the magic of cubane

61
The Magic of Cubane! By DR ANTHONY MELVIN CRASTO Cubane [1] Pentacyclo[4.2.0.0 2,5 .0 3,8 .0 4,7 ]octane CAS 277-10-1 Cubane (C8H8) is a synthetic hydrocarbon molecule that consists of eight carbon atoms arranged at the corners of a cube, with one hydrogen atom attached to each carbon atom. A solid crystalline substance, cubane is one of the Platonic hydrocarbons. It was first synthesized in 1964 by Philip Eaton, a professor of chemistry at the University of Chicago. [2] Before Eaton and Cole's work, researchers believed that cubic carbon-based molecules could not exist, because the unusually sharp 90-degree bonding angle of the carbon atoms was expected to be too highly strained, and hence unstable. Once formed, cubane is quite kinetically stable, due to a lack of readily available decomposition paths. The other Platonic hydrocarbons are dodecahedrane and tetrahedrane.

Upload: anthony-melvin-crasto-phd-worlddrugtracker

Post on 28-Nov-2014

910 views

Category:

Education


9 download

DESCRIPTION

The magic of cubane by DR ANTHONY MELVIN CRASTO

TRANSCRIPT

Page 1: The magic of cubane

The Magic of Cubane! By

DR ANTHONY MELVIN CRASTO

Cubane[1]

Pentacyclo[4.2.0.02,5.03,8.04,7]octane

CAS 277-10-1

Cubane (C8H8) is a synthetic hydrocarbon molecule that consists of

eight carbon atoms arranged at the corners of a cube, with one hydrogen atom attached

to each carbon atom. A solid crystalline substance, cubane is one of the Platonic

hydrocarbons. It was first synthesized in 1964 by Philip Eaton, a professor of chemistry

at the University of Chicago.[2]

Before Eaton and Cole's work, researchers believed that cubic carbon-based molecules

could not exist, because the unusually sharp 90-degree bonding angle of the carbon

atoms was expected to be too highly strained, and hence unstable. Once formed, cubane

is quite kinetically stable, due to a lack of readily available decomposition paths.

The other Platonic hydrocarbons are dodecahedrane and tetrahedrane.

Page 2: The magic of cubane

Cubane and its derivative compounds have many important properties. The 90-degree

bonding angle of the carbon atoms in cubane means that the bonds are highly strained.

Therefore, cubane compounds are highly reactive, which in principle may make them

useful as high-density, high-energyfuels and explosives (for

example, octanitrocubane and heptanitrocubane).

Cubane also has the highest density of any hydrocarbon, further contributing to its

ability to store large amounts of energy, which would reduce the size and weight of fuel

tanks in aircraft and especially rocket boosters.

Researchers are looking into using cubane and similar cubic molecules

inmedicine and nanotechnology.

Synthesis

The original 1964 cubane organic synthesis is a classic and starts from 2-

cyclopentenone (compound 1.1 in scheme 1):[2][3]

Reaction with N-bromosuccinimide in carbon tetrachloride places an allylic bromine

atom in 1.2 and further bromination with bromine in pentane -methylene chloride gives

the tribromide 1.3. Two equivalents of hydrogen bromide are eliminated from this

compound with diethylamine in diethyl ether to bromocyclopentadienone 1.4

Page 3: The magic of cubane

In the second part (scheme 2), the spontaneous Diels-Alder dimerization of 2.1 to 2.2 is

analogous to the dimerization of cyclopentadiene to dicyclopentadiene. For the next

steps to succeed, only the endo isomer should form; this happens because the bromine

atoms, on their approach, take up positions as far away from each other, and from the

carbonyl group, as possible.

In this way the like-dipole interactions are minimized in the transition state for this

reaction step. Both carbonyl groups are protected as acetals with ethylene glycol and p-

toluenesulfonic acid inbenzene; one acetal is then selectively deprotected with

aqueous hydrochloric acid to 2.3

In the next step, the endo isomer 2.3 (with both alkene groups in close proximity) forms

the cage-like isomer 2.4 in a photochemical [2+2] cycloaddition.

The bromoketone group is converted to ring-contracted carboxylic acid 2.5 in

a Favorskii rearrangement with potassium hydroxide. Next, the

thermal decarboxylation takes place through the acid chloride (with thionyl chloride)

and thetert-butyl perester 2.6 (with t-butyl hydroperoxide and pyridine) to 2.7;

afterward, the acetal is once more removed in 2.8. A second Favorskii rearrangement

gives 2.9, and finally another decarboxylation gives 2.10 and 2.11.

Page 4: The magic of cubane

The cube motif occurs outside of the area of organic chemistry. Prevalent non-organic

cubes are the [Fe4-S4] clusters found pervasively iron-sulfur proteins. Such species

contain sulfur and Fe at alternating corners. Alternatively such inorganic cube clusters

can often be viewed as interpenetrated S4 and Fe4 tetrahedra. Many organometallic

compounds adopt cube structures, examples being (CpFe)4(CO)4, (Cp*Ru)4Cl4,

(Ph3PAg)4I4, and (CH3Li)4.

Page 5: The magic of cubane
Page 6: The magic of cubane

It was mentioned previously that cubane was first prepared in 1964 by Dr. Philip E.

Eaton. He was partnered by Thomas W. Cole and together they successfully completed

the first synthesis, shown schematically below:

Page 7: The magic of cubane

This, however, was soon simplified by N.B.Chapman who condensed the process to give

cubane-1,4-dicarboxylic acid in five steps and so cubane in six:

Page 8: The magic of cubane

In 1966 J C Barborak et al discovered yet another new synthesis of cubane. It was

slightly unconventional in the fact that it utilised cyclobutadiene as a key substance to

the process.

