, thecosmicdoserates, theg-values,theuncorrectedandcorrectedagesaregiveninTable1.

3.2 Radiocarbon dating

Inthisstudysevennewradiocarbonagesarepresented,sixfrom the Bok section and one from the Sand Pit section.Amongthemfoursamplesweremolluscs(Hv25895–25898)andthreewerecharcoalremains(Hv25899–25901).Thespe-cific activity of 14C was measured radiometrically by pro-portionalcounters(Geyh,1990,2005)attheLeibnizInstituteforAppliedGeophysics(LIAG).Theradiocarbonageswereconvertedintocalibratedcalendaragesusingtheradiocar-boncalibrationcurvebasedoncoralsamplesandprogramafterFairbanksetal.(2005).ThesamplepositionsareshowninFig.7andthecalibratedanduncalibratedagesaregiveninTable2.TheradiocarbonagespresentedinWachaetal.(2011)areshownaswell.

4 Dating results

Altogether 37 luminescence and 13 radiocarbon samplesweremeasuredfromtheloesssequenceonSusaktosetup

Page 7: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

159E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

a chronological framework for the very detailed sedimentarchive. Results from the dosimetry, the equivalent doses,g-values, the uncorrected and corrected age estimates aregiven inTable1andthedatingresultsaregiven inFig.7.TheuncalibratedandcalibratedradiocarbonagesaregiveninTable2.

Theuranium,thoriumandpotassiumcontentsrangefrom2.17to4.74ppm,7.63to15.67ppmand1.14to1.91%,respec-tively.Thedoseratesofthesedimentforthefine-grainedma-terialrangefrom2.46to4.40mGy/a,withameanvalueof3.53±0.20mGy/awhich is typical forEuropean loess (seeFrechen, Horváth & Gábris, 1997; Galović et al, 2009;Novothnyetal.2009;Schmidtetal.,2010).

TheDevaluesfromfine-grainfeldspararebetween49.1±2.5Gyto276.9±14.0Gy.ForthesamplescollectedattheBoksection,theDevaluesshowasystematicincreasewithdepth,withafewexceptionsandinversions.Noneofthedosere-sponsecurvesindicatedluminescencesignalsaturation.Thecalculatedageestimatesareingoodstratigraphicorder.FortheSandPitsectiontheDevaluesandthecalculatedagesarequiteuniformwithaslightincreaseofagewithdepth.Fadingcorrectionswereperformed for all samples indicatingonlylowanomalous fading rates.The calculated g-values rangefrom1.3to2.7%/decadewhichisverylowcomparedtootherlocations(e.g.Serbianloess(Schmidtetal.,2010)orHungar-ianloess(Novothnyetal.,2010)).Fadingcorrectionsweredone,andtheuncorrectedandcorrectedages,aswellastheg-values,arepresentedinTable1.

AttheBoksectionanalmostcontinuousincreaseofagewithdepthcanbeseen(Fig.8).Thelowermostloesswiththeabundantcarbonateaccumulationsandintercalatedbytheoldesttephra(TF1;Fig5a&7)yieldedageestimatesrang-ingfrom98.3±7.3kato79.1±5.7ka.AccordingtotheIRSLdating results from the loess underlying and covering theoldesttephra(TF1),theageofthetephraisbetween98.3±7.3kaand93.3±7.0ka.Thesamplecollectedfromthesameloesshorizon,butafewmetresawayfromtheinvestigatedsectiongaveanageof79.1±5.7ka.Thishorizoniscoveredbyanorange-brownpaleosol.Thelattersoilformationtookplace prior to 54.3 ± 4.9 ka, which is the IRSL age of theloesscoveringtheorange-brownpaleosol.Thenext4metresofthesequencearemadeofthreebrownpaleosols,oneofthemcontainingthemiddletephra(TF2;Fig.5b&7).Inthemiddlepartofthisintervalasandlayerispresent,givinganIRSLageof52.8±4.0ka.Theageofthethinbrownpaleosolwiththetephrapatches(TF2)isbetween41.2±3.6kaand39.0±3.3ka(Fig5b).Abovethispaleosolabout20metresofloessisexposed.TheIRSLagesfromtheloessrangefrom39.0±3.3kato18.1±1.4ka,fortheloessimmediatelycover-ingthepaleosolwiththetephra(TF2),andthestratigraphi-callyyoungestloesscollectedatthissection,respectively.Inthisinterval,fourthinbrownpaleosols,someofthemwithcharcoalremains,andanothertephralayer(TF3)(Fig.5c)areintercalatedintheloess.IRSLageestimatesfromtheloessbelowandabovethisthintephraarebetween31.0±2.3kaand29.9±2.2ka.Theradiocarbonagesofcharcoalremainscollectedfromthethinbrownpaleosolsgavecalibratedagesof26.2±0.6kaand29.1±0.6kaandareinexcellentagree-mentwiththeIRSLages.Theradiocarbonageofmolluscscollected from belowTF3 is in agreement with IRSL agesandcalibratedradiocarbonagesfromcharcoal,whereasthe

molluscsampletakenfromthetopofTF3showsanageof15.1± 0.4 ka,which is very likelyunderestimated for thispart of the sequence, probably due to contamination withyoungermolluscspecies.Twomolluscsampleswerecollect-edintheuppermostpartofthesection,fromtheyounger-mostexposedloess.Theradiocarbonageof19.4±0.2kaisin excellent agreement with the uppermost collected IRSLsample.Theradiocarbonageof1.4±0.06kafrommolluscscollectedontopofthesectioncorrelatestomodernspecieswhichwereveryprobablywashedoutfromthemodernsoil.

MikulčićPavlakovićetal.(2011)describedasecondsec-tioninthebayofBok.AttheBok1section,fourluminescencesamples were collected from the loess covering the orangebrown paleosol (Fig 7). The IRSL age estimates range from70.7±6.3kato63.5±5.1ka.Thisintervalofthesection–loessintercalatedwithbrownpaleosol–gaveaslightlyhigheragesthanthestratigraphicalequivalentattheBoksection.Thesehorizonsfillthetimegapbetweentheorange-brownpaleosolandthebrownpaleosolattheBoksectionandcanhencebecorrelatedwitheachotherand interpolated.Thedifferencesbetweenthesetwonearbysectionscouldbearesultofadif-ferentpaleoreliefevolutionandpossibleerosion.

TheSandPit section startswitha thickbrownpaleosolwhichiscoveredbyabout8metresofloess.Thisloessgaveageestimatesrangingfrom39.3±3.4kato33.6±2.6ka.Thethinbrownsoilonthetopofthisloesshorizoncontainingcharcoalyieldedacalibratedradiocarbonageof32.5±1.0kaandisinexcellentagreementwiththeIRSLages.LoessiscoveredbyafewmetersthicklaminatedsandhorizonwhichgaveanIRSLageestimateof34.1±3.1ka.Withinerrorlim-its,theageisinagreementwiththecalibratedradiocarbonage.Anothersamplefromthislaminatedsandhorizonwastaken from the Southwall of the investigated section andyieldedanageof38.1±2.9ka.Thecharcoalcollectedfromthethinbrownpaleosols,yieldedradiocarbonagesrangingfrom32.2±1.0ka to 24.8±0.8ka (Fig. 6&7).Adeposi-tionofthelaminatedsandduringaveryshorttimeperiodisverylikely.Thecross-laminatedsandisofaeolianorigin(MikulčićPavlakovićetal.,2011)andprobablyrepresentsadune (Cremaschi, 1990).Theupperpartof theSandPitsectionconsistsof loesswhichis in its lowerpart interca-lated by the youngest tephra (TF3; Fig. 5c & 7). IRSL ageestimatesoftheloessfrombelowandabovethetephragave28.0±2.1kaand28.8±2.1ka,respectively,andwithinerrorlimits correlate to the IRSLages fromsamples taken fromthe stratigraphically samepositionat theBoksection.TheuppermostsamplecollectedfromtheSandPitsectiongavean IRSLageof 24.2±1.8ka.About tenmetresof loess isstillcoveringtheinvestigatedsection,butunfortunatelythispart of the sectionwasnot reachable for samplingduringourfieldwork.InFig.7,theIRSLandtheradiocarbondatingresultsarepresented.Theyshowanexcellentcorrelationforbothsections.

5 Discussion

Wachaetal. (2011)presented thefirst infraredstimulatedluminescence(IRSL)datingresultsfortheloessfromSusakincludingthirteensamples.Intheirstudyapartoftheloess-paleosol sequencewas investigatedonly fromtheeastern-mostpartoftheisland.Thepresentstudygivesanimproved,

Page 8: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

160 E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

Sam

ple

nam

eSa

mpl

e ID

Dep

th(m

)U

rani

um(p

pm)

Thor

ium

(ppm

)Po

tass

ium

(%)

Cosm

ic d

ose

(mGy

/a)

Bok

Sect

ion

Sus0

8-16

1753

2.00

3.30

±0.

019.

87±

0.03

1.23

±0.

010.

150

±0.

015

Sus1

314

388.

003.

84±

0.05

11.9

0.13

1.28

±0.

020.

062

±0.

006

Sus0

8-15

1752

8.50

4.10

±0.

0213

.89

±0.

041.

61±

0.01

0.06

0.00

6

Sus0

8-14

1751

13.0

03.

84±

0.02

12.0

0.06

1.51

±0.

010.

036

±0.

004

Sus0

8-13

1750

15.0

03.

50±

0.01

9.72

±0.

031.

31±

0.01

0.03

0.00

3

Sus1

214

3715

.80

4.52

±0.

0514

.48

±0.

121.

70±

0.02

0.02

0.00

3

Sus1

114

3616

.30

4.15

±0.

0513

.26

±0.

131.

68±

0.03

0.02

0.00

3

Sus0

8-12

1749

17.0

03.

99±

0.02

12.6

0.04

1.67

±0.