Before this,cyclobutadiene was usually unavailable for the purposes of organic

chemistry due to it's instability. The shorter synthesis is shown below:

Page 9: The magic of cubane

Since the synthesis of the cubane-1,4-dicarboxylic acid has become shorter and easier,

a new decarboxylation method has also devised to give increased yields of the final

cubane product.

This has allowed the scale of production reach multikilogram batches in places

(Fluorochem in California and EniChem Synthesis in Milan) eventhough cubane and its

derivatives remain expensive to purchase.

Cuneane may be produced from cubane by a metal-ion-catalyzed σ-bond

rearrangement.[4][5]

Page 10: The magic of cubane

Cubane is a unique molecule for its extraordinary C8 cage, very high

symmetry,exceptional strain and unusual kinetic stability. The particular appeal of

cubane,referred to as a landmark in the world of impossible compounds, stems from

therehybridization of the carbon atoms away from the canonical sp3 configuration,that

is required to bound together eight CH units in a cubic framework.

There is now a revival of interest on the chemistry of cubane and its functionalized

derivatives,triggered by potential applications as high-energy fuels, explosives and

propellantsand intermediates in pharmaceuticalpreparations.Let us now discover the

synthesis and properties of this landmark molecule of impossible chemistry

Page 11: The magic of cubane

Cubanehas the highest strain energy (166kcal/mol) of any organiccompounds available in multi gram amount. It is a

kineticallystable compound and only decomposite above 220 Celsius Degree.It is also one of the most dense

hydrocarbons ever know.However, although many physical properties of cubane have been measured, in1980 and

before, cubane was considered just a laboratory curiosity of interest only to academics.It changed, in early 1980s

when Gilbert of U.S ArmyArmament and Development Command (now ARDEC) pointed out that cubane'svery

high heat of formation and its exceptionally high density could make certain cubanederivatives important

explosives. The effectiveness of an explosive is dependent on the

energentics of the decomposition reaction,

the number of moles and molecular weight of the gaseous products and also the density.

The more mols of of an explosive that can be packed into the limited volume the better. .

Highly nitrated cubanes can be predicted to be very dense and very powerful explosives.

Octanitrocubane is calculated to be 15~30%more powerful

than HMX.

Cubane, which CA index name is

Pentacyclo[4.2.0.02,5.03,8.04,7]octane (7CI,8CI,9CI),has exceptional structure, strain and

Page 12: The magic of cubane

symmetry and it is a benchmark in organic chemistry.It

has been studied extensively and much of its properties has been published.Some of the physical properties are

given at right hand table.

The C-C bond length is a bit longer than obtained in the original X-ray structure

determination by

Fleischer in 1964. There is not much difference between this bond length and the

C-C bond length in a simple cyclobutane.

Page 13: The magic of cubane

SYNTHESIS

The cubane system was first synthesized over 35 years ago by Philip Eaton and Tom

Cole.

It is a highly symmetric cubic cage structure having carbon atoms at the vertices of a

cube.

The synthesis needs to go through brombromocyclopentadienone

dimer I and cubane-1,4,dicarboxylic acid. It is a marvel scheme of economy and

simplicity.

With only minor modification, this procedure remains to this day the best available

method for large-scale synthesis of cubane-1,4,dicarboxylic acid.

Page 14: The magic of cubane
Page 15: The magic of cubane

The stereospecific in situ [4 + 2] (Diels-Alder) cyclodimerization of 4-bromocyclo-

pentadienone

is the key in this kinetically controlled synthesis. However, it is still a tricky matter

and a few years later after this synthesis is published, N.B.Chapman et al in England

following up

this work and improved this synthesis.

Why cubane is stable?

The reason for this, unappreciated at the time of the early predictions of instability, is that there are no kinetically viable paths along which cubane can rearrange thermally.

On one hand, orbital symmetry considerations raise the energy of concerted two-bond ring opening reactions. On theother, there is little to be gained by breaking just one bond as there is concomitantly only a small change in geometry, and the resulting biradical is still very strained.

Functional group transformation

Functional groups on the cubane system generally behaves very well.Functional group transformation can be applied successfully.For example, the preparation of 1,4-dinitrocubane from cubane-1,4-dicarboxylic acid.(The mechanism is provided on the right hand side.) Classical methodology is used here.

Page 16: The magic of cubane

Substitution on the cubane framework is fairly easy done by the cubyl radical.

However, the problem is such that a mixture of products are obtained.

Thus, to achieve controlled substitution on the cubane framework,

we need to carefully study the chemistry of the cubane system.

The improvement in synthesis of

cubane-1,4-dicarboxylic acid

Page 17: The magic of cubane

This is the improved synthesis by N.B Chapman et al in England.

Basically the improvement is such that the 2-bromocyclopentadienone could be made

easily and undergoes spontaneous dimerization.

The rest of the reaction is the same as the original one.

This synthesis now is scaled up and is conducted in small pilot plants by

Flurochem in California and EniChem Synthesis in Milan.

This method is much more superior than the old method. It is introduced by

Page 18: The magic of cubane

Derek Barton et al and use the radical-induced decomposition of diester which can be

prepared easily from cubane-1,4-dicarboxylic acid.

IMPROVEMENT

This method is much more superior than the old method. It is introduced by

Derek Barton et al and use the radical-induced decomposition of diester which can be

prepared easily from cubane-1,4-dicarboxylic acid

IR

Cubane is a colorless solid. It melts at 130- 131°C, and decomposes above the melting

point.

It is soluble in CS2, CC14, CHC13, and benzene.

Spectra were obtained from 400 to 3600 cm-l with a Beckman IR-12 spectrophotometer.

The lower limit was set by KBr cell windows. In addition a thick deposit of do was

measured down to 200 cm-lin a Csl cell. Since no infrared bands were found, the range

200-400 cm-l was not examined for the other compounds.

The spectral slit widths were 1-2 cm-l in all cases.