010.

026

±0.

003

Sus0

8-11

1748

17.6

03.

81±

0.03

12.1

0.06

1.62

±0.

010.

025

±0.

002

Sus0

8-10

1747

18.8

02.

94±

0.02

10.5

0.06

1.31

±0.

010.

023

±0.

002

Sus0

8-9

1746

19.8

04.

11±

0.02

13.2

0.04

1.60

±0.

010.

022

±0.

002

Sus1

014

3520

.80

4.19

±0.

0813

.33

±0.

141.

76±

0.03

0.02

0.00

2

Sus9

1434

21.3

03.

50±

0.05

10.0

0.12

1.40

±0.

020.

021

±0.

002

Sus0

8-8

1745

23.0

03.

48±

0.01

11.0

0.03

1.43

±0.

010.

019

±0.

002

Sus0

8-7

1744

23.6

02.

71±

0.01

9.24

±0.

031.

38±

0.01

0.01

0.00

2

Sus0

8-6

1743

25.0

02.

58±

0.02

8.38

±0.

051.

14±

0.01

0.01

0.00

2

Sus0

8-18

1755

26.7

03.

27±

0.01

11.2

0.03

1.46

±0.

010.

018

±0.

002

Sus0

8-17

1754

27.0

03.

38±

0.02

11.3

0.06

1.44

±0.

010.

018

±0.

002

Sus0

8-5

1742

28.0

04.

09±

0.03

15.6

0.08

1.91

±0.

010.

018

±0.

002

Bok1

Sus0

8-4

1741

21.9

02.

17±

0.01

7.63

±0.

041.

36±

0.01

0.02

0.00

2

Sus0

8-3

1740

23.0

03.

48±

0.03

12.0

0.06

1.44

±0.

010.

019

±0.

002

Sus0

8-2

1739

23.5

03.

55±

0.03

11.9

0.06

1.43

±0.

010.

019

±0.

002

Sus0

8-1

1738

24.7

03.

83±

0.02

12.8

0.06

1.50

±0.

010.

019

±0.

002

Tab.

1: S

ampl

e lis

t with

dep

th b

elow

sur

face

, res

ults

from

the

dosi

met

ry, t

he S

AR

IRSL

mea

sure

men

ts, g

-val

ues,

the

unco

rrec

ted

and

corr

ecte

d ag

es fo

r fin

e-gr

aine

d fe

ldsp

ar. Th

e do

se ra

te is

the

sum

of t

he d

ose

rate

s of

the

alph

a,

beta

, gam

ma

and

cosm

ic ra

diat

ion.

Tab.

1: P

robe

nlis

te m

it Ti

efe

unte

r G

elän

deob

erka

nte,

Dos

imet

rie-

Dat

en, S

AR-

IRSL

-Mes

sung

en, g

-val

ues,

unko

rrig

iert

en u

nd k

orri

gier

ten

Alte

rn fü

r di

e Fe

inko

rnex

trak

te. D

ie D

osis

leis

tung

ist d

ie S

umm

e au

s A

lpha

-, B

eta-

und

G

amm

a- s

owie

kos

mis

cher

Str

ahlu

ng.

Dos

e ra

te

(mGy

/a)

De

(Gy)

g-va

lue

(%/

deca

de)

Unc

orre

cted

ag

e (k

a)Co

rrec

ted

age

(ka)

1*

3.16

±0.

1949

.1±

2.5

1.7

±0.

215

.5±

1.2

18.1

±1.

4

3.48

±0.

2065

.4±

3.3

2.1

±0.

118

.8±

1.5

22.8

±1.

7

4.03

±0.

2274

.5±

3.7

2.1

±0.

318

.5±

1.4

22.4

±1.

8

3.66

±0.

2177

.0±

3.9

1.7

±0.

0321

.0±

1.6

24.6

±1.

8

3.16

±0.

1967

.8±

3.4

1.8

±0.

121

.4±

1.7

25.3

±1.

9

4.26

±0.

2410

6.1

±5.

42.

0.1

24.9

±1.

929

.9±

2.2

4.01

±0.

2210

4.6

±5.

31.

0.1

26.1

±2.

031

.0±

2.3

3.90

±0.

2288

.6±

4.4

1.8

±0.

0322

.7±

1.7

26.8

±2.

0

3.74

±0.

2184

.2±

4.2

1.7

±0.

122

.5±

1.7

26.3

±2.

0

3.06

±0.

1779

.6±

4.0

1.9

±0.

126

.0±

2.0

31.0

±2.

3

3.92

±0.

2211

0.3

±5.

61.

0.1

28.1

±2.

132

.9±

2.5

4.09

±0.

2312

8.8

±6.

52.

0.4

31.5

±2.

439

.0±

3.3

3.26

±0.

1910

8.4

±5.

52.

0.4

33.2

±2.

641

.2±

3.6

3.20

±0.

1813

0.6

±6.

61.

0.1

40.8

±3.

148

.2±

3.6

2.77

±0.

1612

4.8

±6.

41.

0.1

45.0

±3.

552

.8±

4.0

2.46

±0.

1511

2.8

±5.

71.

0.02

45.9

±3.

654

.3±

4.9

3.18

±0.

1826

1.2

±13

.11.

0.1

82.1

±6.

298

.3±

7.3

3.20

±0.

1824

9.7

±12

.61.

0.1

77.9

±5.

993

.3±

7.0

4.18

±0.

2227

6.9

±14

.01.

0.02

66.2

±4.

879

.1±

5.7

2.58

±0.

1514

0.2

±7.

82.

0.2

54.3

±4.

467

.6±

5.5

3.47

±0.

1919

3.7

±11

.12.

0.4

55.8

±4.

570

.7±

6.3

3.47

±0.

2017

7.3

±10

.02.

0.2

51.0

±4.

164

.1±

5.3

3.70

±0.

2118

1.8

±10

.12.

0.2

49.1

±3.

963

.5±

5.1

Page 9: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

161E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

*Afte

r ca

libra

tion

of th

e Ri

sø R

eade

r fo

r fin

e-gr

aine

d m

ater

ial m

ount

ed o

n A

l dis

cs, t

he d

ata

from

sam

ples

pre

sent

ed in

Wac

ha e

t al.

(201

1) w

ere

reca

lcul

ated

bec

ause

the

new

dos

e ra

tes

of th

e re

ader

wer

e lo

wer

than

pre

viou

sly

used

. In

the

tabl

e th

e co

mpl

ete

Susa

k da

ta s

et is

pre

sent

ed.

Sand

Pi

t se

ctio

n

Sus8

1433

10.0

04.

16±

0.05

13.3

0.14

1.60

±0.

030.

050

±0.

005

Sus0

8-24

1761

14.0

03.

57±

0.02

11.1

0.04

1.55

±0.

010.

033

±0.

003

Sus5

1430

14.5

04.

74±

0.05

14.9

0.14

1.73

±0.

030.

032

±0.

003

Sus4

1429

15.3

04.

40±

0.05

13.4

0.10

1.71

±0.

020.

030

±0.

003

Sus3

1428

16.2

04.

30±

0.05

12.8

0.12

1.68

±0.

030.

028

±0.

003

Sus2

1427

17.0

02.

32±

0.04

7.77

±0.

111.

31±

0.02

0.02

0.00

3

Sus1

1426

18.0

02.

31±

0.04

8.12

±0.

091.

15±

0.02

0.02

0.00

2

Sus7

1432

19.5

03.

57±

0.04

11.0

0.11

1.37

±0.

020.

023

±0.

002

Sus6

1431

20.7

03.

71±

0.05

11.0

0.12

1.40

±0.

030.

022

±0.

002

Sus0

8-23

1760

20.8

03.

50±

0.02

10.8

0.04

1.50

±0.

010.

021

±0.

002

Sus0

8-22

1759

22.2

03.

56±

0.02

11.8

0.04

1.51

±0.

010.

020

±0.

002

Sus0

8-21

1758

23.8

04.

18±

0.02

13.8

0.04

1.64

±0.

010.

019

±0.

002

Sus0

8-20

1757

25.4

04.

11±

0.05

13.2

0.12

1.57

±0.

030.

018

±0.

002

Sus0

8-19

1756

26.8

03.

83±

0.01

12.0

0.03

1.74

±0.

010.

018

±0.

002

3.97

±0.

2280

.0±

4.0

2.0

±0.

120

.1±

1.5

24.2

±1.

8

3.53

±0.

2010

6.2

±7.

72.

0.2

26.1

±2.

031

.3±

2.5

4.40

±0.

2410

5.7

±5.

32.

0.1

24.0

±1.

828

.8±

2.1

4.14

±0.

2310

1.1

±5.

11.

0.2

24.5

±1.

828

.0±

2.1

4.02

±0.

2394

.8±

4.8

1.6

±0.

123

.6±

1.8

27.2

±2.

0

2.61

±0.

1675

.9±

3.8

1.9

±0.

129

.1±

2.3

34.7

±2.

7

2.50

±0.

1579

.0±

4.0

2.0

±0.

131

.7±

2.5

38.1

±2.

9

3.35

±0.

1991

.4±

4.6

2.4

±0.

527

.3±

2.1

34.1

±3.

1

3.42

±0.

2096

.6±

4.9

1.9

±0.

128

.2±

2.2

33.6

±2.

6

3.42

±0.

2093

.2±

4.9

2.4

±0.

227

.2±

2.1

34.1

±2.

7

3.54

±0.

2010

5.7

±5.

62.

0.2

29.8

±2.

338

.5±

3.0

4.03

±0.

2212

6.9

±6.

72.

0.1

31.5

±2.

438

.6±

2.9

3.90

±0.

2212

2.6

±7.

42.

0.3

31.5

±2.

639

.3±

3.4

3.65

±0.

2011

3.2

±5.

71.

0.3

31.0

±2.