In the infrared spectrum, there are only noticeable absorptions in the region from

4000 to 660 cm-1appear at 300,1231, and 851 cm-1.

Page 19: The magic of cubane

Generally, for single-line proton magnetic resonance spectrum, the one

and only absorption appears at chemical shift=6.0ppm.

Originally there was doubt whether cubane does exist.

The geometry at each carbon atom is far from tetrahedral.

Only later, we found out that there is no kinetically viable paths exist for

the thermal rearrangement of cubane.

At same time, orbital symmetry considerations shows that the energy of concerted two-

bond ring-opening reactions is very high.

There will be very little gain in energy by breaking just one bond, as the

concomitant change in geometry is small, and the resulting biradical is still very strained

In 1964 Fleischer showed that cubane forms a stable solid at room temperature with a

Page 20: The magic of cubane

crystalline structure composed of cubane molecules occupying corners of the

rhombohedral primitive unit cell (space group R3). The cubic molecular geometry gives

the solid many unusual electronic,structural, and dynamical properties compared to the

other hydrocarbons.

For example, solid cubane has a relatively high melting point temperature about 405 K!

and avery high frequency for the lowest-lying intramolecular vibrational mode (617 cm-

1). Recent work related to cubane has focused on solid cubane and cubane based

derivatives.Because of relatively weak intermolecular interaction the cohesive energy

relative to the constituent C8H8 is expected to be small, and most of the physical

properties of solid cubane are dominated by the properties of the C8H8molecule.

Pharmaceutical aspect of cubane

Because the cubane frame is rigid, substituent have precise spatial relationships to each

another.

Page 21: The magic of cubane

The distance across the cubane (the body diagonal) is almost the same as that between

the para

positions of the benzene ring. On cubane, on can add substituents in the "benzene

plane", as

well as above and below it, so to speak. This offers fascinating position possibilities for

the synthesis of new pharmaceuticals. A number of cubane derivatives have already

been obtained which shows interesting activity in anti-AIDS and anti-tumor screens.

Although the activity or the toxicity balance of cubane is yet not know, the cubane

system is not inherently toxic. Most of cubanes are biologically innocuous.

The research of cubane pharmaceutical has just began. At least now,

cubane is a biologically stable, lipophilic platform on which the chemist

can install a wide range of substituents in a variety of well defined special relationships.

Developments in drug design programs should allow the judicious choice.

Dipivaloylcubane: a cubane derivatized with keto, cyano, and amide groups,

shown on the left- exhibits moderate activity against human immunodeficiency virus

(HIV),

which causes AIDS, without impairing healthy cells.

Page 22: The magic of cubane

Polymers of cubane:

Optically transparent cubanes and cubylcubanes have been proposed as building

blocks for rigid liquid-crystal compounds. UV active cubanes, for example cubyl

ketones,

are readily transformed photochemically into coloured cyclooctatetraenes;this

transformation

can be used to permanent information storage.

Another example of UV active cubane, which can be used to synthesis liquid crystals.

Polymers with cubane in the backbone or as a pendant group along a polymer chain is

focused now.

The cubane subunits in these polymers can be rearranged easily to cycloctatetraenes.

It is expected that polycyclooctatetra can be converted in to polyacetylenes by

Page 23: The magic of cubane

the way of ring-opening metathesis polymerization. The polyacetylenes will have

properties

which are enhanced by the chain being intrinsically part of another polymer.

These properties including stability and extrudability and etc. A example is shown

below:

Cubane derivative could be the structural basis for a class of intrinsic small gap polymers.The small gap polymer could present intrinsic good

conductivity without doping,good nonlinear optical and photoelectric properties.Investigation of oligamers with up to six units of a conjugated

unsaturated cubane derivative,where all the hydrogen were removed, is carried out.The table below shows that the gap values in eV by EHT and

PM3.These values suggest to us that these structures could be used to design a newclass of polymers with very small gap.

Page 24: The magic of cubane

Explosive and fuels:

In the early 1980s Everett Gilbert of the U.S. Army Armament Research and

Development

Command (now ARDEC) pointed out that the nitrocarbon octanitrocubane (ONC),

then unknown, has a perfect oxygen balance, and in light of the properties of the

parent hydrocarbon cubane should have a very high heat of formation per CNO2 unit

and an exceptionally high density as well. His colleagues Jack Alster, Oscar Sandus

and Norman Slagg at ARDEC provided theoretical support for Gilbert's

brilliant insight and estimated that ONC would have a detonation pressure

significantly greater than HMX. Later, both statistical and computational

approaches predicted a density of 2.1 ± 2.2 g /cm3 for octanitrocubane,

greater than any other C, N, O compound.

Page 25: The magic of cubane

Is Cubane a really good explosives?

Quantitative evaluation of the potential of a candidate explosive before synthesis is very

difficult.

Currently, estimation of energetic properties relies on the empirically derived Kamlet

and Jacobs

equations:

In these equations the heat released by the decomposition, the number of moles of gas

produced,

Page 26: The magic of cubane

and the molecular

weight of these gases are all critical factors. Density too is crucial.

Obviously, the more molecules of a high-energy material that can be packed into the

limited

volume of a shell or rocket the better. Less obvious, but more important, density affects

the

detonation velocity of an explosive.

This is a specialized "linear" rate of reaction that ranges from 5 to 10 km/s in

explosives and affects the maximum detonation pressure, a direct measure of the

power of an explosive. For a given explosive, the detonation pressure is proportional

to the square of its density, so great effort is made to obtain the highest density form

of any particular explosive.

Quantitative evaluation of the potential of a candidate explosive before synthesis is very

difficult.

Currently, estimation of energetic properties relies on the empirically derived Kamlet

and Jacobs

equations:

Page 27: The magic of cubane

In these equations the heat released by the decomposition, the number of moles of gas

produced,

and the molecular

weight of these gases are all critical factors. Density too is crucial.

Obviously, the more molecules of a high-energy material that can be packed into the

limited

volume of a shell or rocket the better. Less obvious, but more important, density affects

the

detonation velocity of an explosive.

This is a specialized "linear" rate of reaction that ranges from 5 to 10 km/s in

explosives and affects the maximum detonation pressure, a direct measure of the

power of an explosive. For a given explosive, the detonation pressure is proportional

to the square of its density, so great effort is made to obtain the highest density form

of any particular explosive.

Numerous nitro compounds are employed commonly as military and commercial

explosives.

Page 28: The magic of cubane

There is a continuing search for more powerful and less shock-sensitive examples.

Such materials are also sought as potentially useful fuels and propellants.

Most interest is focused on high-density organic compounds that contain all of the

elements needed for combustion to gaseous products in the absence of air.

Nitrocubanes carrying five or more nitro groups contain enough oxygen to oxidize

all constituent carbon and hydrogen atoms to gaseous CO, CO2, or H2O.

Each of these, along with N2, "explodes" from the solid to 12 gaseous molecules.

The expansion from the dense solid to a lot of gas (much expanded by the released heat)

produces the desired effect in propellants and explosives. ONC has a "perfect"

oxygen balance and would produce (were the detonation completely efficient)

eight molecules of carbon dioxide and four of dinitrogen. As ONC has no

hydrogen, no water forms when it burns; when used as propellants such zero-hydrogen

compounds leave little or no visible smoke (steam) in the plume behind the rocket;

such "low-signature" rockets are difficult to track.

Page 29: The magic of cubane

On application of the Kamlet and Jacobs equations led ARDEC to predict that

octanitrocubane would be a very much better explosive (Table 1) than the classic

C-nitro compound trinitrotoluene (TNT), perhaps 15±30% better than the nitramine

HMX (the most powerful, commonly used military explosive), and at least competitive

with (and perhaps less shock-sensitive than) the newest experimental explosive CL-20

Page 30: The magic of cubane

SYNTHESIS:(1)

The high strain that the cubane framework is under has already been

highlighted. The researchers had to very cautiously attach a nitro group to

each of the corners of the cube in order to make the desired product. The

insertion of the first four nitro groups could be done by manipulating

functional groups:

Page 31: The magic of cubane

The key intermediate, cubane-1,3,5,7- tetracarboxylic acid (TNC), was

obtained by clever application of the Brown-Kharasch

photochlorocarbonylation to cubane mono-acid.

The addition of four further nitro groups proved far more difficult and new

methodologies had to be developed, specifically the process of interfacial

nitration. This method was used successfully to convert the sodium salt of

TNC to pentanitrocubane (PNC) and then hexanitrocubane (HNC), both are

stable materials.

Interfacial nitration, however, proved deficient for further nitration of HNC

and again new experimental methodology had to be developed for its

successful conversion to heptanitrocubane (HpNC):

Page 32: The magic of cubane

Addition of excess NOCl to a solution of the lithium salt of HpNC in dichloromethane at -

78°C gave the long-sought ONC:

DIFF TYPES

For the last planned post in my Unnatural Products series, I’m going to write about

Eaton’s 1981 synthesis of pentaprismane.[A] At the time, unnatural hydrocarbons were

hot targets, and as the next largest prismane on the list this target was the subject of

much research by groups around the world. Perhaps Eaton's biggest rivals were the

groups of Paquette and Petit, and in fact all three had, at various times, synthesised

hypostrophene as an intended precursor to the target.

Unfortunately, the ‘obvious’ [2 + 2] disconnection from pentaprismane turned out to be

a dead end and the photochemical ring closure was unsuccessful. The 1970s and early

Page 33: The magic of cubane

1980s saw the publication of a number of other similarly creative, but sadly ill-fated,

approaches based on various ring contractions, and the compound gained a well-earned

reputation for extraordinary synthetic inaccessibility.

Eaton’s route began, as with the cubane and dodecahedrane syntheses previously

covered in this series, with a Diels-Alder reaction. The diene used was the known

tetrachlorocyclopentadienone acetal shown that upon heating neat with benzoquinone

produced the endo adduct shown in excellent yield. Next, an even higher yielding

photochemical [2 + 2] reaction was used to close the cage-like structure by cyclobutane

formation. Treatment with lithium in liquid ammonia simultaneously reduced both

ketones and removed all four chlorine atoms. The resulting diol was converted to the

ditosylate, which, under carefully controlled conditions with sodium iodide in HMPA,

underwent a mono-Finkelstein reaction to give the iodotosylate shown. When this was

treated with t-BuLi halogen-lithium exchange, followed by an extraordinary

fragmentation, gave a diene reminiscent of hypostrophene shown above. However, the

extra carbon atom in the skeleton made all the difference, and unlike the parent

compound, this did undergo a [2 + 2] cycloaddition when exposed to UV light. Finally,

acetal hydrolysis gave homopentaprismane in 34% yield from benzoquinone, putting the

group a single ring contraction from victory.[B]

With significant amounts of homopentaprismanone in hand, the group now intended to

employ the transformation that had been the cornerstone of their cubane synthesis –

the Favorskii rearrangement. Unfortunately, this required the introduction of a leaving

group in the ketone α-position, a transformation made incredibly difficult due to the

strained system and Bredt’s rule, which prevented enolisation.[C] Eventually a six-step

sequence (!) to introduce a tosyloxy group was devised, beginning with a Baeyer-Villiger

reaction using m-CPBA. A remarkable CH oxidation with RuO4, generated in situ, then

gave the hydroxylactone. Treatment of this with diazomethane gave the corresponding

Page 34: The magic of cubane

δ-ketoester in almost quantitative yield. The group then reformed the starting

norbornane-like bridge through use of an unusual acyloin type reaction effected by

treatment with sodium in liquid ammonia. Finally, oxidation of the secondary alcohol

and tosylation gave the Favorskii precursor, apparently preparable in muti-gram

quantities.