334

.9±

2.7

precise and very detailed geochronological frame-work of the investigated loess-paleosol sequencewhichresultedfromdensersampling.

Wacha et al. (2011) used the single aliquot re-generative-dose(SAR)protocolonpolymineralfine-grainedmaterialseparatedfromloessforthedeter-minationoftheequivalentdoses(De).Furthermore,fadingtestsandfadingcorrectionswerecarriedoutanda few sampleswere additionallymeasuredus-ingtheoldermultiplealiquotadditive-dose(MAAD)protocol for an easier correlation with previouslypublished data, like recently published in Galovićetal.(2009).Theresultsshowedthattheloess-pale-osolrecordonSusakcorrelatestotheOxygenIsotopeStage(OIS)3withthefadingcorrecteddatarangingfrom50.3±3.5ka to27.5±3.5ka.Theagescalcu-latedaftertheMAADprotocolsarebetween38.0±2.2kaand15.1±1.1kaandhenceunderestimatingthe results of the SAR measurements and the truedeposition age of the deposits. Underestimation oftheseagesisexpectedduetotheanomalousfadingoffeldsparinfraredstimulated(IRSL)signals(Win-tle,1973;Spooner,1994).Nevertheless,bothproto-colsgavedatawhichledtothesameconclusion,thattheloess-paleosolrecordonSusakisanamazingandverydetailedOIS3record.MikulčićPavlakovićetal.(2011)presentedfourmoreIRSLagesfromafur-thernearbysectioninthebayofBokonSusak.ThisIRSLdatingstudyusedthesamemethodologicalap-proachasdiscussedinWachaetal.(2011)whichwasproved to be successful. The IRSL ages range from90.0±6.8ka to80.8±5.0ka.Theresultspresentedinthesepreviouspublicationsdonotcoverthecom-pleteloesssequencebutconcentrateonlyonthemid-dlepart.Therefore,additionalsampleswerecollectedwith the aim to fill previous sampling gaps and toextend the numerical framework to the oldest andyoungest deposits and so get a very detailed geo-chronological record of the last interglacial/glacialcycle.

Thestratigraphicallyoldest soil foundon the is-landisthefossilterrarossa,namedthatwaybyBog-nar,Schweitzer&Szöőr(2003)(FTRaccordingtoMikulčićPavlakovićetal.,2011),seeninthecracksofthelimestonebasement.Bognar,Schweitzer&Szöőr(2003)assumedtheageofthefossilterrarossatobe3 to4millionyearsBP,butnoevidencewasprovidedforsuchstatement.Itisstillnotknown,i.e.therearestillnoexactdataabouttheageofthethickred paleosols which cover the carbonate basementoftheisland.Bognar,Schweitzer&Szöőr(2003)suggestedthattheredpaleosolpresentsthelowerorthelowermostPleistocene.Paleomagneticmeasure-mentscarriedoutbyBognar,Schweitzer&Szöőr(2003) showednegative inclination in the redpale-osol,sotheycorrelatedtheapparentpolaritychangetotheBrunhes-Matuyamaboundary(0.78Ma;Spell&McDougall,1992;OIS19).TheyalsocorrelatedtheredpaleosolwiththePaksDouble(PD)typepaleosolfromtheHungarianloessstratigraphy.ThePDtypepaleosolbelongstotheHungarian“oldloessseries”,

Page 10: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

162 E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

also called Paks series, corresponding to OIS 9–24 (Pécsi,1993). InloessfrombelowthisPDpaleosol inthetypelo-calityatthePakssectiontheBrunhes-Matuyamaboundarywas identified (Pécsi, 1993).There isno evidence for suchpedostratigraphicalcorrelationofpaleosolsfromSusakwithpaleosols from Hungary key loess sections and hence thisapproachisquestionable.Durn,Ottner&Slovenec(1999),Durn(2003)andDurnetal.(2007)investigatedterrarossaand loess from Istria (Savudrija) andbasedon similaritieswithloessdepositsonSusakdescribedbyCremaschi(1990)tentativelyproposedanEemianageoftheredpaleosolbe-lowtheloesscomplexinSavudrija,butwithoutanydatingresults.TheyalsoshowedtheimportanceofLatePleistoceneloessasparentmaterialofthesepaleosolsinIstria.MikulčićPavlakovićetal.(2011)concludedthatthesourcematerialofthethickredpaleosolwhichcoversthecarbonateandcanbeseeninthebasementoftheloesssequenceinthebayofBok on Susak is of a predominantly aeolian origin (loess)withaminorinfluenceofmaterialremainedafterlimestonekarstificationandthattheyaresimilartoIstrianterrarossa.LoesscoveringtheredpaleosolonSusakshowedageesti-mates ranging from 98.3 ± 7.3 ka to 79.1 ± 5.7 ka and sonumericallycorrelatestoOIS5c–aand4,respectively.Basedonthesedatingresults,andtheassumedaeolianoriginoftheredpaleosolscoveringthecarbonatebasementonSu-sak and similar red paleosols below loess from Istria, wecanconcludethatsoilformationonSusaktookplacedur-ing the last interglacialoptimumoranyolder interglacialperiodandthattheoldestloessfromSusakdepositedpriortoOIS5e,probablyinOIS6oranyotherglaciationpredat-ingtheEemian.TheOIS5interglacialwasmarkedbythreedistincthighsealevelstands(Surić&Juračić,2010).Dur-ingOIS5ethesealevelstandwasthehighest,uptoafewmetershigherthantoday(Lambeck&Chappell,2001).TheOIS5aischaracterizedbytwosealevelhighstands,around

84ka and77kaBP,with sea level above -14m, and lowsea-standinbetween,ataround80kaBP(Surić&Juračić,2010).ThesealeveloftheAdriaticSeawasabout100metreslower than today (Cremaschi,1990;Amorosi,etal.1999;Lambecketal.,2004)duringapartoftheUpperPleistocenemakingtheNorthAdriaticavastbasinexposedtovarioussedimentaryprocessesaswellastoaeolianactivityduringtheglacialswhichresultedinloessdeposition.

RedpaleosolsareoftenreportedtounderlieloessinthePannonianbasin inHungary (Kovács,2008)and inChina(e.g.Bronger&Heinkele,1989)andare foundondiffer-ent rock type basements, representing the beginning ofloess deposition. The origin of such paleosols is still un-derdiscussion(e.g.Kovács,2008)but theaeolianorigin isprobable (Yang & Ding, 2004). The age of these paleosolsverylikelybelongstothePliocene(Bronger&Heinkele,1989; Ding et al., 1999; Kovács, 2008). Such red paleosolsaretheresultofspecificclimaticconditionsandshouldbecorrelatedonlyinthatcontext.Correlatingthesepaleosolsbasedonlyontheirphysicalproperties,withoutanydatingresults,canleadtowronggeochronologicalconclusions.

The age of the tephra (TF1) found in loess coveringtheredpaleosol isbetween98.3±7.3kaand93.3±7.0ka(Fig. 5a). Based on these ages, the mineral and geochemi-cal characteristics (Mikulčić Pavlaković et al., 2011), thetephracouldberelatedtotheMiddleandSouthItalianvol-canicprovinces.

The oldest loess is covered by an orange-brown paleo-sol up to 150 cm thick. The pedogenesis of this paleosoltookplaceafter93.3±7.0ka (or79.1±5.7ka, if thesam-pleSus08-5isconsidered,whichwasnotcollecteddirectlyfromtheinvestigatedoutcropsbutafewmetersaway)andbefore54.3±5.7ka,whichistheageestimatefromthethinloesshorizon covering the thickorange-brownpaleosol intheBoksection.Thisorange-brownpaleosol iswidespread

Sample nameRadiocarbon age

ka B.P.+ Calendar age cal. B.P.Calendar age

ka cal. B.P.Material type

Hv 25696* 24215 ± 750 29023 ± 923 29.0 ± 0.9 charcoal

Hv 25697* 26890 ± 950 32176 ± 1042 32.2 ± 1.0 charcoal

Hv 25698* 26810 ± 200 32103 ± 261 32.1 ± 0.3 charcoal

Hv 25699* 23040 ± 600 27650 ± 696 27.7 ± 0.7 charcoal

Hv 25700* 27150 ± 910 32458 ± 986 32.5 ± 1.0 charcoal

Hv 25701* 25515 ± 1170 30602 ± 1390 30.6 ± 1.4 charcoal

Hv 25895 1510 ± 60 1391 ± 60 1.4 ± 0.1 molluscs

Hv 25896 16240 ± 200 19365 ± 202 19.4 ± 0.2 molluscs

Hv 25897 12950 ± 290 15073 ± 371 15.1 ± 0.4 molluscs

Hv 25898 24095 ± 900 28888 ± 1092 28.9 ± 1.1 molluscs

Hv 25899 24300 ± 455 29097 ± 571 29.1 ± 0.6 charcoal

Hv 25900 21765 ± 420 26156 ± 546 26.2 ± 0.6 charcoal

Hv 25901 20755 ± 640 24814 ± 836 24.8 ± 0.8 charcoal

Tab. 2: Uncalibrated and calibrated radiocarbon dating results. The results were calibrated using the Fairbanks et al (2005) calibration curve spanning from 0 to 50,000 years BP and transferred in ka B. P. in order to make the radiocarbon results better comparable with luminescence ages. *radiocarbon dating results presented in Wacha et al. (2011). +Radiocarbon ages are by definition “Age before 1950”.

Tab. 2: Unkalibrierte und kalibrierte Radiokarbon-Datierungsergebnisse. Die Daten wurden mittels der Kalibrationskurve nach Fairbanks et al. (2005), welche von 0 bis 50.000 Jahre reicht, kalibriert und in ka B.P. umgerechnet, um eine bessere Vergleichbarkeit der Radiokarbonalter mit dem Lumineszenz-datierungen zu gewährleisten. +Radiokarbonalter sind per Definition „vor 1950“. * Radiokarbonalter aus Wacha et al. (2011).