Treatment with aqueous potassium hydroxide solution effected Favorskii

rearrangement in excellent yield, especially considering that this was the first time the

elusive pentaprimane ring system had been prepared. Finally, Eaton used the three-step

decarboxylation he had developed for cubane to remove the extraneous acid and give

pentaprismane in 18 steps. Awesome.[D]

References and suchlike

1. A J. Am. Chem. Soc., 1981, 103, 2134. Much like Eaton’s seminal cubane paper,

the title is a single word, ‘Pentaprismane’. I love the lack of hype.

2. B Although Petit had prepared this compound a full decade earlier, his

approach relied on a cycloaddition of the difficult to prepare cyclobutadieneiron

tricarbonyl with the acetal of tropone, and proved difficult to scale up. In fact, in

his own paper Eaton rather directly described it as ‘conceptually fascinating [but]

useless synthetically’.

3. C Eaton uses the phrase ‘invasion at the bridgehead’, which I find delightfully

evocative. Makes it sound like a second world war campaign. Apparently the

Page 35: The magic of cubane

group initially planned, in spite of Bredt’s rule, to deprotonate the bridgehead

position, relying on inductive stabilisation of the anion rather than enolate

formation, but were unable to do so.

4. D Pentaprismane is the most recent of three prismanes synthesised to date, the

other two being cubane, and triprismane. Although I think triprismane looks

quite silly, it was actually synthesised some 8 years previouslyby T. J. Katz in far

fewer steps. Go figure.

The Amide Activating Group

Page 36: The magic of cubane

The very first step of cubane frame substitution will be the activation of the cubane

frame.

This can be done by amides. The idea is derived from the similarities between cubane

and arenes.

Both of them have C-H bonds with enhanced s character ( see structure),

and in both the adjacent (ortho) substituents are forced to be coplanar.

A more specific example is the cubane-N,N-diisopropyl carboxamide

reacts with excess lithium tetramethylpiperidide (LiTMP) in THF solvent.

About 3% of the deuteriation products obtained.

The diisopropyl amide activating group is used because it is inert to the amide

bases employed for ortho metalation. Although there is a problem, there is

difficulty in hydrolyzed it the corresponding carboxylic acid.

The problem is finally solved by using borane reduction followed by the oxidation

of the amine so produced with dimethyldioxirane or potassium permanganate (in large

scale).

Transmetalation is the basis of a complete synthetic methodology for the preparation

Page 37: The magic of cubane

of a great variety of the substituted cubanes.

In order to make the substitution productively, a way must be found to

make use of the small amount of anion in the equilibrium with the starting material.

Mercury salt is used here as an effective anion trap and very little starting material

remain unreacted.

The mercury for lithium transmetalation resulted in nearly complete conversion of the

starting material by drawing the lithiation equilibrium to the right.

The amide group is important in stabilizing the intermediate lithiated cubane,

but not the mercuriated compound. Once the lithium is replaced by mercury,

the amide group is again able to assist removal of another ortho-hydrogen atom.

In the end, the complex ortho-mercurated product mixture obtained was

simplified by treatment with elemental iodine.

Page 38: The magic of cubane

The iodine cleavage of the carbon-mercury bonds 2-iodo and 2,6-diiodo derivatives

of the starting amide in72% and 15% respectively

Cubyl Grignard Reagents

From transmetalation, a reverse transmetalation was also developed, which is basically

adding Grignard reagent to the mercuriated cubane instead of the iodine. However,

these processes have a great main disadvantage, the mercury is highly toxic. Thus, scale

up of this method was limited.

In 1988, Bashir-Hashemi introduced transmetaltion with magnesium salts and thereby

provided easy access to cubyl mono-and bis-Grignard reagents. It is a reaction of cubane

diamide with an excess of LiTMP/MgBR2 in THF and quenching with I2 gave

diiodocubane diamide of 72% yield.

The effect of the presence of electron withdrawing group - Cyanide

When electron withdrawing group such as cynate present, they stabilize both

intermediate lithiated cubanes very well. As a result, only a small amount of LiTMP is

need to achieve fairly complete deprotonation even at -78°C.

Page 39: The magic of cubane

The inductive effect of the cyano group clearly enhances the reaction. However, the

adding of cyano groups results in competitive lithiation and a mixture of products.

However, this problem can be well trackled by adding MgBr2.The product ratio was

improved to 9:1 favoring carboxyliation ortho to the amide function.

A mixture of product formed.

Increased selectivity by adding MgBr2

Since the reactivity of cubane metalation is enhanced greatly with presence of cyano

groups, it is possible to substitute all three positions ortho to the amide in a simple

reaction. For instance, 4-cyanocubanamide can be converted directly into the tri(tert-

butylcarbonyl)derivative as shown below.

Through Baeyer-Villiger oxidation, ter-butyl cuybl ketones can be converted easily to the

polycarboxyliated cubane.

Page 40: The magic of cubane

PHENYL CUBANE

From the basis idea of cubyl Grignard Reagent, phenyl cubane can be synthesised. The

reaction of cubane diamide with 10 equiv of LiTMP and 4.0 equivalents of MgBr2

etherate in THF at 0°C followed by the addition of 10.0 equiv of bromobenzene, gave

diphenylcubane diamide in 53% yield.

The mechanism is shown below:

Page 41: The magic of cubane

The benzyne intermediate was formed in situ from the reaction of excess of LiTMP with

bromobenzene. For a similar reaction, MeMgBr is used and give 30% yield of bromo-

phenylcubane diamide, the first cubane derivative containing 3 different substituents.

Now, let us look the main concern of the cubane derivatives--the nitrocubanes.

Page 42: The magic of cubane

Nitrocubanes are sought to be powerful, shock-insensitive, high-density explosives.

They are stable compounds with decomposition points above 200°C. Simple

nitrocubane can be made from simple oxidation of amines( See Functional Group

Transformation.)

If we want to add more nitro groups into the cubane nucleus, we cannot do it though

transmetalation because there is unstoppable cage cleavage reactions when make

adjacent nitro groups. The ab initio calculation has confirmed this destabilising effect.

We are going to discuss how to make more and more substituted nitrocubane until

octanitrocubane(ONC), the ultimate power house, is synthesised.

1,3,5 trinitrocubane and 1,3,5,7 tetranitrocubane(TNC)

Page 43: The magic of cubane

As we mention early, addition of nitro groups cannot be done through direct

transmetalation. Thus, we need found some indirect route.

This is done by introducing a substituent on each of 3 ortho carbons and remove the

ortho-activating group in the end.

By adding a electron-withdrawing group such as a cyano group will help the case here.

This choice of original substituent is important here and when cyano group is chosen, it

activates the cubane nucleus without affecting the ortho directing by the diamide (for

details please refer to electron-withdrawing group-cyanite).

When the dicyano amide was treated with TMPMgBr in THF and quenched with CO2.

The ortho (to amide) carboxylic acid was the only product.

Even when the much activated tricyanoamide is treated with TMPMgBr and CO2 ,again,

the ortho position ( to amide) carboxylic acid was formed.

The removal of the carboxamido group is done through a smart yet tedious process. The

cyano group is converted to acid group first. Then, it is reduced to alcohol by lithium

aluminium hydride. At same time, the carboxamido is reduced to aminotetrol. The

alcohols are protected as acetates and amino tetrol is converted to carboxylic acid. The

carboxylic is then removed through Barton Decarboxylatio. A detail mechanism is

provided below.

Page 44: The magic of cubane

The cubane-1,3,5,7-teracarboxylic acid is converted to TNC on the mechanism as follow:

Page 45: The magic of cubane

The whole process is very clever, but it is very long. Thus, in 1997, a improved synthesis

method for TNC was proposed by making use of the photochemsitry.

Improved synthesis for TNC

In 1993, Bashir-Hashemi showed the cubane-1,3,5,7-tetracarboxylic acid chloride can

be formed by applying photochemically induced chlorocarbonyl cation( the

Kharasch_Brown Reaction).

For a fast reaction, a high power Hanovia of 450 watts, medium pressure Hg was used.

The favoured products are cubane tetraacid chloride shown on the right hand side. The

first one, cubane-1,3,5,7-tetracarboxylic acid, made up 30% overall. This reaction

conveniently prepare us the important versatile intermediate .

A detail conversion process is provided below:

Page 46: The magic of cubane
Page 47: The magic of cubane

A catalyst TMSN3 is used in converting tetraacid chloride to tetracylazide. The rest is the

same as the orginal reaction.

TNC is a thermodynamic powerhouse but remarkly stable kinetically. Figure 1 shows

that rapid thermal decomposition doesnot start until over 250°C.

Page 48: The magic of cubane

The literature was unsupportive of this optimistic view. Poor results were also obtained

initially with nitrating agent such as NO2BF4, acetyl nitrate, amyl nitrate etc.

Tetranitrocubylsodium can be formed directly on treatment of TNC with sodium

bis(trimethylsilyl) amide in THF at -75°C. It can react with electrophiles to provide a

useful and convenient way to achieve further functionalization of cubane nucleus.

More substituted nitrocubanes-

Pentanitrocubane(PNC) and Hexanitrocubane(HNC)

PNC

Base on the property of tetranitrocubylsodium, nitryl chloride(NO2Cl) was used to further nitrate the cubane nucleus. Treatment of NO2Cl with tetranitrocubylsodium in THF at -75°C works out

Page 49: The magic of cubane

10-15% yield of pentanitrocubane(PNC). The yield increased to 30% when the solution was frozen to-180°C and allowed to warm slowly. This is called the interfacial nitration process. It is suggested that NO2Cl oxidized tetranitrocubylsodium to a radical, which made the whole reaction worked.

Base on the property of NO2Cl , N2O4 should be a better choice. The results showed that

it is actually a better with 60:40 PNC to TNC ratio. The reaction is extremely clean.

PNC is colourless and highly crystalline. It is the first nitrated cubane to contain

adjacent nitro groups. It behaves just TNC and other nitrocubanes, remarkly stable

kinetically.

HNC

Although HNC can be prepared the same way as PNC, but the separation between PNC

and HNC is extremely difficult.

Page 50: The magic of cubane

However, if TIPS-substituted PNC( by N2O4 nitration from TIPS-sub TNC) react with

potassium base (K(TMSN)2and the nitration with N2O4 gave a mixture of (triisopropyl)

HNC and PNC in 60:40 ratio. This step is important and crucial. The separation is now

possible by column chromatography on silica gel. 30% isolated yield of PURE HNC

could be obtained when further treated with SiO2.

Synthesis for the last two nitro cubanes- heptanitrocubane and octanitrocubane

Interfacial nitration is not sufficient to further nitration for heptanitrocubane. Al though

it is very good in deed, we need to find something which can successfully convert

heptanitrocubane (HpNC).

HpNC

Page 51: The magic of cubane

In this procedure TNC was treated with at least 4 equivalents of the base

NaN(TMS)2 (where TMS = trimethylsilyl) at ±78 -C in 1:1 THF/MeTHF. After the mono

sodium salt had formed, the solution was cooled to between ±125 and ±130°-C giving a

clear, but very viscous fluid. This was stirred vigorously as excess N2O4 in cold

isopentane was added. After one minute, the base was quenched, and the whole mixture

was added to water. This resulted reproducibly in almost complete conversion of TNC (1

g scale) to HpNC (95% by NMR), isolated crystalline in 74% yield!