Page 11: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

163E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

overtheislandandwithamoreorlessconstantthickness.Bognar, Schweitzer & Szöőr (2003) correlated this or-ange-brownpaleosolwiththeMendeBase(MB)-typepale-osol from Hungarian stratigraphy. Wintle & Packman(1988)andFrechen,Horváth&Gábris(1997)provedthatthe age of the MB paleosol is significantly older than thelast interglacial (OIS5e). At the Süttő section in Hungary,theOIS5isrepresentedbyaMB-typepaleosol(Novothnyet al., 2009). The results from this study discarded suchcorrelation completely. The orange-brown paleosol is co-veredby4 to5metres thick loess.This loess is intercalat-ed by brown paleosols and sand layers and a thin brownpaleosol containing patches of the orange-yellow middletephra (TF2). At the Bok section two, up to 100 cm thick,brown paleosols are developed while at the Bok 1 sectionthesituationdiffers.There,alterationsofloessandsandareintercalatedbytwobrownpaleosols,oneofthemcontain-ing charcoal pieces, and one double paleosol i.e. a brownpaleosoldirectlyoverlainbyanotherbrownpaleosol.ThishorizongaveIRSLageestimatesrangingfrom54.3±4.9ka,measured from loess collected between the orange-brownandthefirstbrownpaleosolattheBoksection,and41.2±

3.6ka,samplecollectedbelowtheTF2containingpaleosol.AttheBok1sectiontheIRSLageestimatesshowedslightlyolderagesrangingfrom70.7±6.3kato63.5±5.1ka.BasedontheIRSLresultswecanconcludethatthissequenceverylikelycorrelatestoOIS4.Thedifferencesbetweenthesetwoinvestigatedsectionsareprobablyduetothedifferencesinthepaleorelief. It isvery likelythatapartof therecord ismissing at the Bok section. A layer of thin loess coveringtheorange-brownpaleosolattheBoksectionmightbetheevidenceforthelaterstatement.

Thebrownpaleosolcoveringthethinloesshorizonwascorrelated to theBasaharcLower (BA)-typepaleosol fromtheHungarian loess stratigraphybyBognar,Schweitzer& Szöőr (2003). When compared to the new IRSL dat-ing results of this study and data presented by Frechen,Horváth&Gábris(1997),whoshowedthattheBApale-osol formed during the antepenultimate interglacial, suchastatementcanbediscarded.

Indentestimatesofloessfrombelowandabovethepale-osolcontaining themiddle tephra (TF2)range from41.2±3.6kato39.0±3.3ka(Fig5b).Thistephralayerwasfoundonseverallocationsontheislandandhenceisanexcellent

0 20 40 60 80 100

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32 m a.s.l.

+++++++++++++++++++++++

xxxxxxxxxxxxxxxxxxxxx

Age (ka) - OIS

1 2 3 4 5

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Fig. 8: The sketch of all IRSL dating results from the Bok section. A continuous increase with depth is evident, showing an increased accumulation of loess during the OIS3 and OIS2. Part of the OIS4 deposits are missing in this section but can be found at the Bok1 section (see legend in Fig. 7).

Abb. 8: IRSL-Datierungsergebnisse des Bok-Aufschlusses. Die IRSL-Alter sind stratigraphisch konsistent und nehmen mit der Tiefe zu. Die Ergebnisse zeigen eine verstärkte Staubakkumulation während des OIS3 und OIS2. Teile von OIS4 sind erodiert und fehlen in diesem Aufschluss, sind aber im Bok 1-Aufschluss vorhanden (Legende in Abb. 7).

Page 12: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

164 E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

markerhorizonforbettercorrelation.ThetephralayerwasinvestigatedbyMikulčićPavlakovićetal.(2011)andcouldbecorrelatedtotheCampanianIgnimbriteeruptionofthePhlegraeanFields,whichwasdatedaround39ka(DeVivoetal.,2001).

OntopofthepaleosolwithTF2patchesabout20metresofloessisexposed.Inthelowerpartofthisloessasandlayerandfourthinbrownpaleosolsarepresent.TheIRSLagesareinstratigraphicorder,aspresentedinFigs.7and8,showingacontinuousloessdepositionduringOIS3.Fourradiocarbonsampleswerecollected:twocharcoalsamplesfromthethinbrownpaleosolsandtwosamplesfromloessmolluscs.TheradiocarbonagesareinagreementwiththeIRSLdatingre-sults.Theyoungesttephra(TF3)(Fig5c),whichisexposedinthispartofthesequence,hasIRSLageestimatesrangingfrom31.0±2.3kato29.9±2.2kaandcouldberelatedtotheMiddleandSouthItalianvolcanicprovincesbasedonthege-ochemicalanalysis,mineralcompositionandvitroclastmor-phology(MikulčićPavlakovićetal.,2011).Theyoungestsamplecollectedfromthetopofthesection,atthehighestaccessibleposition,gaveanIRSLageestimateof18.1±1.4kaandrepresentstheloessaccumulatedduringaperiodofincreaseddustaccumulationmostlikelyduringthelastgla-cialmaximum(OIS2).ThisIRSLageisinagreementwiththeradiocarbondatingresultsofmolluscscollectedfromloess.

ThesteeploesswalloftheSandPitsectionsshowssimi-laritieswiththeupperpartoftheBoksection.There,onlyloessandlaminatedsandareexposedcorrelatingtoOIS3.Thecontactwith the carbonatebasement isnot exposed;the sequence startswith a thickbrownpaleosolwhich isolderthan34.9±2.7kaand39.3±3.4ka,whichareIRSLage estimates of the loess covering the brown paleosol.Thispaleosolverylikelycorrelateswiththesecondbrownpaleosol(theupperone)fromtheBoksection.AttheSandPit section themiddle tephra (TF2)waspreviously foundin the SouthWall but was not exposed during our field-work. The main difference between the two investigatedsections(BokandSandPit)isthepredominanceofcross-laminatedsandintheSandPitsectionwhichprobablyre-presentsadune.SuchaeoliansandsareoftenseenontheislandsintheAdriaticSea(Marković-Marjanović,1976;Borovićetal.,1977;Korolijaetal.,1977;Bognaretal.,1992;Pavelić,Kovačić&Vlahović,2006)buttheyhavescarcelybeeninvestigated(Pavelićetal.,submitted).ThesandonSusakverylikelycamefromaproximalsource.Anerosionalchannelwhichwasseen in theSandPitsectionontheEastWallwasaresultoflocal,shortandintensivewater activity. Four brown paleosols containing charcoalremains,whichcanbeseeninthelowerpartoftheloesscoveringthedunesands,gavecalibratedradiocarbonageestimates ranging from32.2±1.0ka to24.8±0.8kaandare in excellent agreement with IRSL dating results (Fig.6); the loessbelow thefirstpaleosolgavean IRSLageof34.7±2.7kaandtheloessabovethefourth,theuppermostpaleosolyieldedanIRSLageof28.0±2.1ka.Theyoungesttephra layer (TF3) is clearly visible above the uppermostpaleosol.ItsIRSLageestimatesrangefrom28.8±2.1kato28.0±2.1kaandisinagreementwiththeIRSLagesfromthe samples collected at the Bok section. The uppermostcollected loess gave an age estimate of 24.2± 1.8 ka andsocorrelatestoOIS3.Thissamplelocationiscoveredbyat

least10metresofloess;thispartofthesequenceprobablycorrelatestoOIS2.

When comparing both major investigated sections, astrongsimilarityisevident.Minordifferencesareverylikelyduetotheevolutionandshapeofthepaleorelief.Suchsedi-mentsuccessionisrepresentativefortheeasternpartoftheislandandasimilarsituationwasexposedonthesouthernpartoftheisland.Butstillnooutcropsareavailableonthenorthernandthewesternpart,thepartoftheislandwhichmorphologicallyformsaplateau.Itwouldbeinterestingtoknowthesuccessionofthedepo-sitsinthethickestlocationand its relations to thecarbo-natebasement.Thequestionabout thegreat thicknessof thedepositsandthesedimentsuccessioninthenorthernpartoftheislandanditsrelationtothecarbonatebedrockstillremainsopen.

Innorthern Italy, theVal Sorda loess-paleosol sequenceis located in the river Po basin. Along the Danube, theZmajevac section in easternCroatia, Stari Slankamen andSurduk sections in Serbia and the Süttő section in Hun-gary were chosen for correlation and comparison (Fig. 9).Thesesectionswereselectedbecauseof theirdetailedgeo-chronological studies allowing a correlation with the lastinterglacial-glacialcycle.Thesetwomajorloessareasdifferinclimaticconditionsduringperiodsofincreaseddustdep-osition in the Upper Pleistocene, hence providing differ-entloessevolution.IfweplaceSusakinawiderperspectiveand compare it with coeval loess-paleosol sequences fromnearbyregions, themostamazing thing is thegreat thick-nessofthedepositsonsuchasmallislandintheNorthernAdriatic Sea and the fact that such a sequence remainedpreserved.Loesshasbeenfoundonothernearbyislandsinthearea(Unije,VelikeandMaleSrakane,Lošinj),butonlyas a few metres thick local appearances. Durn, Ottner& Slovenec (1999) and Durn et al. (2003) recognised theinfluenceofUpperPleistocene loess inupper parts of ter-ra rossaprofiles from Istria.Furthernorth, in the riverPoplain region, loess can also be found, but there no suchamazing thicknesses have been registered. The most rep-resentative loess-paleosol sequence in North Italy is theVal Sorda sequence (Ferraro et al., 2004, Ferraro, 2009;Fig.9).Thissectionisabout6metresthick,startswitharu-befied clayey paleosol covering fluvioglacial deposits andconsists of about 4 metres of loess intercalated by threechernosempaleosols(Ferraroetal.,2004;Ferraro,2009).Ferraro et al. (2004) concluded that the periods of loessdeposition alternated with three stable phases of intersta-dialpedogenesisundersteppeclimate.Loesshasbeendat-ed by means of radiocarbon and IRSL methods and gaveage estimates ranging from 63.3 ± 6.7 ka to 18.7 ± 2.1 ka.ThesedatapresentedinFerraro(2009)weremeasuredus-ingthemultiplealiquotadditivedose(MAAD)methodandmay require a correction for anomalous fading. The pub-lished IRSL ages can be compared and are in agreementwiththosefromthestudyonSusak.Datingresultsofarte-factsfromtheFumaneCaveinNorthernItaly,alsocontain-ing loess, were correlated with the Aurignacian culturallayerwhichrepresents theOIS3(Peresanietal.,2008).AttheBagaggeraloesssequenceTLdatingresultsofartefactsalsoshowedanOIS4toOIS2age(Cremaschietal.,1990),withsoilformationduringmostofOIS3.Therubefiedclay-ey paleosol at the bottom of theVal Sorda sequence can