ONC

However, even in the presence of excess nitrating agent (N2O4 or many others) no

indication

of any formation of ONC was ever seen. It is suspected that anion nitration with

N2O4 proceeds by oxidation of the carbanion to the corresponding radical.Perhaps the

anion of HpNC is too stabilized for this to occur. (HpNC is significantly ionized in

neutral methanol.) This concept led to the use of the more powerful oxidant nitrosyl

chloride. Addition of excess NOCl to a solution of the lithium salt of HpNC in

dichloromethane at 78° -C followed by ozonation at 78° -C gave the long-sought ONC in

45±55% isolated yield on millimole scale. The intermediate product prior to oxidation is

thought to be nitrosoheptanitrocubane.

Page 52: The magic of cubane

Finally, the magic molecule, the so called the impossible molecule, octanitrocubane was

synthesised. But, how good are they and how useful are they? Let us discuss about it in

the following section.

Properties of nitrocubane:

Neither HpNC nor ONC is detonated by hammer blows!

Both have decomposition points well above 200 -C. Octanitrocubane

sublimes unchanged at atmospheric pressure at 200 -C. HpNC forms beautiful,

colorless, solvent-free crystals when

its solution in fuming nitric acid is diluted with sulphuric acid. Single-

crystal X-ray analysis confirmed the assigned structure and

provided an accurate density at 21 -C of 2.028 g cm±3, impressively

high for a C, H, N, O compound. Although octanitrocubane

catches the imagination with its symmetry, heptanitrocubane

currently is significantly easier to make than ONC. It is

denser, and it may be a more powerful, shock-insensitive explosive

than any now in use. According to page 41 of a 2004 IUPAC guide, cubane is the

"preferred IUPAC name."

1. ' 'Cubaneand Thomas W. Cole. Philip E. Eaton and Thomas W. Cole J. Am.

Chem. Soc.; 1964; 86(15) pp 3157 - 3158; doi:10.1021/ja01069a041.

2. The Cubane System Philip E. Eaton and Thomas W. Cole J. Am. Chem.

Soc.; 1964; 86(5) pp 962 - 964; doi:10.1021/ja01059a072

3. Michael B. Smith, Jerry March, March’s Advanced Organic Chemistry, 5 th Ed.,

John Wiley & Sons, Inc., 2001, p. 1459. ISBN 0-471-58589-0

4. K. Kindler, K. Lührs, Chem. Ber., vol. 99, 1966, p. 227.

• Eaton Cubane Synthesis @ SynArchive.com

• Cubane chemistry at Imperial College London

• Basketane

• Octaazacubane

• Octanitrocubane

Page 53: The magic of cubane

Dimethyl cubane-1,4-dicarboxylate

dimethyl 1,4-cubanedicarboxylate;

1,4-cubanedicarboxylic acid dimethyl*ester;

methyl 4-(methoxycarbonyl)pentacyclo[4.2.0.0<2,5>.0<3,8>.0<4,7>]octanecarboxylate

Pentacyclo(4.2.0.0(2,5).0(3,8).0(4,7))octane-1,4-dicarboxylic acid dimethyl ester

CAS 29412-62-2

Molecular Weight: 220.2213

Molecular Formula: C12H12O4

Density: 1.684g/cm3

Boiling Point(℃): 270°C at 760 mmHg

Page 54: The magic of cubane

Flash Point(℃): 131.3°C

refractive_index: 1.704

An interesting OPRD paper on the scale up of dimethyl cubane -1,4-dicarboxylate.

The work appeared in Organic Process Research and development,

2013, doi.org/10.1021/op400181g . It was carried out by an Australian group, John

Tsanaktsidis, Michael Falkiner, Stuart Littler, Kenneth McRae and Paul Savage

from CSIROand features a large-scale photochemical reaction which is very unusual to

see in a scaled chemical process.

Extending their previous work from 1997, they scaled the following reaction.

As is the norm with such reactions the reaction requires high dilution to be successful.

In this case they used a tailor made photochemical reactor. A solution of 1 in

methanol/water was pumped through the reactor at 4 L/minute and the conversion of 1

to 2 was noted as 1g/4 minutes of irradiation.

Page 55: The magic of cubane

This meant a total time of 173 hours. Further processing of 2 through the double

Favourskii ring contraction required significant development but eventually delivered

the di-sodium salt corresponding to the di-ester of cubane.

One needs to be careful with these cubanes as they are, due to the highly strained nature

of the system quite energetic materials, the do-acid and ester being more stable than the

parent hydrocarbon. However the energy released upon warming above the melting

point is not insignificant.

This paper represents a good demonstration of the scale-up of several very difficult

chemical reactions, including excellent descriptive paragraphs of the problems and

solutions. They are to be congratulated on a very nice piece of work.

See below

A scalable process for the preparation of high purity dimethyl 1,4-cubanedicarboxylate

(3) is reported.

The work described herein builds on previous synthetic work from this and other

laboratories, to provide a reliable process that can be used to prepare multigram

quantities of 3 in a partially telescoped, 8 step process, with minimal purification of

intermediates.

Pilot-Scale Production of Dimethyl 1,4-Cubanedicarboxylate

Michael J. Falkiner , Stuart W. Littler , Kenneth J. McRae , G. Paul Savage , and John Tsanaktsidis *

CSIRO Materials Science & Engineering, Ian Wark Laboratory, Bayview Avenue, Clayton Victoria

3168,Australia

Org. Process Res. Dev., 2013, 17 (12), pp 1503–1509

DOI: 10.1021/op400181g

Publication Date (Web): November 8, 2013

Page 56: The magic of cubane

http://pubs.acs.org/doi/full/10.1021/op400181g?prevSearch=cubane&searchHistoryKey=

Scheme 5. Pilot-Scale Synthesis of Dimethyl 1,4-Cubanedicarboxylate (3)

Figure 1. Cubane nucleus.

Step 5

A dry 100 L glass reactor was charged with the crude diacid 2 (1287 g), dry methanol (36

L), and Dowex ion-exchange resin 50WX8–100 (176 g) that was prewashed with 1 L of

methanol. This mixture was then stirred (150 rpm), and heated under reflux for 18 h

under an atmosphere of nitrogen. The mixture was then cooled to room temperature

and filtered to remove the resin. The methanol solution mixture was then evaporated to

dryness using a rotary evaporator (45 °C at 45 mmHg) leaving behind the crude

Page 57: The magic of cubane

diester 3 (863 g) as a dark brown solid. Purification by sublimation (100–120 °C/0.01

mmHg), followed by recrystallization from acetonitrile furnished the diester 3 (560 g,

30%), as a colorless solid,

mp 164.5 °C (lit. 161–162 °C).(47)

1H NMR δ: 3.7, s, 6H 4.24, s, 6H, ring protons.

13C NMR δ: 47.03, 51.55, 55.77, 171.89.

......................................

http://cst-www.nrl.navy.mil/lattice/struk/c8h8.html.

http://www.ch.ic.ac.uk/local/projects/b_muir/Enter.html.

http://www.sciencedirect.com.

http://www.sciencenews.org/.

http://www.winbmdo.com/.

Bashir-Hashemi, A., New developments in cubane chemistry: phenylcubanes.

Page 58: The magic of cubane

J. Am. Chem. Soc.;1988;110(21);7234-7235, 110(21), 7234-7235.

D.S.Calvao, p. m. v. b. B. A. C. J. a., Theooretical Characterization of oligocubane.

Synthetic Metals 102 (1999) 1410.

E. W. Della, E. F. M., H. K. Patney,Gerald L. Jones,; Miller, a. F. A.,

Vibrational Spectra of Cubane and Four

of Its Deuterated Derivatives.

Journal of the American Chemical Society / 101.25 / December 5, I979,7441-

7457.

Galasso, V., Theoretical study of spectroscopic properties of cubane.

Chemical Physics 184 (1994) 107-114.

Kirill A. Lukin, J. L., Philip E. Eaton,*,Nobuhiro Kanomata,Juirgen Hain,Eric

Punzalan,and

Richard Gilardi, Synthesis and Chemistry of 1,3,5,7-Tetranitrocubane Including

Measurement of Its Acidity, Formation of o-Nitro Anions, and

the First Preparations of Pentanitrocubane and Hexanitrocubane.

J. Am. Chem. Soc., Vol. 119, No. 41, 1997,9592-9602.

P.E.Eaton, Cubanes: starting Materials For the chemistry of 1990s and the New Century.

J. Am. Chem. Soc.;1992;31;1421-1436, 31, 1421-1436.

Philip E. Eaton, t. Y. X., t and Richard Gilardi*, Systematic Substitution on the Cubane

Nucleus.

Synthesis and

Properties of 1,3,5-Trinitrocubane and 1,3,5,7-Tetranitrocubane

Page 59: The magic of cubane

. J. Am. Chem. SOC.1993,115, 10195-10202.

Philip E. Eaton, R. L. G.; Zhang, a. M.-X., Polynitrocubanes: Advanced High-Density,

High-Energy Materials**. Adv. Mater. 2000, 12, No. 15, August 2.

Philip E. Eaton, Cubane: Starting Materials for the chemistry of the 1990s and the new

century.

Angew.Chem.Int.Ed.Engl.1992,31,1421-1436.

Philip E. Eaton, t. Y. X., t and Richard Gilardi*, Systematic Substitution on the Cubane

Nucleus.

Synthesis and

Properties of 1,3,5-Trinitrocubane and 1,3,5,7-Tetranitrocubane.

J. Am. Chem. SOC., Vol. 115, No. 22, 1993,10196-10202.

T. YILDIRIM, P. M. G., D. A. NEUMANN, P. E. EATONC and ‘T. EMRICK’, SOLID

CUBANE: A BRIEF REVIEW. Carbon Vol. 36, No. 5-6, pp. 809-815,1998.

Zhang, P. E. E. a. M.-X., Octanitrocubane: A New Nitrocarbon.

Propellants, Explosives, Pyrotechnics 27, 1 - 6 (2002).

COMPILED BY

DR ANTHONY MELVIN CRASTO Ph.D

[email protected]

Page 60: The magic of cubane

MOBILE-+91 9323115463

GLENMARK SCIENTIST , INDIA

web link

ABOUTME

BRAND ANTHONYCRASTO

COLLECTION OF SITE LINKS

http://amcrasto.bravesites.com/

http://anthonycrasto.jimdo.com/

Congratulations! Your presentation titled "Anthony Crasto Glenmark scientist, helping millions with websites"

has just crossed MILLION views.

アンソニー 安东尼 Энтони 안토니 أنتون���������ي

join my process development group on google

organic-process-development group

you can post articles and will be administered by me on the google group which is very popular across the world

https://sites.google.com/site/amcrasto/

SKILLPAGES

MIXXT

APNACIRCLE

LinkedIn group

SYNTHETIC ORGANIC CHEMISTRY

blogs are

• Green Chemistry International,

• Eurekamoments in Organic Chemistry ,

• WIX CHEMISTRY BLOG ,

• Drug regulatory affairs international

• ORGANIC CHEMISTRY SELECT

• ORGANIC SPECTROSCOPY INTERNATIONAL

• ORGANIC SYNTHESIS INTERNATIONAL

• ORGANIC CHEMISTRY INTERNATIONAL

MY BLOG ON MED CHEM

New Drug Approvals

ALL ABOUT DRUGS

WORLD DRUG TRACKER

MEDICINAL CHEM INTERNATIONAL

DRUG SYN INTERNATIONAL

Page 61: The magic of cubane

SCALEUP OF DRUGS

ALL FOR DRUGS ON WEB