Page 13: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

165E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

very likely be correlated with the red paleosols coveringthecarbonatebasementonSusakandtheredpaleosolde-scribedinSavudrijainIstria(Durnetal.,2003).TheOIS5(5e–LastInterglacialpaleosol)paleosolsintheCarpathianbasinareusuallychernozem-typepaleosols.AttheZmaje-vac section the second paleosol from the top is correlatedtoOIS5 (Galović et al., 2009). In theSerbian stratigraphythe OIS5 paleosol is termed S1 and is also of chernozem-type(Antoineetal.,2009;Markovićetal.,2007,2009).Inthe Hungarian loess sections, the OIS5 paleosol is a for-est steppe-type paleosol (Frechen, Horváth & Gábris,1997;Novothny,Horváth&Frechen,2002).AttheSüttősection (Novothny et al., 2011), based on a detailed geo-chronological investigation and grain-size analysis, thepaleosols correlated to OIS5 were divided into interstadi-alsandthereddish-brownpaleosol,belowthechernozem-likepaleosol,wascorrelatedtoOIS5e(Fig.9).Theoverlyingchernozem-like paleosol was correlated to OIS5c, whichwasawarmanddrierinterstadial.Thetwothinnerbrownsteppe-like paleosols intercalated by a thin loess layer, in-dicate a shorter and/or less warm and humid interstadialperiod,mostlikelycorrelatingtothe5asubstage.Thesub-divisionof the redpaleosolsonSusak is stillnotpossible;detailed investigations are required. These different pale-osoltypesindifferentgeographicalregionsareaclearevi-dence for different paleoclimatic conditions during coevalperiods.

IntheCarpathian(Pannonian)basinOIS4isrepresentedonlyby loessdeposition(Fig.9),whileonSusaktheEarlyPleniglacialrecordisprobablyincomplete.Athinloesshori-zonintercalatedwiththinbrownpaleosolsandoccasionallywith sand is exposed at the Bok section. The loess cover-ingtheorange-brownpaleosolintheBok1section(Fig.7)canalsobecorrelated toOIS4.LoessaccumulationduringOIS4 is also evidenced in theVal Sorda section in a smallamount (Ferraro, 2009). Novothny et al. (2011) reportedanincreaseinsandcontentfortheLowerPleniglacial(OIS4)loessduetoacolderanddrierclimateandincreasedwindintensityinSüttő.

In the Pannonian (Carpathian) basin OIS3 is character-ised by soil development during the interstadials alternat-ing with loess accumulation during stadials. In Zmajevac(Fig. 9) in Eastern Croatia, one weakly developed pale-osolcorrelatestoOIS3(Galovićetal.,2009).InloessfromSerbia the Middle Pleniglacial (OIS3) is represented by aweaklydevelopedpaleosolcomplex(calledL1S1inSerbianstratigraphy,Marković,Kostić&Oches,2004;Markovićet al., 2004, 2005, 2006, 2007, 2008, 2009).A single,weaklydeveloped chernozem is described from the Ruma section(Marković et al., 2006), a weakly developed double pale-osolatthePetrovaradinbrickyard(Markovićetal.,2005),the Batajnica (Marković et al., 2009) and Irig sections(Marković et al., 2007) and multiple paleosol at the StariSlankamen(Schmidtetal.,2010)andSurduk(Antoineetal.,2009)sections(Fig.9).InHungary,Novothnyetal.(2011)reportedabrownpaleosolinSüttő,previouslytermedMF1intheHungarian loessstratigraphy(Novothny,Horváth&Frechen,2002;Frechen,Horváth&Gábris,1997).OnSusak, increased dust deposition interrupted by many soilforming periods is evidenced for the Middle Pleniglacialperiod.InthebayofBokonSusakatleastfivethinbrown

paleosols are intercalated in the loess but it is even verylikely that more of such weak paleosols are present. Be-side these weakly developed paleosols, two thick brownpaleosolsarepresentaswell,possiblycorrelatingwiththeHengelo or Denekamp Interstadials of the NW Europeanstratigraphy, both correlating to OIS3. The great thicknessoftheOIS3depositsonSusakistheresultofthegenerallyincreaseddustaccumulationinEurope(Frechen,Oches&Kohfeld, 2003;Machalettet al., 2008) aswell as a suit-ablegeographicalandmorphologicalpositionintheNorthAdriatic basin, which was very likely a vast plateau witha largematerial input fromtheextendedfloodplainof theriver Po and its tributaries. The numerous paleosols giveevidencethattheclimateonSusakwasmilderthanintheCarpathian basin. Three brown paleosols are described intheValSordasequenceinNorthItaly(Ferraroetal.,2004;Ferraro, 2009). Novothny et al. (2011) concluded that atSüttőtheclimatehadanintermediatecharacter,whichwasbetween thewetterclimate in theWesternEuropean loesssequences and the drier loess successions in the southernCarpathian basin. A relatively“warmer” climate was pro-posed for the Irig section in Vojvodina by Marković etal. (2007). On Susak, loess deposition was continuous andintensivefromOIS3to2,ifcomparedwiththeCarpathianbasin. Based on the numerous paleosols found intercalat-ingaeoliandepositsonSusakaneven“warmer”climate isassumedfortheNorthAdriaticarea.

6 Conclusion

Asapartofanongoingmultidisciplinarystudy, IRSLdat-ing of loess-paleosol sequences from Susak was appliedto provide a detailed geochronological framework. Theresults indicate that the deposits on Susak are a very de-tailed Last Glacial-Interglacial record.Within error limits,theresultsareinstratigraphicorder,showingaquasi-con-tinuous record spanning from OIS5 (and possibly OIS6 orolder)toOIS2.ThemostimpressivesequenceistheMiddlePleniglacial (OIS3)record, includingevidencefor intensivedust accumulation, interrupted by numerous soil formingprocessesandtwovolcanicevents.TheIRSLdatingresultsareinexcellentagreementwiththeradiocarbondatingre-sults. Although dating results are consistent for both dat-ing methods, a more precise method should be used forestimating the volcanic activity. The grain size of the te-phras on Susak does not allow the use of the Ar-Ar dat-ing method. Nevertheless, mineralogical and geochemicalinvestigationsof the tephras (MikulčićPavlakovićetal.,2011)showedthatthevolcanisminvolvedcouldberelatedto the Italian volcanic provinces. The red paleosol cover-ing thecarbonatebasementonSusakcorrelatesat least toOIS5butanolderagecannotbeexcluded.Amoredetailedinvestigationregardingtheageoftheoldestexposedpale-osolisneeded.SuchredpaleosolsaretypicalforthewholeNorthAdriaticarea.

If the loessrecordonSusakiscorrelatedwiththeDan-ube loess-paleosol sequences of the Carpathian basin, thedifferencesareobvious.LoessdepositionintheCarpathianbasinwascontinuous,interruptedbyinterglacialorinters-tadialsoil-formingprocessesasevidencedbyinthickcon-tinuouspaleosollayers.OnSusakthedepositionofaeolian

Page 14: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

166 E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

sedimentwasmoreofteninterruptedbysoilformingproc-esses, as evidenced by the numerous paleosols, some ofthemarewelldeveloped,someprobablyrepresentingonlyinitial pedogenesis. The same major climatic shifts duringtheLastGlacialareresponsibleforthedevelopmentofthedepositsonSusak,asintheCarpathianandPannonianba-sin. The main difference is the aridity of the climate in-volved.TheclimateonSusakwasvery likelymorehumidandmilderthaninotherregions.

The detailed geochronological framework presentedin this work is an excellent base for future high-resolu-tioninvestigationsofclimateproxies.Suchstudiesare inprogress.

The loess-paleosol successiononSusakproves that theNorthAdriaticregionisaseparateanduniqueperiglacialenvironmentandshouldnotbeneglectedwheninvestigat-ingtheglobalGlacial-Interglacialevolution.

7 Acknowledgements

This research has been financed by the DAAD (Ger-man Academic Exchange Service); the Leibniz Institutefor Applied Geophysics (LIAG), Hannover, Germany;the Croatian Ministry of Science, Education and Sports,ProjectsNr. 0181001, 0183008 and 183-0000000-3201.Thisworkcouldnotbepossiblewithoutthehelpofcolleaguesof S3 from LIAG, especially Linto Alappat and Alexan-der Kunz. The authors wish to thank Dr. Lidija Galovićformany fruitful discussions andher support and to IraWacha-BiličićforcorrectingEnglish.HelpfromDr.Franc-escaFerraroandProf.Dr.DavorPavelić,whosupplieduswiththeneededliterature,isappreciated.WearegratefultoProf.Dr.GoranDurnandDr.ÁgnesNovothnyfortheircriticismandconstructivecommentsofanearlierversionofthemanuscript.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

15.8 ± 1.67.6 ± 0.5

27.2 ± 2.0

31.3 ± 1.9

35.0 ± 2.2

62.4 ± 4.1

66.9 ± 3.9

146108186

66.3 ± 4.1

19.7 ± 2.1

36.3 ± 3.931.8 ± 3.4

39.8 ± 4.5

53.4 ± 5.6

53.1 ± 5.5

82.6 ± 9.0

120.7 ± 13.7

66.0 ± 7.4

VS

0

VS

0V

L2

VL

2V

S1

VL

1L

1

VL

1L

1

VL

1S

1V

L1

L2

VL

1L

2V

L1

S1

VS

1

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxx

+++++++++++++++++++++++

79.1 ± 5.793.3 ± 7.098.3 ± 7.3

54.3 ± 4.9

52.8 ± 4.048.2 ± 3.6

41.2 ± 3.6

39.0 ± 3.332.9 ± 2.5

31.0 ± 2.3

26.3 ± 2.026.8 ± 2.031.0 ± 2.329.9 ± 2.2

25.3 ± 1.9

24.6 ± 1.8

22.4 ± 1.8

22.8 ± 1.7

18.1 ± 1.4

SusakBok

17.8 ± 1.9

217 ± 22

121 ± 12

101 ± 10

68.6 ± 6.9

61.0 ± 6.2

48.9 ± 5.0

20.2 ± 2.1

16.7 ± 1.8

Zmajevac Surduk

18.0 ± 2.222.1 ± 1.6

25.9 ± 3.227.1 ± 2.4

34.7 ± 4.7

55.2 ± 5.958.3 ± 4.753.2 ± 2.175.3 ± 4.771.5 ± 5.7

84.1 ± 5.7

93.7 ± 21.1

137 ± 23125 ± 20

116 ± 15

137 ± 25138 ± 8

106 ± 13

SüttõStari

Slankamen

OIS

2O

IS3

OIS

4O

IS5

Last

Gla

cial

OIS

6

18.7 ± 2.129.9 ± 3.136.0 ± 5.0

63.3 ± 6.7

Val Sorda

Cretaceous limestones withcracks filled with Terra Rossa

septarian concretions

rhizoconcretions

sandstone bench

red (double) paleosol

orange-brown paleosol

till covering laminated glacialsediment and reworked loesswith pebbles

brown loess intercalated withthree chernosem paleosolsat Val Sorda

colluvial unit

LEGEND

xxxxxx

xxxxxxxxxxxxx

+++++

brown paleosol

travertine at Süttõ

dark brown paleosol

grey, stratified sandy loess

loess

sand

laminated sediment

old tephra (TF1)

accumulations of middle tephra (TF2)in brown paleosol

young tephra (TF3)

Fig. 9: Bok section, selected to be the most representative section on Susak, correlated with the Val Sorda section in North Italy (Ferraro, 2009), Zmajevac in East Croatia (Galović et al., 2009), Stari Slankamen (Schmidt et al., 2010) and Surduk (Antoine et al., 2009; Fuchs et al., 2008) in Serbia and Süttő in Hungary (Novothny et al., 2009; 2010).

Abb. 9: Der Aufschluss Bok mit der für Susak repräsentativsten Löss-/Paläobodenabfolge und die Korrelation mit den Aufschlüssen Val Sorda in Norditalien (Ferraro, 2009), Zmajevac in Ostkroatien (Galović et al. 2009), Stari Slankamen (Schmidt et al., 2010) und Surduk (Antoine et al., 2009; Fuchs et al., 2008) in Serbien und Süttö in Ungarn (Novothny et al., 2009, 2010).

Page 15: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

167E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

8 References

Adamiec,G.&Aitken,M.J.(1998):Dose-rateconversionfactors:update.–AncientTL,16:37–50.

Aitken,M.J.(1985):ThermoluminescenceDating.–351S.;London,(Aca-demicPress).

Aitken, M.J. (1998): An introduction to optical dating. – 280 S.;Oxford,(OxfordUniversityPress).

Amorosi,A.,Colalongo,M.L.,Pasini,G.&Preti,D.(1999):SedimentaryresponsetoLateQuaternarysea-levelchanges in theRomagnaplain(northernItaly).–Sedimentology,46:99–121.

Antoine, P., Rousseau, D.D., Fuchs, M., Hatté, C., Gauthier, C.,Marković,S.B., Jovanović,M.,Gaudenyi,T.,Moine,O.&Rossig-nol,J. (2009):High-resolutionrecordofthelastclimaticcycleinthesouthernCarpathianBasin(Surduk,Vojvodina,Serbia).–QuaternaryInternational,198:19–36.

Auclair,M.,Lamothe,M.&Huot,S.(2003):Measurementofanomalousfading for feldspar IRSL using SAR. – Radiation Measurements, 37:487–492.

Bognar,A.(1979):Distribution,propertiesandtypesofloessandloess-likesedimentsinCroatia.–ActaGeologicaAcademiaeScientiariumHun-garicae,22:267–286.

Bognar,A.,Klein,V.,Tončić-Gregl,R.,Šercelj,A.,Magdalenić,Z.&Culiberg,M.(1983):KvartarnenaslageotokaSuskaiBaškenaotokuKrkuinjihovogeomorfološkoznačenjeutumačenjumorfološkeevolu-cijekvarnerskogprostora.–Geografskiglasnik,45:7–32.

Bognar,A.,Klein,V.,Mesić,I.,Culiberg,M.,Bogunović,M.,Sarkotić-Šlat, M. & Horvatinčić, N. (1992): Quaternary sands at the south-easternpart of theMljet Island.– In:Bognar,A. (ed.): Proceedingsof the International Symposium“Geomorphology and Sea” and theMeetingoftheGeomorphologicalCommissionoftheCarpatho-BalcanCountries:99–110;Zagreb(UniversityofZagreb).

Bognar, A. & Zámbó, L. (1992): Some new data of the loess genesis onSusakisland.–In:Bognar,A.(ed.):ProceedingsoftheInternationalSymposium‘‘GeomorphologyandSea’’andtheMeetingof theGeo-morphologicalCommissionoftheCarpatho-BalcanCountries:65–72;Zagreb(UniversityofZagreb).

Bognar, A., Schweitzer, F. & Kis, E. (2002): The Reconstruction of thePaleoenvironmental History of the Northern Adriatic Region Usingof the Granulometric Properties of Loess Deposits on Susak Island,Croatia.–Special issueof thefifthInternationalConferenceongeo-morphologyLoessandeoliandust,23/5:795–810.

Bognar,A., Schweitzer, F.&Szöőr,G. (2003): Susak– environmentalreconstructionofaloessislandintheAdriatic.–141S;Budapest,(Geo-graphicalResearchInstitute,HungarianAcademyofSciences).

Bokhorst,M.&Vandenberghe,J. (2009):Validationofwigglematchingusing a multi-proxy approach and its palaeoclimatic significance. –JournalofQuaternaryScience,24/8:937–947.

Borović, I., Marinčić, S., Majcen, Ž. & Magaš, N. (1977): OsnovnageološkakartaSFRJ1:100000.TumačzalistoveVisK33-33Jelsa33–34Biševo33-35.–67S;Beograd(Institutzageološkaistraživanja,Zagreb1968,SaveznigeološkizavodBeograd).

Bøtter-Jensen, L., McKeever, S.W.S. &Wintle, A.G. (2003): Opticallystimulatedluminescencedosimetry.–355S.;Amsterdam(Elsevier).

Bronger, A. (1976): Zur quartaeren Klima- und Landschaftsentwicklungdes Karpatenbeckens auf (palaeo)-pedologischer und bodengeogra-phischerGrundlage.–45S.;Kiel(KielerGeographischeSchriften).

Bronger,A.(2003):Correlationofloess-paleosolsequencesinEastandCen-tralAsiawithSECentralEurope: towardsa continentalQuaternarypedostratigraphyandpaleoclimatichistory.–QuaternaryInternation-al,106/107:11–31.

Bronger, A. & Heinkele,Th. (1989): Micromorphology and Genesis ofPaleosolsintheLuochuanLoessSection,China:PedostratigraphicandEnvironmentalImplications.–Geoderma,45:123–143.

Buylaert,J.P.,Murray,A.S.,Vandenberghe,D.,Vriend,M.,DeCorte,F.&Vandenhaute,P.(2008):OpticaldatingofChineseloessusingsand-sizedquartz:Establishinga timeframeforLatePleistocenecli-matechangesinthewesternpartoftheChineseLoessPlateau.–Qua-ternaryGeochronology,3/1–2:99–113.

Coudé-Gaussen,G.(1990):Theloessandloess-likedepositsalongthesidesofthewesternMediterraneanSea:geneticandpalaeoclimaticsignifi-cance.-QuaternaryInternational,5:1–8.

Cremaschi,M.(1987):LoessdepositsofthePoplainandtheadjoiningAdri-aticbasin(NorthernItaly).–In:Pecsi,M.&French,H.D.(eds.):LoessandPeriglacialPhenomena:125–140,Budapest(AkademiaiKiado).

Cremaschi,M.(1990):Stratigraphyandpalaeoenviromentalsignificanceof

theloessdepositsonSusakIsland(Dalmatianarchipelago).–Quater-naryInternational,5:97–106.

Cremaschi,M.,Fedoroff,N.,Guerreschi,A.,Huxtable,J.,Colombi,N.,Castelletti,L.&Maspero,A. (1990):SedimentaryandpedologicalprocessesintheUpperPleistoceneloessofNorthItaly.TheBagaggerasequence.–QuaternaryInternational,5:23–38.

DeVivo,B.,Rolandi,G.,Gans,P.B.,Calvert,A.,Bohrson,W.A.,Spera,F.J.&Belkin,H.E.(2001):NewconstraintsonthepyroclasticeruptivehistoryoftheCampanianvolcanicPlain(Italy).–MineralogyandPe-trology,73:47–65.

Ding,Z.L.,Xiong,S.F.,Sun,J.M.,Yang,S.L.,Gu,Z.Y.&Liu,T.S. (1999):Pedostratigraphy andpaleomagnetismof a ~7.0Ma eolian loess–redclay sequenceatLingtai,LoessPlateau,north-centralChinaand theimplicationsforpaleomonsoonevolution.–Palaeogeography,Palaeo-climatology,Palaeoecology,152:49–66.

Durn,G.,Ottner,F.&Slovenec,D.(1999):Mineralogicalandgeochemi-calindicatorsofthepolygeneticnatureofterrarossainIstria,Croatia.–Geoderma,91/1–2:125–150.

Durn,G. (2003):Terra rossa in theMediterraneanregion:Parentmateri-als,compositionandorigin.–GeologiaCroatica,56/1:83–100.

Durn,G.,Ottner,F.,Tišljar,J.,Mindszenty,A.&Barudžija,U.(2003):Regional Subaerial Unconformities in Shallow-Marine CarbonateSequences of Istria: Sedimentology, Mineralogy, Geochemistry andMicromorphology of Associated Bauxites, Palaeosols and Pedo-sedi-mentaryComplexes.–In:Vlahović, I.&Tišljar, J. (eds):Evolutionofdepositional environments from thePalaeozoic to theQuaternary intheKarstDinaridesandthePannonianBasin.–Fieldtripguidebookofthe22ndIASMeetingofSedimentology:209–255;Zagreb(InstituteofGeology).

Durn, G., Aljinović, D., Crnjaković, M. & Lugović, B. (2007): Heavyand light mineral fractions indicate polygenesis of extensive terrarossa soils in Istria, Croatia. – In: Mange, M. & Wright, D. (eds.):HeavyMineralsinUse,DevelopmentsinSedimentology,58:701–737,Amsterdam(Elsevier).

Fairbanks,R.G.,Mortlock,R.A.,Chiu,T.-C.,Cao,L.,Kaplan,A.,Guil-derson,T.P.,Fairbanks,T.W.&Bloom,A.L.(2005):Marineradiocar-boncalibrationcurvespanning0to50,000yearsB.P.basedonpaired230Th/234U/238Uand14Cdatesonpristinecorals.–QuaternarySci-enceReviews,24:1781–1796.

Ferraro,F. (2009):Age,sedimentationandsoilformationintheValSor-da loess sequence, Northern Italy. – Quaternary International, 204:54–64.

Ferraro,F.,Terhorst,B.,Ottner,F.&Cremaschi,M.(2004):ValSorda:an upper Pleistocene loess–palaeosol sequence in northeastern Italy.–RevistaMexicanadeCienciasGeológicas,24/1:30–47.

Fortis,A. (1771):Saggiod´osservazionisopra l´isoladiChersoedOsero.–167S.;Venezia.

Frechen, M., Horváth, E. & Gábris, G. (1997): Geochronology of Mid-dle and Upper Pleistocene loess sections in Hungary. – QuaternaryResearch,48/3:291–312.

Frechen,M.,Oches,E.A.&Kohfeld,K.E.(2003):LoessinEurope-massaccumulationratesduringtheLastGlacialPeriod.–QuaternarySci-enceReviews,22/18–19:1835–1857.

Fuchs, M., Rousseau, D.-D., Antoine, P., Hatté, C., Gauthier, C.,Marković,S.&Zoeller,L (2008):Chronologyof theLastClimaticCycle (Upper Pleistocene) of the Surduk loess sequence,Vojvodina,Serbia.–Boreas,37:66–73.

Galović, L., Frechen, M., Halamić, J., Durn, G. & Romić, M. (2009):Loess chronostratigraphy in Eastern Croatia – A first luminescencedatingapproach.-QuaternaryInternational,198/1–2:85–97.

Galović,I.&Mutić,R.(1984):GornjopleistocenskisedimentiistočneSla-vonije(Hrvatska).–RadJAZU,411:299–356;Zagreb.

Geyh, M.A. (1990): 14C dating of loess. - Quaternary International, 7/8:115-118.

Geyh,M.A.(2005):14Cdating-stillachallengeforusers?–ZeitschriftfürGeomorphologie,NeueFolge,Supplementband139:63–86.

Gorjanović-Kramberger, D. (1912): Iz prapornih predijela Slavonije. –Vijestigeološkogpovjerenstva,2:28–30;Zagreb.

Gorjanović-Kramberger, D. (1915): Die HydrographischenVerhältnisseder Lössplateaus Slavoniens. – Glasnik hrvatskoga prirodoslovnogadruštva,27:70–75;Zagreb.

Gorjanović-Kramberger,D.(1922):MorfologijskeihidrografijskeprilikeprapornihpredjelaSrijema, tepograničnihčesti županijevirovitičke.–Glasnikhrvatskogaprirodoslovnogadruštva,34:111–164;Zagreb.

Greenland Ice-CoreProject (GRIP)Members (1993):Climate instabil-ityduring the last interglacial period recorded in theGRIP ice core.–Nature,364:203–207.

Page 16: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

168 E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

Huntley,D.J.&Lamothe,M.(2001):UbiquityofanomalousfadinginK-feldspars,andthemeasurementandcorrectionforitinopticaldating.–CanadianJournalofEarthSciences38,1093–1106.

Kalac,K.,Bajraktarević,Z.,Marković,Z.,Barbić,Z&Gušić,I.(1995):Stratigrafija pliocensko-pleistocenskih sedimenata u bušotinamapodmorja Jadrana. – In:Vlahović, I.,Velić, I. & Šparica, M.: Pro-ceedings of the First Croatian Geological Congress, 1: 281–284; Za-greb(CroatianGeologicalInstitute).

Kišpatić, M. (1910): Der Sand von der Insel Sansego (Susak) bei Lussinund dessen Herkunft. – Verhandlungen geologischer Reichsanstalt,13:294–305;Wien.

Korolija, B., Borović, I., Marinčić, S., Jagačić, T., Magaš, N. &Milanović, M. (1977): Osnovna geološka karta SFRJ 1:100 000. –Tumač za list Lastovo K 33–46 Korčula K 33–47 Palagruža K 33–57.–53S.,Beograd(InstitutzageološkaistraživanjaZagreb1968,SaveznigeološkizavodBeograd).

Kovács, J. (2008):Grain-size analysis of theNeogene red clay formationinthePannonianBasin.–InternationalJournalofEarthSciences,97:171–178.

Lambeck,K.&Chappell,J.(2001):SealevelchangethroughtheLastGla-cialCycle.–Science,292:679–686.

Lambeck, K., Antonioli, F., Purcell, A. & Silenzi, S. (2004): Sea-levelchange along the Italian coast for the past 10.000 yr. – QuaternaryScienceReviews,23:1567–1598.

Lu,Y.C.,Wang,X.L.&Wintle,A.G. (2007):AnewOSLchronology fordustaccumulationinthelast130,000yrfortheChineseLoessPlateau.–QuaternaryResearch,67:152–160.

Lužar-Oberiter,B.,MikulčićPavlaković,S.,Crnjaković,M.&Babić,Lj. (2008):Variable sources of beach sands of north Adriatic islands:examplesfromRabandSusak.–GeologiaCroatica,61/2–3:379–384.

Machalett, B., Oches, E. A., Frechen, M., Zöller, L., Hambach, U.,Mavlyanova,N.G.,Marković,S.B.&Endlicher,W. (2008):Aeo-liandustdynamics incentralAsiaduringthePleistocene:Drivenbythe long-termmigration, seasonality, andpermanencyof theAsiaticpolar front. – Geochemistry, Geophysics, Geosystems, 9, Q08Q09,doi:10.1029/2007GC001938.

Mamužić, P. (1965): Osnovna geološka karta SFRJ 1:100 000. List LošinjL 33-155. Institut za geološka istraživanja, Zagreb, Savezni geološkizavod,Beograd.

Mamužić,P.(1973):OsnovnageološkakartaSFRJ1:100000.TumačzalistLošinj L 33–155. – 34 S; Beograd (Institut za geološka istraživanja,Zagreb,Saveznigeološkizavod,Beograd).

Marchesetti,C.(1882):Cennigeologicisul’isoladiSansego.–BollettinodellaSocieta´adriaticadiScienzeNaturali,7:289–304;Trieste.

Marković,S.B.,Kostić,N.S.&Oches,E.A.(2004):PalaeosolsintheRumaloesssection(Vojvodina,Serbia).–RevistaMexicanadeCienciasGe-ológicas,21:79–87.

Marković, S.B., Oches, E.A., Gaudenyi, T., Jovanović, M., Hambach,U., Zöller, L. & Sümegi, P. (2004): Paleoclimate record in the latePleistocene loess-palaeosol sequence at Miseluk (Vojvodina, Serbia).–Quaternaire,15:361–368.

Marković, S.B., McCoy, W.D., Oches, E.A., Savić, S., Gaudenyi, T.,Jovanović,M.,Stevens,T.,Walther,R., Ivanisević,P.&Galić,Z.(2005): Paleoclimate record in the upper Pleistocene loess-palaeosolsequence at Petrovaradin brickyard (Vojvodina, Serbia). – GeologicaCarpathica,56:545–552.

Marković, S.B., Oches, E., Sümegi, P., Jovanović, M. & Gaudenyi, T.(2006): An introduction to the middle and upper Pleistocene loess-palaeosol sequence at Ruma brickyard,Vojvodina, Serbia. – Quater-naryInternational,149:80–86.

Marković, S.B., Oches, E.A., McCoy, W.D., Frechen, M. & Gau-denyi, T. (2007): Malacological and sedimentological evidencefor ‘‘warm’’ glacial climate from the Irig loess sequence, Vojvo-dina, Serbia. – Geochemistry Geophysics Geosystems, 8, Q09008.doi:10.1029/2006GC001565.

Marković,S.B.,Bokhorst,M.P.,Vandenberghe, J.,McCoy,W.D.,Och-es, E.A., Hambach, U., Gaudenyi, T., Jovanović, M., Stevens, T.,Zöller,L.&Machalett,B. (2008):LatePleistocene loess-palaeosolsequencesintheVojvodinaregion,NorthSerbia.–JournalofQuater-naryScience,23/1:73–84.

Marković, S.B., Hambach, U., Catto, N., Jovanović, M., Buggle, B.,Machalett, B., Zöller, L., Glaser, B. & Frechen, M. (2009): Themiddle and late Pleistocene loess palaeosol sequences at Batajanica,Vojvodina,Serbia.–QuaternaryInternational,198:255–266.

Marković-Marjanović,J.(1976):KvartarnisedimentiostrvaHvara–Sred-njiJadran.–Glasnikprirodnjačkogmuzeja,A/31:199–214;Beograd.

Mikulčić Pavlaković, S., Crnjaković, M., Tibljaš, D., Šoufek, M.,Wacha, L., Frechen, M. & Lacković, D. (2011): Mineralogical andGeochemical Characteristics of Quaternary Sediments from the Is-landofSusak(NorthernAdriatic,Croatia).–QuaternaryInternation-al,234/1–2:32–49.

Mutić,R.(1967):PijesakotokaSuska.–GeološkiVjesnik20:41–57.Mutić,R.(1990):KorelacijakvartaraistočneSlavonijenaosnovipodataka

mineraloško-petrografskih analiza (Istočna Hrvatska, Jugoslavija) –DioII:Lesniravnjak.–ActaGeologica20/2:29–80;Zagreb.

Novothny, Á., Horváth, E. & Frechen, M. (2002): The loess profile atAlbertirsa, Hungary – improvements in loess stratigraphy by lumi-nescencedating.–QuaternaryInternational,95–96:155–163.

Novothny,Á.,Frechen,M.,Horváth,E.,Bradák,B.,Oches,E.A.,Mc-Coy,W.D. & Stevens, T. (2009): Luminescence and amino acid re-cemizationchronologyoftheloess-palaeosolsequenceatSüttő,Hun-gary.–QuaternaryInternational,198/1–2:62–76.

Novothny, Á., Frechen, M., Horváth, E., Krbetschek, M. & Tsu-kamoto, S. (2010): Infrared stimulated luminescence and radiofluo-rescence dating of aeolian sediments from Hungary. – QuaternaryGeochronology,5:114–119.

Novothny,A.,Frechen,M.,Horváth,E.,Wacha,L.&Rolf,C.,(2011):InvestigatingthepenultimateandlastglacialcyclesoftheSüttőloesssection (Hungary) using luminescence dating, high-resolution grainsize, and magnetic susceptibility data – Quaternary International,234/1–2:75–85.

Pavelić, D., Kovačić, M. &Vlahović, I. (2006): Periglacial aeolian-allu-vial interaction: Pleistocene of the Island of Hvar (Eastern Adriatic,Croatia).-In:Hoyanagi,K.,Takano,O.&Kano,K.(eds.):FromtheHighest to the Deepest. – Abstracts book of the 17th InternationalSedimentologicalCongress,VolumeA,Fukuoka.

Pavelić,D.,Kovačić,M.,Vlahović,I.&Wacha,L.:Pleistoceneaeolian–fluvialinteractioninasteepreliefkarsticcoastalbelt(IslandofHvar,EasternAdriatic,Croatia).–(submittedtoSedimentaryGeology).

Pécsi,M.(1990):Loessisnotjusttheaccumulationofdust.–QuaternaryInternational,7/8:1–21.

Pécsi,M.(1993):Quaternaryandloessresearch.–In:Bassa,L.,Keresztesi,Zs. & Lóczy, D. (eds.): Loess in Form, 2, 82 S; Budapest (HungarianAcademyofScience).

Peresani, M., Cremaschi, M., Ferraro, F., Falguères, C., Bahain, J.-J.,Gruppioni, G., Sibilia, E., Quarta, G., Calcagnile, L. & Dolo, J.-M.(2008):AgeofthefinalMiddlePalaeolithicandUluzzianlevelsatFumaneCave,Northern Italy,using14C,ESR,234U/230Thand ther-moluminescence methods. – Journal of Archaeological Science 35:2986–2996.

Poje,M.(1985):Prapornenaslagevukovarskogprofilainjihovastratigraf-skapripadnost.–GeološkiVjesnik,38:45–66.

Poje,M.(1986):Ekološkepromjenenavukovarskomprapornomravnjakuproteklihcca500.000godina.–GeološkiVjesnik,39:19–42.

Prescott, J.R. & Hutton, J.T. (1994): Cosmic ray contributions to doserates for luminescence and ESR dating: large depths and long-termtimevariations.–RadiationMeasurements,23:497–500.

Preusser,F.,Degering,D.,Fuchs,M.,Hilgers,A.,Kadereit,A.,Klasen,N.,Krbetschek,M.,Richter,D.&Spencer,J.Q.G.(2008):Lumines-cencedating:basics,methodsandapplications.–EiszeitalterundGe-genwart(QuaternaryScienceJournal),57/1–2:95–149.

Preusser, F., Chithambo, M.L., Götte,T., Martini, M., Ramseyer, K.,Sendezera,E.J.,Susino,G.J.&Wintle,A.G.(2009):Quartzasanat-uralluminescencedosimeter.–Earth-ScienceReviews,97:184–214.

Rees-Jones, J. (1995):Opticaldatingofyoungsedimentsusingfine-grainquartz.–AncientTL,13:9–14.

Roberts, H.M. (2008): The development and application of luminescencedatingtoloessdeposits:aperspectiveonthepast,presentandfuture.–Boreas,37:483–507.

Roberts, H.M., Muhs, D.R.,Wintle, A.G., Duller,G.A.T. & Bettis III,E.A. (2003): Unprecedented last-glacial mass accumulation rates de-terminedby luminescencedatingof loess fromwesternNebraska.–QuaternaryResearch,59:411–419.

Schmidt,E.,Machalett,B.,Marković,S.B.,Tsukamoto,S.&Frechen,M. (2010): Luminescence chronology of the upper part of the StariSlankamen loess sequence (Vojvodina, Serbia). – Quaternary Geo-chronology,5:137–142.

Singhvi, A.K., Bronger, A., Sauer,W. & Pant, R.K. (1989): Thermolu-minescencedatingof loess-paleosol sequences in theCarpathianba-sin (East-Central Europe): a suggestion for a revised chronology. –ChemicalGeology:IsotopeScienceSection,73:307–317.

Page 17: The Loess Chronology of the Island of Susak, Croatia · 2018-10-09 · Surduk Erdut Šarengrad Italy River Po Sava Drava Danube Danube Croatia Slovenia ZAGREB Austria Hungary Bosnia

169E&G / Vol. 60 / No. 1 / 2011 / 153–169 / DOI 10.3285/eg.60.1.11 / © Authors / Creative Commons Attribution License

Spell, T.L. & McDougall, I. (1992): Revisions to the age of the Brun-hes–MatuyamaBoundaryandthePleistocenegeomagneticpolaritytimescale.–GeophysicalResearchLetters,19/12:1181–1184.

Spooner,N.A.(1994):Theanomalousfadingofinfrared-stimulatedlumi-nescencefromfeldspars.–RadiationMeasurements,23,2/3:625–632.

Stevens,T.,Lu,H.,Thomas,D.S.G.&Armitage,S.J.(2008):Opticaldat-ingofabruptshiftsinthelatePleistoceneEastAsianMonsoon.–Ge-ology,36/5:415–418.

Surić,M.&Juračić,M.(2010):LatePleistocene-Holoceneenvironmentalchanges – records from submerged speleothems along the EasternAdriaticcoast(Croatia).–GelogiaCroatica,63/2:155–169.

Šandor,F. (1912): Istraživanjaprapora izVukovara,Bilogore i saRajne.–Vijestigeološkogpovjerenstva,2:103–107,Zagreb.

Šandor,F.(1914):PraporastinanosotokaSuska.–Vijestigeološkogpov-jerenstvaHrvatskeiSlavonije,3–4,Zagreb.

VanStraaten,L.M.J.U.(1970):HoloceneandLatePleistocenesedimenta-tionintheAdriaticSea.–GeologischeRundschau,60:106–131.

Wacha,L.,MikulčićPavlaković, S.,NovothnyÁ.,Crnjaković,M.&Frechen,M.(2011):LuminescenceDatingofUpperPleistoceneLoess

from the Island of Susak in Croatia. – Quaternary International,34/1–2:50–61.

Wacha, L., Frechen, M., Rolf, Ch. & Hambach, U. (in preparation):Thehigh-resolutiongrain-sizeandpalaeomagneticrecordoftheOIS3loessdepositsfromSusak,Croatia.

Wein N. (1977): Die Lössinsel Susak – eine naturgeographische Singu-larität in der jugoslawischen Inselwelt. – Petermanns geographischeMitteilungen,2:123–132;Gotha/Leipzig.

Wintle, A.G. (1973): Anomalous fading of thermoluminescence in min-eralsamples.–Nature,245:143–144.

Wintle, A.G. (1997): Luminescence dating: laboratory procedures andprotocols.–RadiationMeasurements,27:769–817.

Wintle,A.G.&Packman,S.C.(1988):ThermoluminescenceagesforthreesectionsinHungary.–QuaternaryScienceReviews,7:315–320.

Yang,S.L.&Ding,Z.L.(2004):Comparisonofparticlesizecharacteristicsof theTertiary“red clay” andPleistocene loess in theChineseLoessPlateau: implicationsfororiginandsourcesofthe“redclay”.–Sedi-mentology,51:77–93.